forked from christophersanborn/Radiative3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
media.hpp
602 lines (487 loc) · 22.4 KB
/
media.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
// media.hpp
//
// This file develops the concepts and constructs of "elastic media"
// for seismic energy propagation.
//
// The general modeling strategy is to build an earth model out of a
// collection of medium "cells" that interconnect with each other in
// such a way as to fill the model space. The cells can come in a
// variety of types. Different types give different capabilities in
// terms of the complexity of the model that can be built out of those
// types.
//
// Two major aspects of modeling are determined by these model cells:
//
// o Geometry:
//
// Cells can be developed in a variety of shapes. Our end goal is
// to develop tetrahedral cells which can be combined into very
// sophisticated 3D earth models. However, initially we will
// develop much simpler cells, such as spheres that represent an
// entire universe (ie, no interconnectivity to other cells.)
//
// o Velocity:
//
// The manner in which seismic velocity is defined and how it
// varies within a cell will also to be determined by the classes
// developed here. For example, one variation of the tetrahedral
// cell will specify linear velocity gradients, which are
// unambiguously determined by specifying velocities on the four
// corners of the tetrahedra. Simpler cell types will specify a
// single seismic velocity that is spacially constant throughout
// the cell.
//
// Physically speaking, scattering parameters could also be specified
// within a cell, but we take the strategy here of only maintaining a
// link to separate Scatterer and ScatterParam objects, which are to
// be maintained in an independent collection. We do this because, in
// complex models, a small number of scattering parameter sets are
// likely to be shared over a large number of medium cells, and thus
// maintaining only links avoids storing redundant duplications of the
// scattering parameters and precomputer data (case in point: the
// fully-precomputed scattering functions can take up many kilobytes
// of memory).
//
#ifndef MEDIA_H_
#define MEDIA_H_
//
#include <stdlib.h>
#include <iomanip>
#include "array.hpp"
#include "raytype.hpp"
#include "elastic.hpp"
#include "raypath.hpp"
#include "media_cellface.hpp"
//////
// CLASSES: -- Forward Declarations --
//
// FROM OTHER HEADERS: (Referenced here by pointer only -
// no need to include full header.)
class Scatterer; /* Defined in scatterers.hpp */
class GridData; /* Passed by constant reference to Tetra constructor */
//////
// TYPEDEFS:
//
//////
// CLASSES: Definitions
//
// INCLUDING:
//
// o class TravelRec
// o class MediumCell
// o class RCUCylinder
// o class Tetra
// o class SphereShell
// o class GCAD_RetVal
//
//////
// CLASS: :::: TravelRec ::::
// ENCAPS: Travel Record for a Phonon
//
// Encodes one "hop" or one "leg" of the journey of a phonon along a
// ray. For example, from a phonon's current location to a
// scatterring event, or to a cell boundary, etc.
//
// Data members are public. (This class intended to be used more
// like a struct than a class)
//
class TravelRec {
public:
Real PathLength; // Distance travelled along (possibly curved)
// path.
Real TravelTime; // Time it took to travel that distance.
R3::XYZ NewLoc; // Location of phonon after travelling.
S2::ThetaPhi NewDir; // Direction of phonon after travelling.
Real Attenuation; // Accrued Intrinsic Attenutation (determined
// by Q) as a multiplicative factor. (1.0
// means no attenuation.)
const CellFace * pFace; // Points to CellFace through which the ray
// exited the MediumCell. (Undefined if N/A.)
TravelRec() : Attenuation(1.0), pFace(nullptr) {}
std::string str() const {
std::ostringstream s;
s << std::setprecision(4);
s << "{PathLength: " << PathLength << ", TravelTime: " << TravelTime
<< ", NewLoc: " << NewLoc.str() << ", Attenuation: " << Attenuation
<< ", pFace: " << pFace << "}";
return s.str();
}
};
//////
// CLASS: MediumCell
//
// PURPOSE:
//
// To serve as an abstract base class for the category of classes
// that I will refer to as "MediumCell" classes. Here we declare the
// virtual methods that will comprise the interface to the whole
// family of MediumCell classes.
//
// This arrangement is motivated by a desired ability to divide our
// "Earth media" into "Cells" in a variety of ways, in order to
// model both differing geometries and different approaches to
// modeling seismic propagation.
//
// Examples of different geometries might include cells that divide
// up space into half-spaces, layers, or tetrahedra, etc.
//
// Examples of different seismic modelling might be cells that treat
// velocities as uniform-throughout, or as linear velocity
// gradients, etc.
//
// No actual objects of class MediumCell should ever be
// instantiated. (In fact they can't be, because the virtual
// methods are not implemented.) Rather, objects of the derived
// classes should be instantiated. But those objects can be pointed
// to by MediumCell pointers.
//
// There is a slight performace cost in using virtual methods, as
// the call is routed through an extra level of indirection. In
// particular, gcc (without optimizations) seems add three
// additional 'mov' instructions, each involving a memory access
// (One to pull the *this pointer, one to pull the vtable pointer,
// and one to pull the function pointer), to the calling code. On
// the whole I'm thinking (hoping) that this performance cost will
// be minimal, especially with optimizations turned on.
//
// There is a very definite memory cost, however, as each and every
// MediumCell-derived object must contain a pointer to the vtable as
// an additional element. This will add 8-bytes to each MediumCell,
// or 8-MBytes for every one-million Cells in our model. This may
// motivate a return to non-virtual method calling (and thus
// constraining our code to handling only ONE type of cell) after
// thorough testing of our most-capable cell type is complete.
//
class MediumCell {
protected:
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Class-Static Member Variables (MediumCell Base Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
//
// These values need runtime initialization prior to the construction
// of any MediumCell-derived objects. The responsibility to do this
// initialization lies with the Model constructor in model.cpp.
// Initialization is achieved via public property-set methods.
//
static Real cmPhononFreq; // Phonon Frequency (Hertz)
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Base Class Member Variables (MediumCell Base Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
//
// Base class manages Scatterer linkage.
//
Scatterer * mpScat; // Scatterer object that operates within
// this cell. Set by Link method.
// Responsibility for constructing/
// destructing lies elsewhere.
MediumCell() :
mpScat(nullptr){}
public:
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Class-Wide Property-Set Methods (MediumCell Base Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
static void SetFrequencyHertz(Real freq) {cmPhononFreq = freq;}
static Real GetFrequencyHertz() {return cmPhononFreq;}
// :::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Property-Set Methods (MediumCell Base Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::::::
void Link(Scatterer * pScat) {mpScat = pScat;}
Scatterer * GetActiveScatterer() const {return mpScat;}
// ::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Interrogative Methods (RCUCylinder Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::
Real IsPointInside(const R3::XYZ & loc) const;
// Reports whether a point is "inside" the MediumCell by returning a
// "mismatch" factor. Positive mismatch means the point is OUTSIDE
// the cell, and negative values mean INSIDE. Zero implies points
// is exactly on boundary. Method makes use of virtualized Face()
// method to probe all CellFaces for "insideness".
// :::::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Interface Declarations (MediumCell Base Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::::::::
//
// The following pure-virtual function declarations define a set of
// methods (an "interface") that MUST be implemented by any derived
// class in order to compile.
//
virtual CellFace & Face(Index face_id) = 0;
// Returns a read-write reference to the virtual CellFace
// object, presumed to be on the surface of the MediumCell,
// identified by face_id
virtual Count NumFaces() const = 0;
// Gets number of faces bounding the MediumCell derivative.
// :::
// :: Functions defining a Cell's elastic profile:
// :
virtual Real GetVelocAtPoint(const R3::XYZ & loc, raytype type) const = 0;
virtual Real GetWavelengthAtPoint(const R3::XYZ & loc, raytype type) const =0;
virtual Real GetDensityAtPoint(const R3::XYZ & loc) const =0;
virtual Real GetQatPoint(const R3::XYZ & loc, raytype type) const =0;
// :::
// :: Functions that compute travel paths within the Cell:
// :
virtual TravelRec AdvanceLength
(raytype rt, Real len, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const = 0;
// This one computes where/when a Phonon will end up if if follows
// it's cell-specific ray path (which could be straight-line or
// curved) for a given total path length 'len'.
virtual TravelRec GetPathToBoundary
(raytype rt, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const = 0;
// This one computes where/when a Phonon will end up if if
// follows it's cell-specific ray path until it hits a boundary
// of the cell.
protected:
// :::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Useful Helper Functions (MediumCell Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::::
//
// Kitchen sink type stuff...
//
static Real HelperUniformAttenuation(Real cycles, Real Q);
// Compute amplitude attenuation factor in uniform-Q cells. (Note: All
// derived cell types are currently assuming Q is uniform.) Note:
// Computes amplitude attenuation, NOT energy attenuation.
};
//////
// CLASS: RCUCylinder ("Right-Cirular Uniform Cylinder")
//
// FROM: MediumCell
//
// ENCAPSULATES:
//
// The RCUCylinder class encapsulates a MediumCell in the shape of a right-
// circular cylinder that is coaxial with the Z-axis, and with end caps
// located at specified Z-depths. The end caps can take any orientation in
// space, and thus can be used to model inclined interfaces between cells,
// such as a dipping Moho. The top and bottom endcaps will be treated as
// CellFaces that can be marked for collection, reflection, transmission or
// loss, etc. The curved side will always be treated as a loss face, and
// for efficiency a single class-wide CylinderFace object is shared between
// all RCUCylinder instances to serve as a common loss face.
//
// It will be possible to stack RCUCylinder objects on top of each other
// to establish different velocity regions.
//
// Seismic velocity inside the RCUCylinder is a single, spacially uniform
// quantity, (specified separately for P and S waves).
//
class RCUCylinder : public MediumCell {
protected:
Real mVelTop[2]; // Velocities at "top" of cylinder
Real mVelBot[2]; // Velocities at "bottom" (ignored)
Real mDensity; // Density (Arbitrary units - so far this
Real mQ[2]; // is only used in R/T computations, which
// depend on ratio across boundary, so
// units don't matter.)
PlaneFace mTopFace; // The top endcap
PlaneFace mBottomFace; // The bottom endcap
static bool cmRangeSet; // Radius of loss face needs to be set prior to
// path calculation. As a check, constructor
// will throw exception if not set. Typically,
// this will be set in the Model() constructor
// via a call to SetCylinderRange()
static CylinderFace cmLossFace; // The one is where we discard the phonon,
// and "represents" a phonon leaving via
// the cylinder wall. All objects will
// share this face.
public:
// ::::::::::::::::::::::::::::::::::::::::::
// ::: Constructors (RCUCylinder Class) :::
// ::::::::::::::::::::::::::::::::::::::::::
RCUCylinder(R3::XYZ N1_top, R3::XYZ N2_top, R3::XYZ N3_top,
R3::XYZ N1_bot, R3::XYZ N2_bot, R3::XYZ N3_bot,
Elastic::Velocity vpvs_top,
Elastic::Velocity vpvs_bot,
Real rho_top, Real rho_bot,
Elastic::Q q_top, Elastic::Q q_bot);
// :::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Property-Set Methods (RCUCylinder Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::
static void SetRange(Real range) {
cmLossFace.SetRadius(range);
cmRangeSet = true;
}
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Interface-Required Public Methods (RCUCylinder Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
virtual CellFace & Face(Index face_id) override;
virtual Count NumFaces() const override {return 3;}
// :::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Property-Get Methods (RCUCylinder Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::
virtual Real GetVelocAtPoint(const R3::XYZ &, raytype) const override;
virtual Real GetWavelengthAtPoint(const R3::XYZ &, raytype) const override;
virtual Real GetDensityAtPoint(const R3::XYZ &) const override;
virtual Real GetQatPoint(const R3::XYZ &, raytype) const override;
// :::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Do-Something Methods (RCUCylinder Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::
virtual TravelRec AdvanceLength(raytype rt, Real length, const R3::XYZ & startloc,
const S2::ThetaPhi & startdir) const override;
virtual TravelRec GetPathToBoundary(raytype rt, const R3::XYZ & startloc,
const S2::ThetaPhi & startdir) const override;
};
//////
// CLASS: Tetra
//
// FROM: MediumCell
//
// ENCAPSULATES:
//
// A tetrahedral medium cell bounded by four planar PlaneFace CellFaces.
// The velocites and densities internal to the cell follow linear gradients,
// that are computed from the values of the four corners of the cell, and
// thus imply circular curved ray paths.
//
class Tetra : public MediumCell {
protected:
R3::XYZ mVelGrad[RAY_NBT]; // Velocity Gradient for P and S
R3::XYZ mDensGrad; // Density Gradient
Real mVel0[RAY_NBT]; // Velocity at (0,0,0)
Real mDens0; // Density at (0,0,0)
Real mQ[2]; // Average Q of four nodes
Array::Quad<PlaneFace> mFaces; // Array consisting of
// four Cell Faces
public:
// ::::::::::::::::::::::::::::::::::::
// ::: Constructors (Tetra Class) :::
// ::::::::::::::::::::::::::::::::::::
Tetra (R3::XYZ N1, R3::XYZ N2, R3::XYZ N3, R3::XYZ N4,
const GridData & dataA, const GridData & dataB,
const GridData & dataC, const GridData & dataD);
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Interface-Required Public Methods (Tetra Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
virtual CellFace & Face(Index face_id) override;
virtual Count NumFaces() const override {return 4;}
// :::::::::::::::::::::::::::::::::::::::::::
// ::: Property-Get Methods (Tetra Class) :::
// :::::::::::::::::::::::::::::::::::::::::::
virtual Real GetVelocAtPoint(const R3::XYZ &, raytype) const override;
virtual Real GetWavelengthAtPoint(const R3::XYZ &, raytype) const override;
virtual Real GetDensityAtPoint(const R3::XYZ &) const override;
virtual Real GetQatPoint(const R3::XYZ &, raytype) const override;
// :::::::::::::::::::::::::::::::::::::::::::
// ::: Do-Something Methods (Tetra Class) :::
// :::::::::::::::::::::::::::::::::::::::::::
virtual TravelRec AdvanceLength(raytype rt, Real len, const R3::XYZ & startloc,
const S2::ThetaPhi & startdir) const override;
virtual TravelRec GetPathToBoundary(raytype rt, const R3::XYZ & startloc,
const S2::ThetaPhi & startdir) const override;
};
//////
// CLASS: SphereShell
//
// FROM: MediumCell
//
// ENCAPSULATES:
//
// Spherical shell in which the velocity inside is either a degree-0 or
// degree-2 function of radius. (Either straight-line ray paths or circular
// arc raypaths.)
//
// Internal representation of velocity is v = a*r^2 + c, and likewise for
// density. Q values are uniform and taken from the top-surface grid data.
//
class SphereShell : public MediumCell {
protected:
// Velocity and Elastic Structure:
Real mVelCoefA[RAY_NBT]; // Coef on r^2
Real mVelCoefC[RAY_NBT]; // Constant (velocity at r=0)
Real mZeroRadius[RAY_NBT]; // Radius r at which v==0
Real mZeroRadius2[RAY_NBT]; // RadiusSquared r^2 at which v==0
Real mDensCoefA;
Real mDensCoefC;
Real mQ[RAY_NBT];
// Geometry:
Array::Pair<SphereFace> mFaces; // Array consisting of
// two cell faces
public:
// ::::::::::::::::::::::::::::::::::::::::::
// ::: Constructors (SphereShell Class) :::
// ::::::::::::::::::::::::::::::::::::::::::
SphereShell(Real RadTop, Real RadBot,
const GridData & DataTop, const GridData & DataBot);
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Interface-Required Public Methods (SphereShell Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
virtual CellFace & Face(Index face_id) override;
virtual Count NumFaces() const override {return 2;}
// :::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Property-Get Methods (SphereShell Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::
virtual Real GetVelocAtPoint(const R3::XYZ &, raytype) const override;
virtual Real GetWavelengthAtPoint(const R3::XYZ &, raytype) const override;
virtual Real GetDensityAtPoint(const R3::XYZ &) const override;
virtual Real GetQatPoint(const R3::XYZ &, raytype) const override;
// :::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Do-Something Methods (SphereShell Class) :::
// :::::::::::::::::::::::::::::::::::::::::::::::::
virtual TravelRec GetPathToBoundary(raytype rt, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const override;
virtual TravelRec AdvanceLength(raytype rt, Real len, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const override;
protected:
// NOMENCLATURE NOTE: 'RD0' implies "radial degree zero," or, uniform
// velocity inside radially symmetric cells. 'RD2' implies "radial degree
// two," or radially quadratic varying velocity. At some point we may add
// support for 'RD1' for velocity that varies linearly with radial
// coordinate.
TravelRec GetPath_Variant_RD0(raytype rt, const R3::XYZ & loc, const S2::ThetaPhi & dir) const;
// GetPath handler for uniform velocity profile.
TravelRec GetPath_Variant_RD2(raytype rt, const R3::XYZ & loc, const S2::ThetaPhi & dir) const;
// GetPath handler for radial quadratic velocity profile.
TravelRec AdvanceLength_Variant_RD0(raytype rt, Real len, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const;
// AdvanceLength handler for uniform velocity profile.
TravelRec AdvanceLength_Variant_RD2(raytype rt, Real len, const R3::XYZ & startloc, const S2::ThetaPhi & startdir) const;
// AdvanceLength handler for radial quadratic velocity profile.
TravelRec AdvanceLength_Variant_RD2_Impl(raytype rt, Real len, const R3::XYZ & startloc, const S2::ThetaPhi & startdir, const RayArcAttributes & arc) const;
// Implementation. (Takes additional precomputed parameter.)
// ::::::::::::::::::::::::::::::::::::::::::::::::::::
// ::: Specific Helper Methods (SphereShell Class) :::
// ::::::::::::::::::::::::::::::::::::::::::::::::::::
RayArcAttributes GetRayArc_RD2(raytype rt, const R3::XYZ & loc, const S2::ThetaPhi & dir) const;
// Get ray arc attributes in a radial quadratic velocity profile.
Real GetTravelTimeAngleToAngle_RD2(Real angle0, Real angle1, const RayArcAttributes & arc) const;
// Compute travel time along a circular arc from an initial to final
// angular coordinate given as radians to/from bottoming angle. This
// one is correct for radial quadratic velocity profiles.
};
//////
// CLASS: CoordinateTransformation
//
class CoordinateTransformation {
private:
R3::XYZ mLocRotTrans;
R3::XYZ mTranslation;
R3::Matrix mRotMatrix;
Real mRadius;
public:
CoordinateTransformation(const Real & Vxo, const R3::XYZ & g, const R3::XYZ & loc, const R3::XYZ & t){
R3::XYZ v2 = g.Cross(t);
R3::XYZ v1 = v2.Cross(g);
R3::XYZ v3 = g;
v1.Normalize();
v2.Normalize();
v3.Normalize();
Real txprime = t.Dot(v1);
Real tzprime = t.Dot(v3);
Real s = txprime/(Vxo);
Real R = 1/(s * g.Mag()); // radius
R3::Matrix S = R3::RowsMatrix(v1,v2,v3);
R3::XYZ x0rot = S * loc;
R3::XYZ translate = R3::XYZ(x0rot.x()+R*tzprime,
x0rot.y(),x0rot.z()+(-1)*R*txprime);
R3::XYZ x0prime = x0rot + translate.ScaledBy(-1);
mLocRotTrans = x0prime;
mTranslation = translate;
mRotMatrix = S;
mRadius = R;
}
public:
R3::XYZ PrimeLoc() const { return mLocRotTrans;}
R3::XYZ Trans() const { return mTranslation;}
R3::Matrix RotMat() const { return mRotMatrix;}
Real Radius() const { return mRadius;}
};
///
#endif //#ifndef MEDIA_H_
//