┏┓ ┳┳┓ ┓┳┓•
┃┃┓┏┃┃┃┏┓┃┃┃┓┏
┣┛┗┫┛ ┗┗┛┗┻┛┗┛
┛
A Python suite for data-mining the Quantum Chemistry Big Data developed through the MolDis project (https://moldis.tifrh.res.in/)
Support e-mail: ramakrishnan@tifrh.res.in
-
Install dependencies
numpy
,pandas
-
Additionally, if you want to convert a SMILES string to an SVG image as in query10.ipynb, install
rdkit
-
Download and install the package
git clone git@github.com:moldis-group/pymoldis.git
pip3 install -e pymoldis
- Install from PyPI
pip3 install pymoldis
The tutorial Jupyter notebooks are here: tutorial_ipynb_bigqm7w_S1T1
Or, if you want to try a simple query, try the following
import pymoldis
df=pymoldis.get_data('bigqm7w_S1T1')
df.describe()
Resilience of Hund's rule in the Chemical Space of Small Organic Molecules
Atreyee Majumdar, Raghunathan Ramakrishnan
https://arxiv.org/abs/2402.13801 (2024)
The Resolution-vs.-Accuracy Dilemma in Machine Learning Modeling of Electronic Excitation Spectra
Prakriti Kayastha, Sabyasachi Chakraborty, Raghunathan Ramakrishnan
Digital Discovery, 1 (2022) 689-702.
- bigQM7w dataset with DFT/TDDFT properties: https://moldis-group.github.io/bigQM7w/
R Ramakrishnan (2024) "pymoldis: A Python suite for Molecular Discovery with Quantum Chemistry Big Data" https://github.com/moldis-group/pymoldis
@misc{ramakrishnan2024pymoldis,
title = {pymoldis: A Python suite for Molecular Discovery with Quantum Chemistry Big Data},
author = {Ramakrishnan, Raghunathan},
url = {https://github.com/moldis-group/pymoldis},
year = {2024}
}