-
Notifications
You must be signed in to change notification settings - Fork 0
/
094. Binary Tree Inorder Traversal.cpp
203 lines (184 loc) · 5.69 KB
/
094. Binary Tree Inorder Traversal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//Recursive
//Runtime: 4 ms, faster than 56.80% of C++ online submissions for Binary Tree Inorder Traversal.
//Memory Usage: 9.3 MB, less than 77.00% of C++ online submissions for Binary Tree Inorder Traversal.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> ans;
void inorderTraversalR(TreeNode* root){
if(!root) return;
if(root->left){
inorderTraversal(root->left);
}
ans.push_back(root->val);
if(root->right){
inorderTraversal(root->right);
}
}
vector<int> inorderTraversal(TreeNode* root) {
inorderTraversalR(root);
return ans;
}
};
//Runtime: 0 ms, faster than 100.00% of C++ online submissions for Binary Tree Inorder Traversal.
//Memory Usage: 8 MB, less than 100.00% of C++ online submissions for Binary Tree Inorder Traversal.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
stack<TreeNode*> stk;
TreeNode* cur = root;
vector<int> ans;
stk.push(cur);
do{
cur = stk.top();
//go to its leftmost child
TreeNode* tmp = cur ? cur->left : NULL;
while(tmp){
stk.push(tmp);
tmp = tmp->left;
}
//if it has left child, process leftmost child first
cur = stk.top(); stk.pop();
if(cur) ans.push_back(cur->val);
//cut current node and its parent,
//so current node won't be traversed again
if(stk.size() > 0) stk.top()->left = NULL;
//deal with right child
if(cur && cur->right) stk.push(cur->right);
}while(!stk.empty());
return ans;
}
};
//iterative, another version
//Runtime: 4 ms, faster than 56.80% of C++ online submissions for Binary Tree Inorder Traversal.
//Memory Usage: 8 MB, less than 100.00% of C++ online submissions for Binary Tree Inorder Traversal.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> ans;
stack<TreeNode*> stk;
TreeNode* cur;
stk.push(root);
while(!stk.empty()){
cur = stk.top();
while(cur && cur->left){
stk.push(cur->left);
cur = cur->left;
}
cur = stk.top(); stk.pop();
if(cur) ans.push_back(cur->val);
if(stk.size() > 0) stk.top()->left = nullptr;
if(cur && cur->right) stk.push(cur->right);
}
return ans;
}
};
//Approach 2: Iterating method using Stack(official sol)
//time: O(N), space: O(N)
//Runtime: 0 ms, faster than 100.00% of C++ online submissions for Binary Tree Inorder Traversal.
//Memory Usage: 8.5 MB, less than 100.00% of C++ online submissions for Binary Tree Inorder Traversal.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> ans;
stack<TreeNode*> stk;
TreeNode* cur = root;
while(cur || !stk.empty()){
//if cur is nullptr, it's ok, because it will later be stk.top()
while(cur){
stk.push(cur);
cur = cur->left;
}
cur = stk.top(); stk.pop();
ans.push_back(cur->val);
//it's fine if cur->right is nullptr
cur = cur->right;
}
return ans;
}
};
//Approach 3: Morris Traversal
//time: O(n), space: O(n)
//Runtime: 4 ms, faster than 56.80% of C++ online submissions for Binary Tree Inorder Traversal.
//Memory Usage: 8 MB, less than 100.00% of C++ online submissions for Binary Tree Inorder Traversal.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> ans;
TreeNode *cur = root, *pre;
while(cur){
if(cur->left){
pre = cur->left;
while(pre->right){
pre = pre->right;
}
//pre->right is now cur's rightmost child
//it doesn't have right child
//pre is the parent of cur's rightmost child
pre->right = cur;
TreeNode* tmp = cur;
//current root becomes its left child
cur = cur->left;
//cur original root's left subtree
tmp->left = nullptr;
}else{
ans.push_back(cur->val);
cur = cur->right;
}
}
return ans;
}
};