-
Notifications
You must be signed in to change notification settings - Fork 13
/
problem.py
42 lines (32 loc) · 1.21 KB
/
problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import pandas as pd
import rampwf as rw
from sklearn.model_selection import StratifiedShuffleSplit
problem_title = 'Iris classification'
_target_column_name = 'species'
_prediction_label_names = ['setosa', 'versicolor', 'virginica']
# A type (class) which will be used to create wrapper objects for y_pred
Predictions = rw.prediction_types.make_multiclass(
label_names=_prediction_label_names)
# An object implementing the workflow
workflow = rw.workflows.Estimator()
score_types = [
rw.score_types.Accuracy(name='acc'),
rw.score_types.ClassificationError(name='error'),
rw.score_types.NegativeLogLikelihood(name='nll'),
rw.score_types.F1Above(name='f1_70', threshold=0.7),
]
def get_cv(X, y):
cv = StratifiedShuffleSplit(n_splits=2, test_size=0.2, random_state=57)
return cv.split(X, y)
def _read_data(path, f_name):
data = pd.read_csv(os.path.join(path, 'data', f_name))
y_array = data[_target_column_name].values
X_array = data.drop([_target_column_name], axis=1)
return X_array, y_array
def get_train_data(path='.'):
f_name = 'train.csv'
return _read_data(path, f_name)
def get_test_data(path='.'):
f_name = 'test.csv'
return _read_data(path, f_name)