his package intends to convert categorical features into numerical ones. This will help in employing algorithms and methods that only accept numerical data as input. The main motivation for writing this package is to use in clustering assignments.
–>
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("ranibasna/NumericalTransformation")
This is a basic example which shows you how to convert a categorical features to numerical ones:
library(ggplot2)
library(NumericTransformation)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
## basic example code
# Generate toy data with categorical and numerical columns
n <- 100
prb <- 0.5
muk <- 1.5
clusid <- rep(1:4, each = n)
x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)
x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)
x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x <- data.frame(x1,x2,x3,x4)
summary(x)
#> x1 x2 x3 x4
#> A:204 A:204 Min. :-3.73174 Min. :-4.03363
#> B:196 B:196 1st Qu.:-1.58986 1st Qu.:-1.51643
#> Median : 0.01126 Median : 0.05593
#> Mean :-0.03406 Mean : 0.09105
#> 3rd Qu.: 1.44801 3rd Qu.: 1.63105
#> Max. : 3.98378 Max. : 4.31391
# converting the numerical data using UFT_func
x_converted_data <- UFT_func(x, Seed = 22)
#head(x_converted_data)
# bined with the rest of the data
x_converted_data_all <- bined_converted_func(converted_data = x_converted_data, original_data = x)
head(x_converted_data_all)
#> x1 x2 x3 x4
#> 1 0.5875140 0.6497559 -2.2997601 -0.3248441
#> 2 2.1161486 1.8238219 -1.8089499 -2.3681881
#> 3 -1.6769365 -0.9598341 0.3299168 -0.2387695
#> 4 1.3626962 1.2265628 -2.1908686 -0.9452686
#> 5 0.9980403 -1.1876765 -0.2822368 -1.1285861
#> 6 -1.5606829 0.9968173 -2.2658486 -0.9812207
x_converted_data_all <- x_converted_data_all %>% dplyr::mutate(id = row_number())
head(x_converted_data_all)
#> x1 x2 x3 x4 id
#> 1 0.5875140 0.6497559 -2.2997601 -0.3248441 1
#> 2 2.1161486 1.8238219 -1.8089499 -2.3681881 2
#> 3 -1.6769365 -0.9598341 0.3299168 -0.2387695 3
#> 4 1.3626962 1.2265628 -2.1908686 -0.9452686 4
#> 5 0.9980403 -1.1876765 -0.2822368 -1.1285861 5
#> 6 -1.5606829 0.9968173 -2.2658486 -0.9812207 6
# plotiing
# adding old non-numerical features
x_converted_data_all$x1_old <- x$x1
ggplot(x_converted_data_all, aes(x=id, y=x1, color=x1_old)) + geom_point()
ggplot(x_converted_data_all, aes(x=x1), color=x1_old) + geom_histogram(bins = 30, color = "black", fill = "gray")
n <- 100
prb <- 0.9 # we put the prb to 0.9 for clear clusters
muk <- 1.5
clusid <- rep(1:4, each = n)
x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)
x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)
x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x <- data.frame(x1,x2,x3,x4)
# converting the numerical data using UFT_func
x_converted_data <- UFT_func(x, Seed = 22)
#head(x_converted_data)
# bined with the rest of the data
x_converted_data_all <- bined_converted_func(converted_data = x_converted_data, original_data = x)
head(x_converted_data_all)
#> x1 x2 x3 x4
#> 1 0.5482406 -0.9598341 -0.6721997 -1.3640539
#> 2 2.1293284 0.6497559 -3.4891224 -1.2824085
#> 3 1.3500223 1.8238219 -1.8073841 -0.7831971
#> 4 0.9728537 -1.1876765 -3.3130884 -1.2942845
#> 5 -1.4094992 -0.9161744 -2.8428968 0.3910824
#> 6 0.7081679 -0.6321053 -0.9697318 -1.5089555
# plotiing
x_converted_data_all <- x_converted_data_all %>% mutate(id = row_number())
# adding old non-numerical features
x_converted_data_all$x1_old <- x$x1
ggplot(x_converted_data_all, aes(x=id, y=x1, color=x1_old)) + geom_point()
ggplot(x_converted_data_all, aes(x=x1), color=x1_old) + geom_histogram(bins = 30, color = "black", fill = "gray")