-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11-2way_simple_effects.R
225 lines (155 loc) · 8.11 KB
/
11-2way_simple_effects.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#########################################################################
##################### 2-way Simple Effects Testing ######################
#########################################################################
#####
# Date: TODAY'S DATE
# By: *INSERT NAME HERE*
# Description: PROJECT DISCRIPTION
# Version of R used: CURRENT VERSION OF R
#####################################
### Import data & load libraries ####
#####################################
## Install the required script packages if not yet installed
# Install pacman & jmv package if necessary
if(!"pacman" %in% rownames(installed.packages())) install.packages("pacman")
if(!"jmv" %in% rownames(installed.packages())) install.packages("jmv")
pacman::p_load(parallel, rio, psych, car, lsr, phia, tidyverse, parameters, apaTables)
## load data
# RData files work the best in R.
# Try to only open RData files to avoid any issues.
# CSV works the next best in R.
# Try to only save and open CSV files to avoid any issue if you cannot load RData files.
# SPSS files can be buggy to import, especially factors and labels
# the following command will open a dialog box and allow you to select the file you wish to laod
dat <- import(file.choose())
# check to see that you loaded the correct dataset
View(dat)
# list variables in dataset
glimpse(dat)
# NB: Alt + Shift + K --> will bring up keyboard shortcuts
###############################################
###### significant IV1 x IV2 interaction ######
###############################################
# We need to change the default contrast for unordered factors from “cont.treatment” to “contr.helmert”.
options(contrasts = c("contr.helmert", "contr.poly"))
## R way of Anova using 'car' package
## ANOVA function
# simplified code to run ANOVAs on all DVs at once
aov_models <- dat %>%
dplyr::select(starts_with("avg_")) %>% # this line tells the map() only use your DVs (all start "avg_" in my datasets)
map(~Anova(lm(. ~ iv1 * iv2, data = dat), type = 3))
aov_models
# linear model to dive into any significant 2-ways
model1 <- lm(dv ~ iv1 * iv2, data=dat)
# create ANOVA
model_1 <- Anova(model1, type = 3)
# run ANOVA
model_parameters(model_1, eta_squared = "partial")
## descriptives based on condition
# note: na.omit() removes any NAs contained within each of the IVs
(summarydat <- na.omit(dat %>%
group_by(iv1, iv2) %>%
summarise(N = sum(!is.na(dv)),
mean = round(mean(dv, na.rm=TRUE), 2),
sd = round(sd(dv, na.rm=TRUE), 2))))
# new way of Anova using 'jmv' package, closer to SPSS output
# gives partial eta-squared and omega effect sizes in a nice table
jmv::ANOVA(
formula = dv ~ iv1 * iv2,
data = dat,
effectSize = "partEta",
emMeans = ~ iv1:iv2)
############################################################################
############# Simple effects of IV1 at different IV2 levels ################
############################################################################
# quickly examine simple effects
# see https://cran.r-project.org/web/packages/phia/vignettes/phia.pdf
# create interaction model of interest
modinter <- na.omit(model1)
# examine simple effects
(moderation1 <- testInteractions(modinter, fixed = c("iv2"), across="iv1", adjustment="none"))
# eta-squared for different levels of iv2
(etasqiv1.l <- (moderation1[1,3]) / ((moderation1[1,3]) + (moderation1[3,3]))) # eta-squared iv2-l, across iv1
(etasqiv1.h <- (moderation1[2,3]) / ((moderation1[2,3]) + (moderation1[3,3]))) # eta-squared iv2-h, across iv1
moderation1
etasqiv1.l
etasqiv1.h
############################################################################
############# Simple effects of IV2 at different IV1 levels ################
############################################################################
# examine simple effects
(moderation2 <- testInteractions(modinter, fixed = c("iv1"), across="iv2", adjustment="none"))
# eta-squared for different levels of iv2
(etasqiv2.l <- (moderation2[1,3]) / ((moderation2[1,3]) + (moderation2[3,3]))) # eta-squared iv1-l, across iv2
(etasqiv2.h <- (moderation2[2,3]) / ((moderation2[2,3]) + (moderation2[3,3]))) # eta-squared iv1-h, across iv2
moderation2
etasqiv2.l
etasqiv2.h
###############################################
######### Plotting 2-way interaction ##########
###############################################
# the follow commands will create APA-style, MS ready figures
# will produce 2 figures:
# Figure_1 will plot IV1 as X-axis
# Figure_2 will plot IV2 as X-axis
### create x, z, and y columns by renaming IVs
dat$iv1 <- dat$YOUR_IV1_NAME_HERE # x-axis variable here
dat$iv2 <- dat$YOUR_IV2_NAME_HERE # moderator_1 variable here
dat$dv <- dat$YOUR_DV_NAME_HERE # outcome variable here
## create labels for figure
# must use quotes for labels
# change labels in quotes to be what you want them to be
y_label <- "dv_name"
y_axis_high <- 9.0 # high descrete numeric value displayed on y-axis
y_axis_low <- 1.0 # low descrete numeric value displayed on y-axis
y_increment <- 1.0 # increments for y-axis
x_label <- "x-axis_label" # x-axis variable (non-moderator)
x_values <- c("low", "high") # x-axis values
mod_label <- "x_moderator_name" # figure legend (moderator)
mod_values <- c("low", "high") # moderator values
# change legend location if needed
# in the format of (x,y), can be any number between 0 and 1
# (0.8, 0.8) is upper-right corner, (0.2, 0.8) is the top left of the figure
legend_loc <- c(0.8, 0.8)
# run next line and figure will be automatically created
source("https://raw.githubusercontent.com/rastlab/R_templates/master/99990-ggplot2_2way_SE.R")
#####################################
####### Here are the figures ########
#####################################
# verify figures are consistent with condition means
figure_1
figure_2
# if you are happy with figures, save them
# can change dimensions, file type, and dpi as per journal requirement specifications
ggsave('./figures/figure_1.png', figure_1, width = 8, height = 6, unit = 'in', dpi = 320)
ggsave('./figures/figure_2.png', figure_2, width = 8, height = 6, unit = 'in', dpi = 320)
#######################################
###### Create descriptives table ######
#######################################
# the below script is set up so that once YOU update the variable names in your analysis,
# then the below commands will automatically create a descriptives table that can be placed
# directly into your MS, presentation, or poster
# we'll also remove NA values to make this simpler
dat2 <- dat %>% dplyr::select(iv1, iv2, dv) %>% na.omit()
# can make multiple tables by changing 'table.number = X
apa.2way.table(iv1, iv2, dv, data = dat2, landscape = TRUE, table.number = 1, filename="./tables/anova_table.doc")
apa.aov.table(modinter, conf.level = 0.9, type = 3, table.number = 2, filename="./tables/anovasummary_table.doc")
# correlation matrix
dat3 = na.omit(dat %>%
dplyr::select(iv1, iv2, dv) %>%
rename(NEW_NAME_IV1 = iv1, # relabel whatever you want your variables to be named in the manuscript, cannot contain spaces though
NEW_NAME_IV2 = iv2,
NEW_NAME_DV = dv))
dat3$NEW_NAME_IV1 <- as.numeric(dat3$NEW_NAME_IV1) # must change experimental variables (factors) into numeric values (intergers)
dat3$NEW_NAME_IV2 <- as.numeric(dat3$NEW_NAME_IV2) # must change experimental variables (factors) into numeric values (intergers)
apa.cor.table(dat3, show.conf.interval = FALSE, landscape = TRUE, table.number = 3,
filename = "./tables/correlation_table.doc")
#######################################
###### Saving Data and Workspace ######
#######################################
# Save current workspace:
export(dat, "./data/11_two_way_anova.RData")
# save R data file as CSV
export(dat, "./data/11_two_way_anova.csv")
# save R data file as SAV SPSS file
export(dat, "./data/11_two_way_anova.sav")