-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClustering.m
52 lines (49 loc) · 2.37 KB
/
Clustering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Feature : Event Based Target Clustering
% Author : Rastri Dey
% Date : 03/06/2022
% Version : 1.0
% Matlab Version : R2021a
% Purpose : Nearest Neighbor based Event clustering
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [EventXCluster,EventYCluster,EventTCluster,ClusterNum] = Clustering(DataX,DataY,DataT)
Len_DataX=length(DataX); %sizeof of datapoints per timestamp
DataX_Cluster = cell(1); %Initialize the variable to store x-coordinate (pix) of the cluster in cell type
DataY_Cluster = cell(1); %Initialize the variable to store y-coordinate (pix) of the cluster in cell type
DataT_Cluster = cell(1);
radius_thr = 50; %Initialize the variable for radius threshold
EventXCluster = cell(1); % Final Event X Cluster
EventYCluster = cell(1); % Final Event Y Cluster
EventTCluster = cell(1);
%% Nearest Neighbor: Euclidean Distance Based
radius_flag = -1*ones(Len_DataX,Len_DataX);
dist= -1*ones(Len_DataX,Len_DataX);
ClusterId = 1;
while(~isempty(DataX))
for col = 1:(length(DataX))
dist(ClusterId,col)=sqrt((DataX(col)-DataX(1))^2+(DataY(col)-DataY(1))^2);
if dist(ClusterId,col)>= radius_thr %radius_threshold;
radius_flag(ClusterId,col)=1;
else
radius_flag(ClusterId,col)=0;
end
end
% Find Dense regions
DataX_Cluster{ClusterId} = DataX((radius_flag(ClusterId,:)==0));
DataY_Cluster{ClusterId} = DataY((radius_flag(ClusterId,:)==0));
DataT_Cluster{ClusterId} = DataT((radius_flag(ClusterId,:)==0));
% Accumulate dense cluster points
DataX = DataX((radius_flag(ClusterId,:)==1));
DataY = DataY((radius_flag(ClusterId,:)==1));
ClusterId = ClusterId+1;
end
clstr = 0;
for c = 1: length(DataX_Cluster)
if length(DataX_Cluster{c}) > 3 % Ignore the clusters having less than 4 datapoints
clstr = clstr+1;
EventXCluster{clstr} = DataX_Cluster{c};
EventYCluster{clstr} = DataY_Cluster{c};
EventTCluster{clstr} = DataT_Cluster{c};
end
end
ClusterNum = length(EventXCluster); % Number of Clusters in current timestamp