-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdaf.m
78 lines (61 loc) · 2.65 KB
/
pdaf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Feature : Probabibilistic Data Association Filter
% Author : Rastri Dey
% Date : 03/14/2022
% Version : 1.0
% Matlab Version : R2021a
% Purpose : Data Tracking
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [State,x,y,Cov,ellipse] = pdaf(State,Z,Cov)
% State Prediction
[Zpred,State,Cov,Innovation]=Prediction(State,Cov);
Num_Target = size(Z,2); % Number of Targets
MahaDistance = zeros(Num_Target);
% Measurement Validation
if Num_Target>0
Diff = -Zpred(:,ones(1,Num_Target)) + Z;
for i=1:Num_Target
MahaDistance(1,i)=(Diff(:,i))'/(Innovation)*Diff(:,i); % Validation Region: Mahalanobis distance^2
end
Gamma = 40;
MahaIndex = MahaDistance(1,:) < Gamma; % Gamma: Gate Threshold
else
MahaIndex = 0;
end
if sum(MahaIndex)==0 % No Data Matching: No measurement Data Found for existing State (Deletion)
ValidEvent = Zpred;
Meas_Error = [0 0]'; % Innovation
validMeasNum = 0;
else
ValidEvent = Z(:,MahaIndex);
Meas_Error = Diff(:,MahaIndex); % Innovation
validMeasNum = size(ValidEvent,2);
end
if validMeasNum>0
% Data Association
[InnovCov,V,Beta] = DataAssociation(Gamma,validMeasNum,Meas_Error,ValidEvent,Innovation,Zpred);
% State Update
[State,Cov] = StateEstimation(State,Cov,Innovation,InnovCov,V,Beta);
end
x = State(1); % X position Pixel
y = State(3); % Y position Pixel
%% Draw Ellipse for Valid Events corresponding to targets
X = ValidEvent';
% Sample mean
mu = (1/validMeasNum * sum(X))'; % transpose to make it a column vector
% Sample covariance
e = (X - mu')';
Sigma = (e * e') / (validMeasNum-1);
[L, flag] = chol(Sigma, 'lower');
% create points from a unit circle
phi = (-pi:.01:pi)';
circle = [cos(phi), sin(phi)];
% % create confidence ellipse: Chi-squared 2-DOF 95% percent confidence (0.05): 5.991
scale = sqrt(5.991);
% if Sigma is positive definite plot the ellipse
if ~flag
% apply the transformation and scale of the covariance
ellipse = (scale * L * circle');
else
ellipse = (scale * eye(2) * circle'); %Innovation
end