Skip to content

Latest commit

 

History

History
128 lines (71 loc) · 2.09 KB

Readme.md

File metadata and controls

128 lines (71 loc) · 2.09 KB

BoundaryNet -- Baselines

CurveGCN

The code is tested with

  • Python (3.5.x)
  • PyTorch (1.0.0)
  • CUDA (10.2)

cd baselines/CureveGCN/

Please install dependencies by

pip install -r requirements.txt

Usage

Initial Setup:

  • Download the Indiscapes dataset - [Dataset Link]
  • Place the
    • Dataset Images under doc_images directory
    • Pretrained Model weights in the checkpoints directory
    • JSON annotation data in data_splits directory

Training & Inference

python3 combined_train.py --exp train_experiment.json
  • Any required parameter changes can be performed in the experiment file.

PolyRNN ++

The code is tested with

  • Python (3.5.x)
  • PyTorch (0.4.0)
  • CUDA (10.2)

cd baselines/polyrnn-pp-pytorch/code/

Please install dependencies by

pip install -r requirements.txt

Usage

Initial Setup:

  • Download the Indiscapes dataset - [Dataset Link]
  • Place the
    • Dataset Images under doc_images directory
    • Pretrained CurveGCN/DACN Model weights in the checkpoints directory
    • JSON annotation data in data_splits directory

Training & Inference

python3 Scripts/train/train_ce.py --exp Experiments/mle.json
  • Any required parameter changes can be performed in the experiment file.

DACN

The code is tested with

  • Python (3.5.x)
  • PyTorch (1.0.0)
  • CUDA (10.2)

cd baselines/DACN/

Please install dependencies by

pip install -r requirements.txt

Usage

Initial Setup:

  • Download the Indiscapes dataset - [Dataset Link]
  • Place the
    • Dataset Images under doc_images directory
    • Pretrained Model weights in the checkpoints directory
    • JSON annotation data in data_splits directory

Training & Inference

python3 combined_train.py --exp train_experiment.json
  • Any required parameter changes can be performed in the experiment file.