forked from SHI-Labs/Versatile-Diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
46 lines (41 loc) · 1.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch.distributed as dist
import torch.multiprocessing as mp
import os
import os.path as osp
import sys
import numpy as np
import copy
from lib.cfg_holder import cfg_unique_holder as cfguh
from lib.cfg_helper import \
get_command_line_args, \
cfg_initiates
from lib.utils import get_obj_from_str
if __name__ == "__main__":
cfg = get_command_line_args()
cfg = cfg_initiates(cfg)
if 'train' in cfg:
trainer = get_obj_from_str(cfg.train.main)(cfg)
tstage = get_obj_from_str(cfg.train.stage)()
if 'eval' in cfg:
tstage.nested_eval_stage = get_obj_from_str(cfg.eval.stage)()
trainer.register_stage(tstage)
if cfg.env.gpu_count == 1:
trainer(0)
else:
mp.spawn(trainer,
args=(),
nprocs=cfg.env.gpu_count,
join=True)
trainer.destroy()
else:
evaler = get_obj_from_str(cfg.eval.main)(cfg)
estage = get_obj_from_str(cfg.eval.stage)()
evaler.register_stage(estage)
if cfg.env.gpu_count == 1:
evaler(0)
else:
mp.spawn(evaler,
args=(),
nprocs=cfg.env.gpu_count,
join=True)
evaler.destroy()