-
Notifications
You must be signed in to change notification settings - Fork 38
/
reeds_shepp_path_planning.py
451 lines (328 loc) · 11 KB
/
reeds_shepp_path_planning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import numpy as np
import math
import matplotlib.pyplot as plt
show_animation = True
class Path:
def __init__(self):
self.lengths = []
self.ctypes = []
self.L = 0.0
self.x = []
self.y = []
self.yaw = []
self.directions = []
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
"""
Plot arrow
"""
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
def mod2pi(x):
v = np.mod(x, 2.0 * math.pi)
if v < -math.pi:
v += 2.0 * math.pi
else:
if v > math.pi:
v -= 2.0 * math.pi
return v
def SLS(x, y, phi):
phi = mod2pi(phi)
if y > 0.0 and phi > 0.0 and phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
elif y < 0.0 and phi > 0.0 and phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
return True, t, u, v
return False, 0.0, 0.0, 0.0
def set_path(paths, lengths, ctypes):
path = Path()
path.ctypes = ctypes
path.lengths = lengths
# check same path exist
for tpath in paths:
typeissame = (tpath.ctypes == path.ctypes)
if typeissame:
if sum(tpath.lengths) - sum(path.lengths) <= 0.01:
return paths # not insert path
path.L = sum([abs(i) for i in lengths])
# Base.Test.@test path.L >= 0.01
if path.L >= 0.01:
paths.append(path)
return paths
def SCS(x, y, phi, paths):
flag, t, u, v = SLS(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "L", "S"])
flag, t, u, v = SLS(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "R", "S"])
return paths
def polar(x, y):
r = math.sqrt(x ** 2 + y ** 2)
theta = math.atan2(y, x)
return r, theta
def LSL(x, y, phi):
u, t = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if t >= 0.0:
v = mod2pi(phi - t)
if v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
def LRL(x, y, phi):
u1, t1 = polar(x - math.sin(phi), y - 1.0 + math.cos(phi))
if u1 <= 4.0:
u = -2.0 * math.asin(0.25 * u1)
t = mod2pi(t1 + 0.5 * u + math.pi)
v = mod2pi(phi - t + u)
if t >= 0.0 and u <= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
def CCC(x, y, phi, paths):
flag, t, u, v = LRL(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "R", "L"])
flag, t, u, v = LRL(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"])
flag, t, u, v = LRL(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "L", "R"])
flag, t, u, v = LRL(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"])
# backwards
xb = x * math.cos(phi) + y * math.sin(phi)
yb = x * math.sin(phi) - y * math.cos(phi)
# println(xb, ",", yb,",",x,",",y)
flag, t, u, v = LRL(xb, yb, phi)
if flag:
paths = set_path(paths, [v, u, t], ["L", "R", "L"])
flag, t, u, v = LRL(-xb, yb, -phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"])
flag, t, u, v = LRL(xb, -yb, -phi)
if flag:
paths = set_path(paths, [v, u, t], ["R", "L", "R"])
flag, t, u, v = LRL(-xb, -yb, phi)
if flag:
paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"])
return paths
def CSC(x, y, phi, paths):
flag, t, u, v = LSL(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "L"])
flag, t, u, v = LSL(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"])
flag, t, u, v = LSL(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "R"])
flag, t, u, v = LSL(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"])
flag, t, u, v = LSR(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["L", "S", "R"])
flag, t, u, v = LSR(-x, y, -phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"])
flag, t, u, v = LSR(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["R", "S", "L"])
flag, t, u, v = LSR(-x, -y, phi)
if flag:
paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"])
return paths
def LSR(x, y, phi):
u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi))
u1 = u1 ** 2
if u1 >= 4.0:
u = math.sqrt(u1 - 4.0)
theta = math.atan2(2.0, u)
t = mod2pi(t1 + theta)
v = mod2pi(t - phi)
if t >= 0.0 and v >= 0.0:
return True, t, u, v
return False, 0.0, 0.0, 0.0
def generate_path(q0, q1, maxc):
dx = q1[0] - q0[0]
dy = q1[1] - q0[1]
dth = q1[2] - q0[2]
c = math.cos(q0[2])
s = math.sin(q0[2])
x = (c * dx + s * dy) * maxc
y = (-s * dx + c * dy) * maxc
paths = []
paths = SCS(x, y, dth, paths)
paths = CSC(x, y, dth, paths)
paths = CCC(x, y, dth, paths)
return paths
def interpolate(ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions):
if m == "S":
px[ind] = ox + l / maxc * math.cos(oyaw)
py[ind] = oy + l / maxc * math.sin(oyaw)
pyaw[ind] = oyaw
else: # curve
ldx = math.sin(l) / maxc
if m == "L": # left turn
ldy = (1.0 - math.cos(l)) / maxc
elif m == "R": # right turn
ldy = (1.0 - math.cos(l)) / -maxc
gdx = math.cos(-oyaw) * ldx + math.sin(-oyaw) * ldy
gdy = -math.sin(-oyaw) * ldx + math.cos(-oyaw) * ldy
px[ind] = ox + gdx
py[ind] = oy + gdy
if m == "L": # left turn
pyaw[ind] = oyaw + l
elif m == "R": # right turn
pyaw[ind] = oyaw - l
if l > 0.0:
directions[ind] = 1
else:
directions[ind] = -1
return px, py, pyaw, directions
def generate_local_course(L, lengths, mode, maxc, step_size):
npoint = math.trunc(L / step_size) + len(lengths) + 4
px = [0.0 for i in range(npoint)]
py = [0.0 for i in range(npoint)]
pyaw = [0.0 for i in range(npoint)]
directions = [0.0 for i in range(npoint)]
ind = 1
if lengths[0] > 0.0:
directions[0] = 1
else:
directions[0] = -1
if lengths[0] > 0.0:
d = step_size
else:
d = -step_size
pd = d
ll = 0.0
for (m, l, i) in zip(mode, lengths, range(len(mode))):
if l > 0.0:
d = step_size
else:
d = -step_size
# set origin state
ox, oy, oyaw = px[ind], py[ind], pyaw[ind]
ind -= 1
if i >= 1 and (lengths[i - 1] * lengths[i]) > 0:
pd = - d - ll
else:
pd = d - ll
while abs(pd) <= abs(l):
ind += 1
px, py, pyaw, directions = interpolate(
ind, pd, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
pd += d
ll = l - pd - d # calc remain length
ind += 1
px, py, pyaw, directions = interpolate(
ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
# remove unused data
while px[-1] == 0.0:
px.pop()
py.pop()
pyaw.pop()
directions.pop()
return px, py, pyaw, directions
def pi_2_pi(angle):
return (angle + math.pi) % (2*math.pi) - math.pi
def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
q0 = [sx, sy, syaw]
q1 = [gx, gy, gyaw]
paths = generate_path(q0, q1, maxc)
for path in paths:
x, y, yaw, directions = generate_local_course(
path.L, path.lengths, path.ctypes, maxc, step_size * maxc)
# convert global coordinate
path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2])
* iy + q0[0] for (ix, iy) in zip(x, y)]
path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2])
* iy + q0[1] for (ix, iy) in zip(x, y)]
path.yaw = [pi_2_pi(iyaw + q0[2]) for iyaw in yaw]
path.directions = directions
path.lengths = [l / maxc for l in path.lengths]
path.L = path.L / maxc
# print(paths)
return paths
def reeds_shepp_path_planning(sx, sy, syaw,
gx, gy, gyaw, maxc, step_size):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
if len(paths) == 0:
# print("No path")
# print(sx, sy, syaw, gx, gy, gyaw)
return None, None, None, None, None
minL = float("Inf")
best_path_index = -1
for i in range(len(paths)):
if paths[i].L <= minL:
minL = paths[i].L
best_path_index = i
bpath = paths[best_path_index]
return bpath.x, bpath.y, bpath.yaw, bpath.ctypes, bpath.lengths
def test():
NTEST = 5
for i in range(NTEST):
start_x = (np.random.rand() - 0.5) * 10.0 # [m]
start_y = (np.random.rand() - 0.5) * 10.0 # [m]
start_yaw = math.radians((np.random.rand() - 0.5) * 180.0) # [rad]
end_x = (np.random.rand() - 0.5) * 10.0 # [m]
end_y = (np.random.rand() - 0.5) * 10.0 # [m]
end_yaw = math.radians((np.random.rand() - 0.5) * 180.0) # [rad]
curvature = 1.0 / (np.random.rand() * 20.0)
step_size = 0.1
px, py, pyaw, mode, clen = reeds_shepp_path_planning(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature, step_size)
if show_animation:
plt.cla()
plt.plot(px, py, label="final course " + str(mode))
# plotting
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.xlim(-10, 10)
plt.ylim(-10, 10)
plt.pause(1.0)
# plt.show()
print("Test done")
def main():
print("Reeds Shepp path planner sample start!!")
start_x = -1.0 # [m]
start_y = -4.0 # [m]
start_yaw = math.radians(-20.0) # [rad]
end_x = 5.0 # [m]
end_y = 5.0 # [m]
end_yaw = math.radians(25.0) # [rad]
curvature = 1.0
step_size = 0.1
px, py, pyaw, mode, clen = reeds_shepp_path_planning(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature, step_size)
if show_animation:
plt.cla()
plt.plot(px, py, label="final course " + str(mode))
# plotting
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.show()
if not px:
assert False, "No path"
if __name__ == '__main__':
test()
main()