-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path2095-delete-the-middle-node-of-a-linked-list.rb
64 lines (53 loc) · 1.79 KB
/
2095-delete-the-middle-node-of-a-linked-list.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# frozen_string_literal: true
# 2095. Delete the Middle Node of a Linked List
# https://leetcode.com/problems/delete-the-middle-node-of-a-linked-list
# Medium
=begin
You are given the head of a linked list. Delete the middle node, and return the head of the modified linked list.
The middle node of a linked list of size n is the ⌊n / 2⌋th node from the start using 0-based indexing, where ⌊x⌋ denotes the largest integer less than or equal to x.
For n = 1, 2, 3, 4, and 5, the middle nodes are 0, 1, 1, 2, and 2, respectively.
Example 1:
Input: head = [1,3,4,7,1,2,6]
Output: [1,3,4,1,2,6]
Explanation:
The above figure represents the given linked list. The indices of the nodes are written below.
Since n = 7, node 3 with value 7 is the middle node, which is marked in red.
We return the new list after removing this node.
Example 2:
Input: head = [1,2,3,4]
Output: [1,2,4]
Explanation:
The above figure represents the given linked list.
For n = 4, node 2 with value 3 is the middle node, which is marked in red.
Example 3:
Input: head = [2,1]
Output: [2]
Explanation:
The above figure represents the given linked list.
For n = 2, node 1 with value 1 is the middle node, which is marked in red.
Node 0 with value 2 is the only node remaining after removing node 1.
Constraints:
The number of nodes in the list is in the range [1, 105].
1 <= Node.val <= 105
=end
# Definition for singly-linked list.
# class ListNode
# attr_accessor :val, :next
# def initialize(val = 0, _next = nil)
# @val = val
# @next = _next
# end
# end
# @param {ListNode} head
# @return {ListNode}
def delete_middle(head)
return nil unless head.next
slow = head
fast = head.next.next
while fast && fast.next do
slow = slow.next
fast = fast.next.next
end
slow.next = slow.next.next
head
end