This repository has been archived by the owner on Jun 5, 2023. It is now read-only.
forked from HaojunCai/agile22_evprediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_arrival.py
551 lines (476 loc) · 27.8 KB
/
extract_arrival.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# -*- coding: utf-8 -*-
"""
Created on Jun 2021
@author: Haojun Cai
"""
import datetime
import geopandas as gpd
import os
import numpy as np
import pandas as pd
def check_home_labels(stp_cls, userlist):
"""
Check number and percentage of home labels for each user.
Paramaters
----------
stp_cls : dataframe, clustered staypoins data
userlist : list, userlist to extract targets
Returns
----------
home_stat: dataframe, statistics of home labels
"""
home_stat = {'user_id':[], 'number':[], 'ratio':[]}
for user in userlist:
stp_cls_user = stp_cls[stp_cls['user_id']==user].sort_values(by='started_at',ascending=True)
home_num = len(stp_cls_user[stp_cls_user['purpose_validated']=='home'])
total_num = len(stp_cls_user)
home_ratio = home_num/total_num
home_stat['user_id'].append(user)
home_stat['number'].append(home_num)
home_stat['ratio'].append(home_ratio)
home_stat = pd.DataFrame(home_stat)
return home_stat
def extract_arrival_target(engine, userlist, savefile_flag, PREPROCESS_PATH):
"""
Extract daily arrival time for each user.
Paramaters
----------
engine
userlist : list, userlist to extract targets
savefile_flag : boolean, flag indicating whether to save results
PREPROCESS_PATH : str, path to save results
Returns
----------
arrival_stat: dataframe, statistics of arrival time
"""
pandas_query = """SELECT * FROM caihao.stp_cls"""
stp_cls = gpd.read_postgis(pandas_query, engine, geom_col='geometry')
stp_cls['started_at'] = pd.to_datetime(stp_cls['started_at'], utc=True)
stp_cls['finished_at'] = pd.to_datetime(stp_cls['finished_at'], utc=True)
stp_cls['started_at_ymd'] = pd.to_datetime(stp_cls['started_at']).dt.date
stp_cls['finished_at_ymd'] = pd.to_datetime(stp_cls['finished_at']).dt.date
special_dates = {'user_id':[], 'date':[]}
arrival_stat = {'user_id':[], 'lastnothome_days':[], 'valid_days':[], 'nonexist_days':[], 'total':[]}
# iterate over all users
for i in range(0,len(userlist)):
arr_user = {'date_id':[], 'start_ymd':[], 'arrival':[], 'day_of_week':[], 'weekend_flag':[], 'day_of_year':[]}
user = userlist[i]
print(user)
print('-------------START-----------------')
stp_cls_user = stp_cls[stp_cls['user_id']==user].sort_values(by='started_at',ascending=True)
stp_cls_user.index = range(0,len(stp_cls_user))
start_ymd = sorted(set(list(stp_cls_user['started_at_ymd'])))
start_date = min(start_ymd)
end_date = max(start_ymd)
delta = datetime.timedelta(days=1)
arrival_stat['total'].append((end_date-start_date).days+1)
last_not_home_user = []
date_non_exist_user = []
j = 0
# iterate over all days
while start_date <= end_date:
stp_cls_user_date = stp_cls_user[stp_cls_user['started_at_ymd']==start_date]
date_flag = len(stp_cls_user_date)
## CASE 1: the last item of the day is labeled as home
if date_flag!=0 and stp_cls_user_date['purpose_validated'].iloc[-1]=='home':
k = -1
# find last consecutive items labeled as home
if (date_flag>=2):
home_flag = stp_cls_user_date['purpose_validated'].iloc[-2]=='home'
while home_flag==True:
k = k-1
if abs(k)<date_flag:
home_flag = stp_cls_user_date['purpose_validated'].iloc[k-1]=='home'
else:
break
if start_date.weekday() >=5:
weekend_flag = 1
else:
weekend_flag = 0
arr_user['date_id'].append(j)
arr_user['start_ymd'].append(start_date)
arr_user['arrival'].append(stp_cls_user_date['started_at'].iloc[k])
arr_user['day_of_week'].append(start_date.weekday())
arr_user['weekend_flag'].append(weekend_flag)
arr_user['day_of_year'].append(start_date.timetuple().tm_yday)
## CASE 2: user stayed at home for a weekend
date_diff = stp_cls_user_date['finished_at_ymd'].iloc[-1] - stp_cls_user_date['started_at_ymd'].iloc[-1]
temp_end_date = stp_cls_user_date['finished_at_ymd'].iloc[-1] - delta
if date_diff.days >= 2:
while start_date < temp_end_date:
start_date += delta
j = j+1
# print(start_date, " 24h at home")
if start_date.weekday() >=5:
weekend_flag = 1
else:
weekend_flag = 0
arr_user['date_id'].append(j)
arr_user['start_ymd'].append(start_date)
arr_user['arrival'].append('24h_at_home')
arr_user['day_of_week'].append(start_date.weekday())
arr_user['weekend_flag'].append(weekend_flag)
arr_user['day_of_year'].append(start_date.timetuple().tm_yday)
start_date += delta
j = j+1
## CASE 3: the last item of the day is not labeled as home, which was treated as invalid cases
elif date_flag!=0 and stp_cls_user_date['purpose_validated'].iloc[-1]!='home':
date_diff = stp_cls_user_date['finished_at_ymd'].iloc[-1] - stp_cls_user_date['started_at_ymd'].iloc[-1]
if date_diff.days >= 1:
k = -1
# find last consecutive items labeled as home
if (date_flag>=2):
home_flag = stp_cls_user_date['purpose_validated'].iloc[-2]=='home'
while home_flag==True:
k = k-1
if abs(k)<date_flag:
home_flag = stp_cls_user_date['purpose_validated'].iloc[k-1]=='home'
else:
break
if start_date.weekday() >=5:
weekend_flag = 1
else:
weekend_flag = 0
arr_user['date_id'].append(j)
arr_user['start_ymd'].append(start_date)
arr_user['arrival'].append(stp_cls_user_date['started_at'].iloc[k])
arr_user['day_of_week'].append(start_date.weekday())
arr_user['weekend_flag'].append(weekend_flag)
arr_user['day_of_year'].append(start_date.timetuple().tm_yday)
# user stayed at home for a weekend
temp_end_date = stp_cls_user_date['finished_at_ymd'].iloc[-1] - delta
if date_diff.days >= 2:
while start_date < temp_end_date:
start_date += delta
j = j+1
# print(start_date, " 24h at home")
if start_date.weekday() >=5:
weekend_flag = 1
else:
weekend_flag = 0
arr_user['date_id'].append(j)
arr_user['start_ymd'].append(start_date)
arr_user['arrival'].append('24h_at_home')
arr_user['day_of_week'].append(start_date.weekday())
arr_user['weekend_flag'].append(weekend_flag)
arr_user['day_of_year'].append(start_date.timetuple().tm_yday)
else:
last_not_home_user.append(stp_cls_user_date.iloc[-1])
print(start_date, " last item not at home")
if start_date.weekday() >=5:
weekend_flag = 1
else:
weekend_flag = 0
arr_user['date_id'].append(j)
arr_user['start_ymd'].append(start_date)
arr_user['arrival'].append('last_item_not_at_home')
arr_user['day_of_week'].append(start_date.weekday())
arr_user['weekend_flag'].append(weekend_flag)
arr_user['day_of_year'].append(start_date.timetuple().tm_yday)
start_date += delta
j = j+1
## CASE 4: no data on that day
elif date_flag==0:
date_non_exist_user.append(start_date)
if start_date.weekday() >=5:
weekend_flag = 1
else:
weekend_flag = 0
arr_user['date_id'].append(j)
arr_user['start_ymd'].append(start_date)
arr_user['arrival'].append('date_not_exist')
arr_user['day_of_week'].append(start_date.weekday())
arr_user['weekend_flag'].append(weekend_flag)
arr_user['day_of_year'].append(start_date.timetuple().tm_yday)
# print(start_date, " do not exist")
start_date += delta
j = j+1
else:
special_dates['user_id'].append(user)
special_dates['date'].append(start_date)
print(start_date, " special things happen")
start_date += delta
j = j+1
# save results
arr_user = pd.DataFrame(arr_user)
arr_user['user_id'] = user
last_not_home_user = pd.DataFrame(last_not_home_user)
date_non_exist_user = pd.DataFrame(date_non_exist_user)
date_non_exist_user['user_id'] = user
arrival_stat['user_id'].append(user)
arrival_stat['lastnothome_days'].append(len(last_not_home_user))
arrival_stat['valid_days'].append(len(arr_user)-len(last_not_home_user)-len(date_non_exist_user))
arrival_stat['nonexist_days'].append(len(date_non_exist_user))
if savefile_flag == True:
arr_path = PREPROCESS_PATH + '/' + str(int(user)) + '_arrival.csv'
arr_user.to_csv(arr_path, index=False)
print('---------------END------------------')
print('------------------------------------')
arrival_stat = pd.DataFrame(arrival_stat)
special_dates = pd.DataFrame(special_dates)
return arrival_stat
def add_arrival_mob(userlist, ARRIVAL_PATH, MOB_PATH, SAVEDATA_PATH):
"""
Add past mobility features on arrival features.
Paramaters
----------
userlist : list, userlist to add daily mobility features
ARRIVAL_PATH : str, path of arrival features
MOB_PATH : str, path of mobility features
SAVEDATA_PATH : str, path to save final inputs
Returns
----------
N/A
"""
delta = datetime.timedelta(days=1)
# iterate over all users
for user in userlist:
print(user)
arrival_path = ARRIVAL_PATH + '/' + str(int(user)) + '_arrival.csv'
arrival_user = pd.read_csv(arrival_path)
# read mobility features
mob_path = MOB_PATH + '/' + str(int(user)) + '_mob.csv'
mob_user = pd.read_csv(mob_path)
mob_user = mob_user.drop(columns='user_id')
mob_user = mob_user.fillna(0)
arrival_user['top10locfre_1day'] = np.nan
arrival_user['top10locfre_2day'] = np.nan
arrival_user['top10locfre_3day'] = np.nan
arrival_user['top10locfre_3dayavr'] = np.nan
arrival_user['top10locfre_7day'] = np.nan
arrival_user['top10locfre_1weekday'] = np.nan
arrival_user['top10locfre_2weekday'] = np.nan
arrival_user['top10locfre_3weekday'] = np.nan
arrival_user['top10locfre_4weekday'] = np.nan
arrival_user['radgyr_1day'] = np.nan
arrival_user['radgyr_2day'] = np.nan
arrival_user['radgyr_3day'] = np.nan
arrival_user['radgyr_3dayavr'] = np.nan
arrival_user['radgyr_7day'] = np.nan
arrival_user['radgyr_1weekday'] = np.nan
arrival_user['radgyr_2weekday'] = np.nan
arrival_user['radgyr_3weekday'] = np.nan
arrival_user['radgyr_4weekday'] = np.nan
arrival_user['avrjumplen_1day'] = np.nan
arrival_user['avrjumplen_2day'] = np.nan
arrival_user['avrjumplen_3day'] = np.nan
arrival_user['avrjumplen_3dayavr'] = np.nan
arrival_user['avrjumplen_7day'] = np.nan
arrival_user['avrjumplen_1weekday'] = np.nan
arrival_user['avrjumplen_2weekday'] = np.nan
arrival_user['avrjumplen_3weekday'] = np.nan
arrival_user['avrjumplen_4weekday'] = np.nan
arrival_user['uncorentro_1day'] = np.nan
arrival_user['uncorentro_2day'] = np.nan
arrival_user['uncorentro_3day'] = np.nan
arrival_user['uncorentro_3dayavr'] = np.nan
arrival_user['uncorentro_7day'] = np.nan
arrival_user['uncorentro_1weekday'] = np.nan
arrival_user['uncorentro_2weekday'] = np.nan
arrival_user['uncorentro_3weekday'] = np.nan
arrival_user['uncorentro_4weekday'] = np.nan
arrival_user['realentro_1day'] = np.nan
arrival_user['realentro_2day'] = np.nan
arrival_user['realentro_3day'] = np.nan
arrival_user['realentro_3dayavr'] = np.nan
arrival_user['realentro_7day'] = np.nan
arrival_user['realentro_1weekday'] = np.nan
arrival_user['realentro_2weekday'] = np.nan
arrival_user['realentro_3weekday'] = np.nan
arrival_user['realentro_4weekday'] = np.nan
# iterate over all days
period = arrival_user['start_ymd'].unique()[:]
for start_date in period:
# add last day's mobility features
start_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_obj = start_date_obj - delta
prev_date_str = str(prev_date_obj.date())
mob_item = mob_user[mob_user['start_date']==prev_date_str]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_1day'] = mob_item.loc[0,'locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_1day'] = mob_item.loc[0,'rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_1day'] = mob_item.loc[0,'jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_1day'] = mob_item.loc[0,'uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_1day'] = mob_item.loc[0,'real_entro']
# add last second day's mobility features
start_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_obj = start_date_obj - delta*2
prev_date_str = str(prev_date_obj.date())
mob_item = mob_user[mob_user['start_date']==prev_date_str]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_2day'] = mob_item.loc[0,'locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_2day'] = mob_item.loc[0,'rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_2day'] = mob_item.loc[0,'jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_2day'] = mob_item.loc[0,'uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_2day'] = mob_item.loc[0,'real_entro']
# add last third day's mobility features
start_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_obj = start_date_obj - delta*3
prev_date_str = str(prev_date_obj.date())
mob_item = mob_user[mob_user['start_date']==prev_date_str]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_3day'] = mob_item.loc[0,'locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_3day'] = mob_item.loc[0,'rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_3day'] = mob_item.loc[0,'jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_3day'] = mob_item.loc[0,'uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_3day'] = mob_item.loc[0,'real_entro']
# add past three days' mean mobility features
start_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_str_3days = []
for i in range(1,4):
prev_date_obj = start_date_obj - delta*i
prev_date_str = str(prev_date_obj.date())
prev_date_str_3days.append(prev_date_str)
mob_item = mob_user[mob_user['start_date'].isin(prev_date_str_3days)]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
if len(mob_item)!=3:
print('no 3 last days')
mob_item = mob_item.mean(axis=0)
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_3dayavr'] = mob_item['locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_3dayavr'] = mob_item['rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_3dayavr'] = mob_item['jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_3dayavr'] = mob_item['uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_3dayavr'] = mob_item['real_entro']
# add past seven days' mean mobility features
start_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_str_7days = []
for i in range(1,8):
prev_date_obj = start_date_obj - delta*i
prev_date_str = str(prev_date_obj.date())
prev_date_str_7days.append(prev_date_str)
mob_item = mob_user[mob_user['start_date'].isin(prev_date_str_7days)]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
if len(mob_item)!=7:
print('no 7 last days')
mob_item = mob_item.mean(axis=0)
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_7day'] = mob_item['locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_7day'] = mob_item['rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_7day'] = mob_item['jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_7day'] = mob_item['uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_7day'] = mob_item['real_entro']
# add last same weekday's mobility features
prev_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_str_1weekdays = []
for i in range(1,2):
prev_date_obj = prev_date_obj - delta*7*1
prev_date_str = str(prev_date_obj.date())
prev_date_str_1weekdays.append(prev_date_str)
mob_item = mob_user[mob_user['start_date'].isin(prev_date_str_1weekdays)]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
if len(mob_item)!=1:
print('no last 1 weekdays')
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_1weekday'] = mob_item['locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_1weekday'] = mob_item['rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_1weekday'] = mob_item['jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_1weekday'] = mob_item['uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_1weekday'] = mob_item['real_entro']
# add past two same weekdays' mean mobility features
prev_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_str_2weekdays = []
for i in range(1,3):
prev_date_obj = prev_date_obj - delta*7*1
prev_date_str = str(prev_date_obj.date())
prev_date_str_2weekdays.append(prev_date_str)
mob_item = mob_user[mob_user['start_date'].isin(prev_date_str_2weekdays)]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
if len(mob_item)!=2:
print('no last 2 weekdays')
mob_item = mob_item.mean(axis=0)
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_2weekday'] = mob_item['locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_2weekday'] = mob_item['rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_2weekday'] = mob_item['jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_2weekday'] = mob_item['uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_2weekday'] = mob_item['real_entro']
# add past three same weekdays' mean mobility features
prev_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_str_3weekdays = []
for i in range(1,4):
prev_date_obj = prev_date_obj - delta*7*1
prev_date_str = str(prev_date_obj.date())
prev_date_str_3weekdays.append(prev_date_str)
mob_item = mob_user[mob_user['start_date'].isin(prev_date_str_3weekdays)]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
if len(mob_item)!=3:
print('no last 3 weekdays')
mob_item = mob_item.mean(axis=0)
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_3weekday'] = mob_item['locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_3weekday'] = mob_item['rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_3weekday'] = mob_item['jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_3weekday'] = mob_item['uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_3weekday'] = mob_item['real_entro']
# add past four same weekdays' mean mobility features
prev_date_obj = datetime.datetime.strptime(start_date, '%Y-%m-%d')
prev_date_str_4weekdays = []
for i in range(1,5):
prev_date_obj = prev_date_obj - delta*7*1
prev_date_str = str(prev_date_obj.date())
prev_date_str_4weekdays.append(prev_date_str)
mob_item = mob_user[mob_user['start_date'].isin(prev_date_str_4weekdays)]
mob_item.index = range(0,len(mob_item))
if len(mob_item)!=0:
if len(mob_item)!=4:
print('no last 4 weekdays')
mob_item = mob_item.mean(axis=0)
arrival_user.loc[arrival_user['start_ymd']==start_date,'top10locfre_4weekday'] = mob_item['locfre_top10']
arrival_user.loc[arrival_user['start_ymd']==start_date,'radgyr_4weekday'] = mob_item['rad_gyr']
arrival_user.loc[arrival_user['start_ymd']==start_date,'avrjumplen_4weekday'] = mob_item['jump_len']
arrival_user.loc[arrival_user['start_ymd']==start_date,'uncorentro_4weekday'] = mob_item['uncor_entro']
arrival_user.loc[arrival_user['start_ymd']==start_date,'realentro_4weekday'] = mob_item['real_entro']
# only keep days with valid mobility features
# arrival_user.index = range(0,len(arrival_user))
# valid_arr_idx = arrival_user['top10locfre_4weekday'].first_valid_index()
# arrival_user = arrival_user.iloc[valid_arr_idx:,:]
arrival_user.index = range(0,len(arrival_user))
# save results
if not os.path.exists(SAVEDATA_PATH):
os.makedirs(SAVEDATA_PATH)
res_path = SAVEDATA_PATH + '/' + str(int(user)) + '_arrival.csv'
arrival_user.to_csv(res_path, index=False)
def construct_arrival_input(userlist, ARRIVAL_PATH, RESULT_PATH):
"""
Convert arrival features to float numbers in [0, 24].
Paramaters
----------
userlist : list, userlist to extract final inputs
ARRIVAL_PATH : str, path of arrival+mobility features
RESULT_PATH : str, path to save final inputs
Returns
----------
N/A
"""
# iterate over all users
for user in userlist:
print(user)
arrival_path = ARRIVAL_PATH + '/' + str(int(user)) + '_arrival.csv'
arrival_user = pd.read_csv(arrival_path)
arrival_user['arrival_float'] = ''
string_list = ['24h_at_home', 'last_item_not_at_home', 'date_not_exist']
for row in range(0,len(arrival_user)):
if arrival_user.loc[row, 'arrival'] not in string_list:
arrival_user.loc[row, 'arrival'] = pd.to_datetime(arrival_user.loc[row, 'arrival'])
arrival_time = arrival_user.loc[row, 'arrival'].time()
arrival_time_float = arrival_time.hour + arrival_time.minute/60 + arrival_time.second/3600 + arrival_time.microsecond/(1000*60*3600)
arrival_user.loc[row, 'arrival_float'] = arrival_time_float
elif arrival_user.loc[row, 'arrival'] == '24h_at_home':
arrival_user.loc[row, 'arrival_float'] = 0
else:
arrival_user.loc[row, 'arrival_float'] = np.nan
if (arrival_user['arrival_float']>24).sum().sum() != 0:
print('Error:', (arrival_user['arrival_float']>24).sum(), 'is over 24')
arrival_user.loc[arrival_user['arrival_float']>24, 'arrival_float'] = 24
if (arrival_user['arrival_float']<0).sum().sum() != 0:
print('Error:', (arrival_user['arrival_float']<0).sum(), 'is below 0')
arrival_user.loc[arrival_user['arrival_float']<0, 'arrival_float'] = 0
# save results
if not os.path.exists(RESULT_PATH):
os.makedirs(RESULT_PATH)
res_path = RESULT_PATH + '/' + str(int(user)) + '_input.csv'
arrival_user.to_csv(res_path, index=False)