-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
318 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,318 @@ | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
|
||
from wind_up.constants import RAW_WINDSPEED_COL, ROWS_PER_HOUR, SCATTER_ALPHA, SCATTER_S | ||
from wind_up.models import PlotConfig | ||
|
||
mpl.use("Agg") | ||
|
||
|
||
def plot_pre_post_power_curves( | ||
*, | ||
test_name: str, | ||
ref_name: str, | ||
pp_df: pd.DataFrame, | ||
pre_df: pd.DataFrame, | ||
post_df: pd.DataFrame, | ||
ws_col: str, | ||
pw_col: str, | ||
plot_cfg: PlotConfig, | ||
) -> None: | ||
plt.figure() | ||
plt.scatter(pre_df[ws_col], pre_df[pw_col], s=SCATTER_S, alpha=SCATTER_ALPHA, label="pre upgrade") | ||
plt.scatter(post_df[ws_col], post_df[pw_col], s=SCATTER_S, alpha=SCATTER_ALPHA, label="post upgrade") | ||
plt.legend() | ||
plt.grid() | ||
plot_title = f"test={test_name} ref={ref_name} power curve data" | ||
plt.title(plot_title) | ||
plt.ylabel(f"{pw_col} [kW]") | ||
plt.xlabel(f"{ws_col} [m/s]") | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
plt.figure() | ||
plt.plot(pp_df["bin_mid"], pp_df["hours_pre"] / pp_df["hours_pre"].sum(), marker="s", label="pre") | ||
plt.plot(pp_df["bin_mid"], pp_df["hours_post"] / pp_df["hours_post"].sum(), marker="s", label="post") | ||
plt.plot(pp_df["bin_mid"], pp_df["f"], marker="s", label="long term") | ||
plt.legend() | ||
plt.grid() | ||
plot_title = f"test={test_name} ref={ref_name} relative frequency" | ||
plt.title(plot_title) | ||
plt.ylabel("fraction of time [-]") | ||
plt.xlabel("bin mid [m/s]") | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
plt.figure() | ||
plt.errorbar(pp_df["ws_mean_pre"], pp_df["pw_mean_pre_raw"], yerr=pp_df["pw_sem_pre"], label="pre raw", marker=".") | ||
plt.errorbar( | ||
pp_df["ws_mean_post"], | ||
pp_df["pw_mean_post_raw"], | ||
yerr=pp_df["pw_sem_post"], | ||
label="post raw", | ||
marker=".", | ||
) | ||
plt.legend() | ||
plt.grid() | ||
plot_title = f"test={test_name} ref={ref_name} raw power curve" | ||
plt.title(plot_title) | ||
plt.ylabel("mean power [kW]") | ||
plt.xlabel("mean wind speed [m/s]") | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
plt.figure() | ||
plt.errorbar(pp_df["bin_mid"], pp_df["pw_at_mid_pre"], yerr=pp_df["pw_sem_at_mid_pre"], label="pre", marker=".") | ||
plt.errorbar( | ||
pp_df["bin_mid"], | ||
pp_df["pw_at_mid_post"], | ||
yerr=pp_df["pw_sem_at_mid_post"], | ||
label="post", | ||
marker=".", | ||
) | ||
plt.legend() | ||
plt.grid() | ||
plot_title = f"test={test_name} ref={ref_name} cooked power curve" | ||
plt.title(plot_title) | ||
plt.ylabel("power at bin mid [kW]") | ||
plt.xlabel("wind speed bin mid [m/s]") | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
|
||
def plot_pre_post_conditions( | ||
*, | ||
test_name: str, | ||
ref_name: str, | ||
pre_df: pd.DataFrame, | ||
post_df: pd.DataFrame, | ||
wd_col: str, | ||
plot_cfg: PlotConfig, | ||
) -> None: | ||
wd_width = 30 | ||
plt.figure() | ||
plt.hist( | ||
pre_df[wd_col], | ||
weights=[1 / ROWS_PER_HOUR] * len(pre_df[wd_col]), | ||
bins=list(np.arange(0, 360 + wd_width / 2, wd_width)), | ||
label="pre", | ||
) | ||
plt.hist( | ||
post_df[wd_col], | ||
weights=[1 / ROWS_PER_HOUR] * len(post_df[wd_col]), | ||
bins=list(np.arange(0, 360 + wd_width / 2, wd_width)), | ||
alpha=0.5, | ||
label="post", | ||
) | ||
plot_title = f"{test_name} {ref_name} {wd_col} coverage" | ||
plt.title(plot_title) | ||
plt.xticks(np.arange(wd_width / 2, 360 + wd_width / 2, wd_width)) | ||
plt.ylabel("hours") | ||
plt.legend() | ||
plt.grid() | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
hod_width = 1 | ||
plt.figure() | ||
plt.hist( | ||
pre_df.index.hour, | ||
weights=[1 / ROWS_PER_HOUR] * len(pre_df.index.hour), | ||
bins=list(np.arange(-hod_width / 2, 24 + hod_width / 2, hod_width)), | ||
label="pre", | ||
) | ||
plt.hist( | ||
post_df.index.hour, | ||
weights=[1 / ROWS_PER_HOUR] * len(post_df.index.hour), | ||
bins=list(np.arange(-hod_width / 2, 24 + hod_width / 2, hod_width)), | ||
alpha=0.5, | ||
label="post", | ||
) | ||
plot_title = f"{test_name} {ref_name} hour of day coverage" | ||
plt.title(plot_title) | ||
plt.xticks(np.arange(0, 25, 4)) | ||
plt.ylabel("hours") | ||
plt.legend() | ||
plt.grid() | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
moy_width = 1 | ||
plt.figure() | ||
plt.hist( | ||
pre_df.index.month, | ||
weights=[1 / ROWS_PER_HOUR] * len(pre_df.index.month), | ||
bins=list(np.arange(0.5, 12 + moy_width, moy_width)), | ||
label="pre", | ||
) | ||
plt.hist( | ||
post_df.index.month, | ||
weights=[1 / ROWS_PER_HOUR] * len(post_df.index.month), | ||
bins=list(np.arange(0.5, 12 + moy_width, moy_width)), | ||
alpha=0.5, | ||
label="post", | ||
) | ||
plot_title = f"{test_name} {ref_name} month of year coverage" | ||
plt.title(plot_title) | ||
plt.xticks(np.arange(1, 13, 1)) | ||
plt.ylabel("hours") | ||
plt.legend() | ||
plt.grid() | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
|
||
def plot_pre_post_pp_analysis( | ||
*, | ||
test_name: str, | ||
ref_name: str, | ||
pp_df: pd.DataFrame, | ||
pre_df: pd.DataFrame, | ||
post_df: pd.DataFrame, | ||
ws_col: str, | ||
pw_col: str, | ||
wd_col: str, | ||
plot_cfg: PlotConfig, | ||
confidence_level: float, | ||
) -> None: | ||
plot_pre_post_conditions( | ||
test_name=test_name, | ||
ref_name=ref_name, | ||
pre_df=pre_df.dropna(subset=[ws_col, pw_col]), | ||
post_df=post_df.dropna(subset=[ws_col, pw_col]), | ||
wd_col=wd_col, | ||
plot_cfg=plot_cfg, | ||
) | ||
|
||
pp_df = pp_df.copy() | ||
p_low = (1 - confidence_level) / 2 | ||
p_high = 1 - p_low | ||
|
||
plot_pre_post_power_curves( | ||
test_name=test_name, | ||
ref_name=ref_name, | ||
pp_df=pp_df, | ||
pre_df=pre_df.dropna(subset=[ws_col, pw_col]), | ||
post_df=post_df.dropna(subset=[ws_col, pw_col]), | ||
ws_col=ws_col, | ||
pw_col=pw_col, | ||
plot_cfg=plot_cfg, | ||
) | ||
|
||
plt.figure() | ||
plt.plot(pp_df["bin_mid"], pp_df["uplift_kw"], color="b", marker="s") | ||
plt.plot(pp_df["bin_mid"], pp_df[f"uplift_p{p_low*100:.0f}_kw"], color="r", ls="--") | ||
plt.plot(pp_df["bin_mid"], pp_df[f"uplift_p{p_high*100:.0f}_kw"], color="r", ls="--") | ||
plt.grid() | ||
plot_title = f"test={test_name} ref={ref_name} uplift [kW] and {confidence_level*100:.0f}% CI" | ||
plt.title(plot_title) | ||
plt.ylabel("uplift [kW]") | ||
plt.xlabel("bin centre [m/s]") | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
plt.figure() | ||
plt.plot( | ||
pp_df["bin_mid"], | ||
pp_df["uplift_kw"] * pp_df["hours_per_year"].sum() * pp_df["f"] / 1000, | ||
color="b", | ||
marker="s", | ||
) | ||
plt.plot( | ||
pp_df["bin_mid"], | ||
pp_df[f"uplift_p{p_low*100:.0f}_kw"] * pp_df["hours_per_year"].sum() * pp_df["f"] / 1000, | ||
color="r", | ||
ls="--", | ||
) | ||
plt.plot( | ||
pp_df["bin_mid"], | ||
pp_df[f"uplift_p{p_high*100:.0f}_kw"] * pp_df["hours_per_year"].sum() * pp_df["f"] / 1000, | ||
color="r", | ||
ls="--", | ||
) | ||
plt.grid() | ||
plot_title = f"test={test_name} ref={ref_name} uplift [MWh] and {confidence_level*100:.0f}% CI" | ||
plt.title(plot_title) | ||
plt.ylabel("uplift [MWh]") | ||
plt.xlabel("bin centre [m/s]") | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() | ||
|
||
|
||
def plot_pp_data_coverage( | ||
*, | ||
test_name: str, | ||
ref_name: str, | ||
pp_df: pd.DataFrame, | ||
test_df_pp_period: pd.DataFrame, | ||
ws_bin_width: float, | ||
plot_cfg: PlotConfig, | ||
) -> None: | ||
ws_bin_edges = np.arange(0, test_df_pp_period["test_" + RAW_WINDSPEED_COL].max() + ws_bin_width, ws_bin_width) | ||
raw_df = test_df_pp_period.groupby( | ||
by=pd.cut(test_df_pp_period["test_" + RAW_WINDSPEED_COL], bins=ws_bin_edges, retbins=False), | ||
observed=False, | ||
).agg( | ||
hours_raw=pd.NamedAgg(column="test_" + RAW_WINDSPEED_COL, aggfunc=lambda x: x.count() / ROWS_PER_HOUR), | ||
) | ||
raw_df["bin_mid"] = [x.mid for x in raw_df.index] | ||
|
||
plot_df = pp_df.merge(raw_df, on="bin_mid", how="left") | ||
plot_df["data_coverage"] = ( | ||
((plot_df["hours_pre"].fillna(0) + plot_df["hours_post"].fillna(0)) / plot_df["hours_raw"]) | ||
.clip(upper=1) | ||
.fillna(1) | ||
) | ||
|
||
plt.figure() | ||
plt.plot(plot_df["bin_mid"], 100 * plot_df["data_coverage"], marker=".") | ||
plot_title = f"{test_name} {ref_name} data coverage" | ||
plt.title(plot_title) | ||
plt.ylabel("data coverage [%]") | ||
plt.xlabel("bin centre [m/s]") | ||
plt.ylim([0, 100]) | ||
plt.grid() | ||
plt.tight_layout() | ||
if plot_cfg.show_plots: | ||
plt.show() | ||
if plot_cfg.save_plots: | ||
plt.savefig(plot_cfg.plots_dir / test_name / f"{plot_title}.png") | ||
plt.close() |