-
Notifications
You must be signed in to change notification settings - Fork 158
/
testing_webcam.py
154 lines (117 loc) · 5.15 KB
/
testing_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import sys
import argparse
import cv2
from libfaceid.detector import FaceDetectorModels, FaceDetector
from libfaceid.encoder import FaceEncoderModels, FaceEncoder
# Set the window name
WINDOW_NAME = "Facial_Recognition"
# Set the input directories
INPUT_DIR_DATASET = "datasets"
INPUT_DIR_MODEL_DETECTION = "models/detection/"
INPUT_DIR_MODEL_ENCODING = "models/encoding/"
INPUT_DIR_MODEL_TRAINING = "models/training/"
INPUT_DIR_MODEL_ESTIMATION = "models/estimation/"
# Set width and height
RESOLUTION_QVGA = (320, 240)
RESOLUTION_VGA = (640, 480)
RESOLUTION_HD = (1280, 720)
RESOLUTION_FULLHD = (1920, 1080)
def cam_init(cam_index, width, height):
cap = cv2.VideoCapture(cam_index)
if sys.version_info < (3, 0):
cap.set(cv2.cv.CV_CAP_PROP_FPS, 30)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height)
else:
cap.set(cv2.CAP_PROP_FPS, 30)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
return cap
def label_face(frame, face_rect, face_id, confidence):
(x, y, w, h) = face_rect
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 1)
if face_id is not None:
cv2.putText(frame, "{} {:.2f}%".format(face_id, confidence),
(x+5,y+h-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
def process_facerecognition(model_detector, model_recognizer, cam_index, cam_resolution):
# Initialize the camera
camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])
try:
# Initialize face detection
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)
# Initialize face recognizer
face_encoder = FaceEncoder(model=model_recognizer, path=INPUT_DIR_MODEL_ENCODING, path_training=INPUT_DIR_MODEL_TRAINING, training=False)
except:
face_encoder = None
print("Warning, check if models and trained dataset models exists!")
face_id, confidence = (None, 0)
while (True):
# Capture frame from webcam
ret, frame = camera.read()
if frame is None:
print("Error, check if camera is connected!")
break
# Detect and identify faces in the frame
faces = face_detector.detect(frame)
for (index, face) in enumerate(faces):
(x, y, w, h) = face
# Indentify face based on trained dataset (note: should run facial_recognition_training.py)
if face_encoder is not None:
face_id, confidence = face_encoder.identify(frame, (x, y, w, h))
# Set text and bounding box on face
label_face(frame, (x, y, w, h), face_id, confidence)
# Process 1 face only
break
# Display updated frame
cv2.imshow(WINDOW_NAME, frame)
# Check for user actions
if cv2.waitKey(1) & 0xFF == 27: # ESC
break
# Release the camera
camera.release()
cv2.destroyAllWindows()
def run(cam_index, cam_resolution):
detector=FaceDetectorModels.HAARCASCADE
# detector=FaceDetectorModels.DLIBHOG
# detector=FaceDetectorModels.DLIBCNN
# detector=FaceDetectorModels.SSDRESNET
# detector=FaceDetectorModels.MTCNN
# detector=FaceDetectorModels.FACENET
encoder=FaceEncoderModels.LBPH
# encoder=FaceEncoderModels.OPENFACE
# encoder=FaceEncoderModels.DLIBRESNET
# encoder=FaceEncoderModels.FACENET
process_facerecognition(detector, encoder, cam_index, cam_resolution)
def main(args):
if sys.version_info < (3, 0):
print("Error: Python2 is slow. Use Python3 for max performance.")
return
cam_index = int(args.webcam)
resolutions = [ RESOLUTION_QVGA, RESOLUTION_VGA, RESOLUTION_HD, RESOLUTION_FULLHD ]
try:
cam_resolution = resolutions[int(args.resolution)]
except:
cam_resolution = RESOLUTION_QVGA
if args.detector and args.encoder:
try:
detector = FaceDetectorModels(int(args.detector))
encoder = FaceEncoderModels(int(args.encoder))
print( "Parameters: {} {}".format(detector, encoder) )
process_facerecognition(detector, encoder, cam_index, cam_resolution)
except:
print( "Invalid parameter" )
return
run(cam_index, cam_resolution)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--detector', required=False, default=0,
help='Detector model to use. Options: 0-HAARCASCADE, 1-DLIBHOG, 2-DLIBCNN, 3-SSDRESNET, 4-MTCNN, 5-FACENET')
parser.add_argument('--encoder', required=False, default=0,
help='Encoder model to use. Options: 0-LBPH, 1-OPENFACE, 2-DLIBRESNET, 3-FACENET')
parser.add_argument('--webcam', required=False, default=0,
help='Camera index to use. Default is 0. Assume only 1 camera connected.)')
parser.add_argument('--resolution', required=False, default=0,
help='Camera resolution to use. Default is 0. Options: 0-QVGA, 1-VGA, 2-HD, 3-FULLHD')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))