-
Notifications
You must be signed in to change notification settings - Fork 92
/
ladder.py
251 lines (197 loc) · 10.3 KB
/
ladder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import tensorflow as tf
import input_data
import math
import os
import csv
from tqdm import tqdm
layer_sizes = [784, 1000, 500, 250, 250, 250, 10]
L = len(layer_sizes) - 1 # number of layers
num_examples = 60000
num_epochs = 150
num_labeled = 100
starter_learning_rate = 0.02
decay_after = 15 # epoch after which to begin learning rate decay
batch_size = 100
num_iter = (num_examples/batch_size) * num_epochs # number of loop iterations
inputs = tf.placeholder(tf.float32, shape=(None, layer_sizes[0]))
outputs = tf.placeholder(tf.float32)
def bi(inits, size, name):
return tf.Variable(inits * tf.ones([size]), name=name)
def wi(shape, name):
return tf.Variable(tf.random_normal(shape, name=name)) / math.sqrt(shape[0])
shapes = zip(layer_sizes[:-1], layer_sizes[1:]) # shapes of linear layers
weights = {'W': [wi(s, "W") for s in shapes], # Encoder weights
'V': [wi(s[::-1], "V") for s in shapes], # Decoder weights
# batch normalization parameter to shift the normalized value
'beta': [bi(0.0, layer_sizes[l+1], "beta") for l in range(L)],
# batch normalization parameter to scale the normalized value
'gamma': [bi(1.0, layer_sizes[l+1], "beta") for l in range(L)]}
noise_std = 0.3 # scaling factor for noise used in corrupted encoder
# hyperparameters that denote the importance of each layer
denoising_cost = [1000.0, 10.0, 0.10, 0.10, 0.10, 0.10, 0.10]
join = lambda l, u: tf.concat([l, u], 0)
labeled = lambda x: tf.slice(x, [0, 0], [batch_size, -1]) if x is not None else x
unlabeled = lambda x: tf.slice(x, [batch_size, 0], [-1, -1]) if x is not None else x
split_lu = lambda x: (labeled(x), unlabeled(x))
training = tf.placeholder(tf.bool)
ewma = tf.train.ExponentialMovingAverage(decay=0.99) # to calculate the moving averages of mean and variance
bn_assigns = [] # this list stores the updates to be made to average mean and variance
def batch_normalization(batch, mean=None, var=None):
if mean is None or var is None:
mean, var = tf.nn.moments(batch, axes=[0])
return (batch - mean) / tf.sqrt(var + tf.constant(1e-10))
# average mean and variance of all layers
running_mean = [tf.Variable(tf.constant(0.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]
running_var = [tf.Variable(tf.constant(1.0, shape=[l]), trainable=False) for l in layer_sizes[1:]]
def update_batch_normalization(batch, l):
"batch normalize + update average mean and variance of layer l"
mean, var = tf.nn.moments(batch, axes=[0])
assign_mean = running_mean[l-1].assign(mean)
assign_var = running_var[l-1].assign(var)
bn_assigns.append(ewma.apply([running_mean[l-1], running_var[l-1]]))
with tf.control_dependencies([assign_mean, assign_var]):
return (batch - mean) / tf.sqrt(var + 1e-10)
def encoder(inputs, noise_std):
h = inputs + tf.random_normal(tf.shape(inputs)) * noise_std # add noise to input
d = {} # to store the pre-activation, activation, mean and variance for each layer
# The data for labeled and unlabeled examples are stored separately
d['labeled'] = {'z': {}, 'm': {}, 'v': {}, 'h': {}}
d['unlabeled'] = {'z': {}, 'm': {}, 'v': {}, 'h': {}}
d['labeled']['z'][0], d['unlabeled']['z'][0] = split_lu(h)
for l in range(1, L+1):
print "Layer ", l, ": ", layer_sizes[l-1], " -> ", layer_sizes[l]
d['labeled']['h'][l-1], d['unlabeled']['h'][l-1] = split_lu(h)
z_pre = tf.matmul(h, weights['W'][l-1]) # pre-activation
z_pre_l, z_pre_u = split_lu(z_pre) # split labeled and unlabeled examples
m, v = tf.nn.moments(z_pre_u, axes=[0])
# if training:
def training_batch_norm():
# Training batch normalization
# batch normalization for labeled and unlabeled examples is performed separately
if noise_std > 0:
# Corrupted encoder
# batch normalization + noise
z = join(batch_normalization(z_pre_l), batch_normalization(z_pre_u, m, v))
z += tf.random_normal(tf.shape(z_pre)) * noise_std
else:
# Clean encoder
# batch normalization + update the average mean and variance using batch mean and variance of labeled examples
z = join(update_batch_normalization(z_pre_l, l), batch_normalization(z_pre_u, m, v))
return z
# else:
def eval_batch_norm():
# Evaluation batch normalization
# obtain average mean and variance and use it to normalize the batch
mean = ewma.average(running_mean[l-1])
var = ewma.average(running_var[l-1])
z = batch_normalization(z_pre, mean, var)
# Instead of the above statement, the use of the following 2 statements containing a typo
# consistently produces a 0.2% higher accuracy for unclear reasons.
# m_l, v_l = tf.nn.moments(z_pre_l, axes=[0])
# z = join(batch_normalization(z_pre_l, m_l, mean, var), batch_normalization(z_pre_u, mean, var))
return z
# perform batch normalization according to value of boolean "training" placeholder:
z = tf.cond(training, training_batch_norm, eval_batch_norm)
if l == L:
# use softmax activation in output layer
h = tf.nn.softmax(weights['gamma'][l-1] * (z + weights["beta"][l-1]))
else:
# use ReLU activation in hidden layers
h = tf.nn.relu(z + weights["beta"][l-1])
d['labeled']['z'][l], d['unlabeled']['z'][l] = split_lu(z)
d['unlabeled']['m'][l], d['unlabeled']['v'][l] = m, v # save mean and variance of unlabeled examples for decoding
d['labeled']['h'][l], d['unlabeled']['h'][l] = split_lu(h)
return h, d
print "=== Corrupted Encoder ==="
y_c, corr = encoder(inputs, noise_std)
print "=== Clean Encoder ==="
y, clean = encoder(inputs, 0.0) # 0.0 -> do not add noise
print "=== Decoder ==="
def g_gauss(z_c, u, size):
"gaussian denoising function proposed in the original paper"
wi = lambda inits, name: tf.Variable(inits * tf.ones([size]), name=name)
a1 = wi(0., 'a1')
a2 = wi(1., 'a2')
a3 = wi(0., 'a3')
a4 = wi(0., 'a4')
a5 = wi(0., 'a5')
a6 = wi(0., 'a6')
a7 = wi(1., 'a7')
a8 = wi(0., 'a8')
a9 = wi(0., 'a9')
a10 = wi(0., 'a10')
mu = a1 * tf.sigmoid(a2 * u + a3) + a4 * u + a5
v = a6 * tf.sigmoid(a7 * u + a8) + a9 * u + a10
z_est = (z_c - mu) * v + mu
return z_est
# Decoder
z_est = {}
d_cost = [] # to store the denoising cost of all layers
for l in range(L, -1, -1):
print "Layer ", l, ": ", layer_sizes[l+1] if l+1 < len(layer_sizes) else None, " -> ", layer_sizes[l], ", denoising cost: ", denoising_cost[l]
z, z_c = clean['unlabeled']['z'][l], corr['unlabeled']['z'][l]
m, v = clean['unlabeled']['m'].get(l, 0), clean['unlabeled']['v'].get(l, 1-1e-10)
if l == L:
u = unlabeled(y_c)
else:
u = tf.matmul(z_est[l+1], weights['V'][l])
u = batch_normalization(u)
z_est[l] = g_gauss(z_c, u, layer_sizes[l])
z_est_bn = (z_est[l] - m) / v
# append the cost of this layer to d_cost
d_cost.append((tf.reduce_mean(tf.reduce_sum(tf.square(z_est_bn - z), 1)) / layer_sizes[l]) * denoising_cost[l])
# calculate total unsupervised cost by adding the denoising cost of all layers
u_cost = tf.add_n(d_cost)
y_N = labeled(y_c)
cost = -tf.reduce_mean(tf.reduce_sum(outputs*tf.log(y_N), 1)) # supervised cost
loss = cost + u_cost # total cost
pred_cost = -tf.reduce_mean(tf.reduce_sum(outputs*tf.log(y), 1)) # cost used for prediction
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(outputs, 1)) # no of correct predictions
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) * tf.constant(100.0)
learning_rate = tf.Variable(starter_learning_rate, trainable=False)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
# add the updates of batch normalization statistics to train_step
bn_updates = tf.group(*bn_assigns)
with tf.control_dependencies([train_step]):
train_step = tf.group(bn_updates)
print "=== Loading Data ==="
mnist = input_data.read_data_sets("MNIST_data", n_labeled=num_labeled, one_hot=True)
saver = tf.train.Saver()
print "=== Starting Session ==="
sess = tf.Session()
i_iter = 0
ckpt = tf.train.get_checkpoint_state('checkpoints/') # get latest checkpoint (if any)
if ckpt and ckpt.model_checkpoint_path:
# if checkpoint exists, restore the parameters and set epoch_n and i_iter
saver.restore(sess, ckpt.model_checkpoint_path)
epoch_n = int(ckpt.model_checkpoint_path.split('-')[1])
i_iter = (epoch_n+1) * (num_examples/batch_size)
print "Restored Epoch ", epoch_n
else:
# no checkpoint exists. create checkpoints directory if it does not exist.
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
init = tf.global_variables_initializer()
sess.run(init)
print "=== Training ==="
print "Initial Accuracy: ", sess.run(accuracy, feed_dict={inputs: mnist.test.images, outputs: mnist.test.labels, training: False}), "%"
for i in tqdm(range(i_iter, num_iter)):
images, labels = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={inputs: images, outputs: labels, training: True})
if (i > 1) and ((i+1) % (num_iter/num_epochs) == 0):
epoch_n = i/(num_examples/batch_size)
if (epoch_n+1) >= decay_after:
# decay learning rate
# learning_rate = starter_learning_rate * ((num_epochs - epoch_n) / (num_epochs - decay_after))
ratio = 1.0 * (num_epochs - (epoch_n+1)) # epoch_n + 1 because learning rate is set for next epoch
ratio = max(0, ratio / (num_epochs - decay_after))
sess.run(learning_rate.assign(starter_learning_rate * ratio))
saver.save(sess, 'checkpoints/model.ckpt', epoch_n)
# print "Epoch ", epoch_n, ", Accuracy: ", sess.run(accuracy, feed_dict={inputs: mnist.test.images, outputs:mnist.test.labels, training: False}), "%"
with open('train_log', 'ab') as train_log:
# write test accuracy to file "train_log"
train_log_w = csv.writer(train_log)
log_i = [epoch_n] + sess.run([accuracy], feed_dict={inputs: mnist.test.images, outputs: mnist.test.labels, training: False})
train_log_w.writerow(log_i)
print "Final Accuracy: ", sess.run(accuracy, feed_dict={inputs: mnist.test.images, outputs: mnist.test.labels, training: False}), "%"
sess.close()