-
Notifications
You must be signed in to change notification settings - Fork 0
/
sequence_find_x.py
404 lines (333 loc) · 18.7 KB
/
sequence_find_x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
'''
Created on 9 sep. 2016
@author: Robert-Jan
'''
import time;
import sys, os;
import subprocess;
from tools.file import save_to_pickle, load_from_pickle_with_filename;
from tools.arguments import processCommandLineArguments;
from tools.model import constructModels, set_up_statistics;
from tools.gpu import using_gpu; # @UnresolvedImport
from subsystems_finish import get_batch_unprefixed, load_data;
import numpy as np;
import theano;\
import copy;
from profiler import profiler
import trackerreporter;
from tools.arguments import processKeyValue
def processSampleFindX(line, data_dim, oneHot, EOS_symbol_index):
expression, _ = line.strip().split(";");
x_position = np.random.randint(0,len(expression));
x = expression[x_position];
expression = expression[:x_position] + 'x' + expression[x_position+1:];
expression_embeddings = np.zeros((len(expression)+1,data_dim));
for i, literal in enumerate(expression):
expression_embeddings[i,oneHot[literal]] = 1.0;
expression_embeddings[i+1,EOS_symbol_index] = 1.0;
target_embedding = np.zeros((data_dim));
target_embedding[oneHot[x]] = 1.;
return expression_embeddings, target_embedding, expression;
def print_stats(stats, parameters, prefix=''):
# Print statistics
printF("\n", experimentId, currentIteration);
# Print statistics
printF(prefix + "Score: %.2f percent" % (stats['score']*100), experimentId, currentIteration);
printF(prefix + "Digit histogram: %s" % (str(stats['prediction_histogram'])), experimentId, currentIteration);
printF(prefix + "X side sizes: %s" % str(stats['x_hand_side_size']), experimentId, currentIteration);
printF(prefix + "X on left hand side score: %.2f percent" % (stats['x_hand_side_score']['left']*100), experimentId, currentIteration);
printF(prefix + "X on right hand side score: %.2f percent" % (stats['x_hand_side_score']['right']*100), experimentId, currentIteration);
printF(prefix + "X on equals sign score: %.2f percent" % (stats['x_hand_side_score']['equals']*100), experimentId, currentIteration);
printF(prefix + "Unique labels used: %d" % stats['unique_labels_predicted'], experimentId, currentIteration);
if ('input_size_score' in stats):
printF(prefix + "Input sizes: %s" % (str(stats['input_sizes'])), experimentId, currentIteration);
for size in stats['input_size_score'].keys():
printF(prefix + "Score by input size = %d: %.2f percent" % (size, stats['input_size_score'][size]*100.), experimentId, currentIteration);
if ('x_offset_score' in stats):
printF(prefix + "X offset sizes: %s" % (str(stats['x_offset_size'])), experimentId, currentIteration);
for size in stats['x_offset_score'].keys():
printF(prefix + "X offset = %d: %.2f percent" % (size, stats['x_offset_score'][size]*100.), experimentId, currentIteration);
if ('symbol_score' in stats):
printF(prefix + "Symbol sizes: %s" % (", ".join(["%s: %s" % (dataset.findSymbol[s], stats['symbol_size'][dataset.findSymbol[s]]) for s in sorted(dataset.findSymbol.keys())])), experimentId, currentIteration);
for i in sorted(dataset.findSymbol.keys()):
symbol = dataset.findSymbol[i];
printF(prefix + "Symbol %d: %.2f percent" % (i, stats['symbol_score'][symbol]*100.), experimentId, currentIteration);
for i in sorted(dataset.findSymbol.keys()):
printF(prefix + "Symbol confusion row %d: %s" % (i, str(stats['symbol_confusion'][i,:])), experimentId, currentIteration);
# printF(prefix + "! Samples correct: %s" % str(map(lambda (x,y): "%d,%d" % (int(x), int(y)),stats['samplesCorrect'])), experimentId, currentIteration);
printF("\n", experimentId, currentIteration);
def get_batch_regular(isTrain, dataset, model, debug=False):
# Reseed the random generator to prevent generating identical batches
np.random.seed();
if (isTrain == 0):
storage = dataset.expressionsByPrefix;
elif (isTrain == 1):
storage = dataset.testExpressionsByPrefix;
else:
storage = dataset.validationExpressionsByPrefix;
batch = [];
nrSamples = 0;
while (len(batch) < model.minibatch_size):
# Add subbatch to batch
expression, _, _, _ = storage.get_random();
batch.append(expression);
nrSamples += 1;
data = [];
targets = [];
labels = [];
expressions = [];
for expression in batch:
data, targets, labels, expressions, _ = dataset.processor(expression + ";", data, targets, labels, expressions);
data = dataset.fill_ndarray(data, 1, fixed_length=model.n_max_digits);
targets = np.array(targets).astype('float32');
return data, targets, labels, expressions, nrSamples;
def get_batch(isTrain, dataset, model, dataset_data, label_index, debug=False):
if (parameters['simple_data_loading']):
data, targets, labels, expressions, health = get_batch_unprefixed(isTrain, dataset, dataset_data, label_index, parameters);
return data, targets, labels, expressions, parameters['minibatch_size'], health;
else:
data, targets, labels, expressions, nrSamples = \
get_batch_regular(isTrain, dataset, model, debug);
return data, targets, labels, expressions, nrSamples, 0;
def test(model, dataset, parameters, max_length, print_samples=False,
sample_size=False, returnTestSamples=False):
# Test
printF("Testing...", experimentId, currentIteration);
total = dataset.lengths[dataset.TEST];
printing_interval = 1000;
if (parameters['max_dataset_size'] is not False):
printing_interval = 100;
elif (sample_size != False):
total = sample_size;
# Set up statistics
stats = set_up_statistics(dataset.output_dim, model.n_max_digits, dataset.oneHot.keys());
total_labels_used = {};
# Predict
printed_samples = False;
totalError = 0.0;
k = 0;
testSamples = [];
while k < total:
# Get data from batch
test_data, test_targets, test_labels, test_expressions, \
nrSamples, health = get_batch(1, dataset, model, dataset_data, label_index, debug=parameters['debug']);
predictions, other = model.predict(test_data, test_targets,
nrSamples=nrSamples);
totalError += other['summed_error'];
profiler.start("test batch stats");
stats, _, _ = model.batch_statistics(stats, predictions,
test_labels, None,
other, nrSamples, dataset,
None, None, parameters, data=test_data);
for j in range(nrSamples):
if (test_labels[j] not in total_labels_used):
total_labels_used[test_labels[j]] = True;
# Save predictions to testSamples
if (returnTestSamples):
strData = map(lambda x: dataset.findSymbol[x],
np.argmax(test_data[j,:,:model.data_dim],len(test_data.shape)-2));
strPrediction = dataset.findSymbol[predictions[j]];
testSamples.append((strData,strPrediction));
# Print samples
if (print_samples and not printed_samples):
for i in range(nrSamples):
prefix = "# ";
printF(prefix + "Data 1: %s" % "".join((map(lambda x: dataset.findSymbol[x],
np.argmax(test_data[i],len(test_data.shape)-2)))), experimentId, currentIteration);
printF(prefix + "Prediction 1: %s" % dataset.findSymbol[predictions[i]], experimentId, currentIteration);
printF(prefix + "Used label 1: %s" % dataset.findSymbol[test_labels[i]], experimentId, currentIteration);
printed_samples = True;
if (stats['prediction_size'] % printing_interval == 0):
printF("# %d / %d" % (stats['prediction_size'], total), experimentId, currentIteration);
profiler.stop("test batch stats");
k += nrSamples;
profiler.profile();
print("Test: %d" % k);
printF("Total testing error: %.2f" % totalError, experimentId, currentIteration);
printF("Mean testing error: %.8f" % (totalError/float(k)), experimentId, currentIteration);
stats = model.total_statistics(stats, dataset, parameters, total_labels_used=total_labels_used, digits=False);
print_stats(stats, parameters);
if (returnTestSamples):
return stats, testSamples;
else:
return stats;
if __name__ == '__main__':
theano.config.floatX = 'float32';
np.set_printoptions(precision=3, threshold=10000000);
profiler.off();
# Settings
api_key = os.environ.get('TCDL_API_KEY');
if (api_key is None):
raise ValueError("No API key present for reporting to tracker!");
score_types = {'Precision': 'Score',
'Training loss': 'Total error',
'Training loss (m)': 'Mean error',
'Testing loss': 'Total testing error',
'Testing loss (m)': 'Mean testing error',
'Train Precision': 'TRAIN Score',
'Unique labels': 'Unique labels used',
'Mean data health': 'Average data health',
'Stddev data health': 'Stddev data health',
'Mean model health': 'Average model health',
'Stddev model health': 'Stddev model health',
'X left': 'X on left hand side score',
'X right': 'X on right hand side score',
'X equals': 'X on equals sign score'};
for size in range(20):
score_types['Inpt.size %d' % size] = 'Score by input size = %d:' % size;
for symbolId in range(20):
score_types['Symbol %d' % symbolId] = 'Symbol %d:' % symbolId;
for offset in range(20):
score_types['X offset %d' % offset] = 'X offset = %d:' % offset;
for trueSize in range(20):
for nrCorrect in range(20):
score_types['T %d C %d' % (trueSize, nrCorrect)] = 'Prediction size %d nr correct %d' % (trueSize, nrCorrect);
trackerreporter.init('http://rjbruin.nl/experimenttracker/api/',api_key);
cmdargs = sys.argv[1:];
# Check for experiment settings file argument and obtain new arguments
allparameters = processCommandLineArguments(cmdargs);
newparameters = [];
if (allparameters[0]['debug']):
newparameters = allparameters;
else:
for i in range(len(allparameters)):
iterative = False;
# Ask for experiment base name
basename = raw_input("Experiment %d name (%s): " % (i+1,allparameters[i]['name']));
if (' ' in basename):
raise ValueError("Experiment name cannot contain whitespace! Offending name: \"%s\"" % basename);
allparameters[i]['basename'] = allparameters[i]['name'];
if (basename != ''):
allparameters[i]['basename'] = basename;
allparameters[i]['name'] = allparameters[i]['basename'] + time.strftime("_%d-%m-%Y_%H-%M-%S");
# Ask for iterative parameter
iterativeArgs = raw_input("(optional) Add one iterative parameter where values are separated by commas (e.g. '--key value1,value2,value3'): ");
if (iterativeArgs != ""):
iterativeArgs = iterativeArgs.split(" ");
extraArgs = [];
key = iterativeArgs[0][2:];
suffices = [];
for k, val in enumerate(iterativeArgs[1].split(",")):
suffix = raw_input("Provide the suffix to the name for iteration %d: " % k);
newparams = copy.deepcopy(allparameters[i]);
newparams[key] = processKeyValue(key,val);
newparams['basename'] += suffix;
newparams['name'] += suffix;
newparameters.append(newparams);
else:
newparameters.append(allparameters[i]);
allparameters = newparameters;
for i in range(len(allparameters)):
# Construct output paths
allparameters[i]['output_path'] = './raw_results/%s.txt' % (allparameters[i]['name']);
while (os.path.exists(allparameters[i]['output_path'])):
allparameters[i]['name'] += '-';
allparameters[i]['output_path'] = './raw_results/%s.txt' % (allparameters[i]['name']);
for parameters in allparameters:
# Initiate experiment at tracker and obtain experiment ID
if (parameters['report_to_tracker']):
if ('multipart_dataset' in parameters):
datasets = parameters['multipart_dataset'];
else:
datasets = 1;
experimentId = trackerreporter.initExperiment(parameters['basename'], totalProgress=parameters['repetitions'],
totalDatasets=datasets, scoreTypes=score_types.keys(),
scoreIdentifiers=score_types);
if (experimentId is False):
print("WARNING! Experiment could not be posted to tracker!");
experimentId = 0;
else:
experimentId = 0;
currentIteration = 1;
currentDataset = 1;
# Construct outputPath and new printing target
name = parameters['name'];
outputPath = parameters['output_path'];
printf = open(outputPath, 'w');
printf.close();
saveModels = True;
def printF(s, experimentId, currentIt):
print(s);
printf = open(outputPath, 'a');
if (s != "" and s[0] != "#"):
printf.write(s + "\n");
printf.close();
if (parameters['report_to_tracker']):
trackerreporter.fromExperimentOutput(experimentId, s, atProgress=currentIt, atDataset=1);
# Print parameters
printF(str(parameters), experimentId, currentIteration);
# Warn for unusual parameters
if (parameters['max_dataset_size'] is not False):
printF("WARNING! RUNNING WITH LIMIT ON DATASET SIZE!", experimentId, currentIteration);
if (not using_gpu()):
printF("WARNING! RUNNING WITHOUT GPU USAGE!", experimentId, currentIteration);
# Set simple loading processor
processor = processSampleFindX;
# Construct models
dataset, model = constructModels(parameters, 0, {});
# Load pretrained only_cause_expression = 1 model
if (parameters['load_cause_expression_1'] is not False):
loadedVars, _ = load_from_pickle_with_filename("./saved_models/" + parameters['load_cause_expression_1']);
if (model.loadPartialDataDimVars(dict(loadedVars), 0, model.data_dim)):
printF("Loaded pretrained model (expression 1) successfully!", experimentId, currentIteration);
else:
raise ValueError("Loading pretrained model failed: wrong variables supplied!");
# Train on all datasets in succession
# Print settings headers to raw results file
printF("# " + str(parameters), experimentId, currentIteration);
# Compute batching variables
repetition_size = dataset.lengths[dataset.TRAIN];
next_testing_threshold = parameters['test_interval'] * repetition_size;
dataset_data = None;
label_index = None;
if (parameters['simple_data_loading']):
dataset_data, label_index = load_data(parameters, processor, dataset);
for r in range(parameters['repetitions']):
stats = set_up_statistics(dataset.output_dim, model.n_max_digits, dataset.oneHot.keys());
total_error = 0.0;
# Print repetition progress and save to raw results file
printF("Batch %d (repetition %d of %d, dataset 1 of 1) (samples processed after batch: %d)" % \
(r+1,r+1,parameters['repetitions'],(r+1)*repetition_size), experimentId, currentIteration);
currentIteration = r+1;
currentDataset = 1;
# Train model per minibatch
k = 0;
printedProgress = -1;
while k < repetition_size:
profiler.start('train batch');
profiler.start('get train batch');
data, target, test_labels, target_expressions, nrSamples, health = \
get_batch(0, dataset, model, dataset_data, label_index,
debug=parameters['debug']);
profiler.stop('get train batch');
# Run training
profiler.start('train sgd');
outputs = model.sgd(dataset, data, target, parameters['learning_rate'],
nrSamples=nrSamples);
total_error += outputs[1];
profiler.stop('train sgd');
# Print batch progress
if ((k+model.minibatch_size) % (model.minibatch_size*4) < model.minibatch_size and \
(k+model.minibatch_size) / (model.minibatch_size*4) > printedProgress):
printedProgress = (k+model.minibatch_size) / (model.minibatch_size*4);
printF("# %d / %d (error = %.2f)" % (k+model.minibatch_size, repetition_size, total_error), experimentId, currentIteration);
profiler.stop('train batch');
k += nrSamples;
# Report on error
print("Train: %d" % k);
printF("Total error: %.2f" % total_error, experimentId, currentIteration);
printF("Mean error: %.8f" % (total_error/float(k)), experimentId, currentIteration);
# Intermediate testing if this was not the last iteration of training
# and we have passed the testing threshold
sampleSize = parameters['sample_testing_size']
if (r == parameters['repetitions'] - 1):
sampleSize = False;
test(model, dataset, parameters, model.n_max_digits, print_samples=parameters['debug'],
sample_size=sampleSize);
# Save weights to pickles
save_modulo = 50;
if (saveModels and (r+1) % save_modulo == 0):
saveVars = model.getVars();
save_to_pickle('saved_models/%s_%d.model' % (name, r), saveVars, settings=parameters);
printF("Training finished!", experimentId, currentIteration);
trackerreporter.experimentDone(experimentId);