forked from theusual/kaggle-seeclickfix-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ml_metrics.py
255 lines (200 loc) · 6.16 KB
/
ml_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
def ae(actual, predicted):
"""
Computes the absolute error.
This function computes the absolute error between two numbers,
or for element between a pair of lists or numpy arrays.
Parameters
----------
actual : int, float, list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double or list of doubles
The absolute error between actual and predicted
"""
return np.abs(np.array(actual)-np.array(predicted))
def ce(actual, predicted):
"""
Computes the classification error.
This function computes the classification error between two lists
Parameters
----------
actual : list
A list of the true classes
predicted : list
A list of the predicted classes
Returns
-------
score : double
The classification error between actual and predicted
"""
return (sum([1.0 for x,y in zip(actual,predicted) if x != y]) /
len(actual))
def mae(actual, predicted):
"""
Computes the mean absolute error.
This function computes the mean absolute error between two lists
of numbers.
Parameters
----------
actual : list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double
The mean absolute error between actual and predicted
"""
return np.mean(ae(actual, predicted))
def mse(actual, predicted):
"""
Computes the mean squared error.
This function computes the mean squared error between two lists
of numbers.
Parameters
----------
actual : list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double
The mean squared error between actual and predicted
"""
return np.mean(se(actual, predicted))
def msle(actual, predicted):
"""
Computes the mean squared log error.
This function computes the mean squared log error between two lists
of numbers.
Parameters
----------
actual : list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double
The mean squared log error between actual and predicted
"""
return np.mean(sle(actual, predicted))
def rmse(actual, predicted):
"""
Computes the root mean squared error.
This function computes the root mean squared error between two lists
of numbers.
Parameters
----------
actual : list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double
The root mean squared error between actual and predicted
"""
return np.sqrt(mse(actual, predicted))
def rmsle(actual, predicted):
"""
Computes the root mean squared log error.
This function computes the root mean squared log error between two lists
of numbers.
Parameters
----------
actual : list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double
The root mean squared log error between actual and predicted
"""
return np.sqrt(msle(actual, predicted))
def se(actual, predicted):
"""
Computes the squared error.
This function computes the squared error between two numbers,
or for element between a pair of lists or numpy arrays.
Parameters
----------
actual : int, float, list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double or list of doubles
The squared error between actual and predicted
"""
return np.power(np.array(actual)-np.array(predicted), 2)
def sle(actual, predicted):
"""
Computes the squared log error.
This function computes the squared log error between two numbers,
or for element between a pair of lists or numpy arrays.
Parameters
----------
actual : int, float, list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double or list of doubles
The squared log error between actual and predicted
"""
return (np.power(np.log(np.array(actual)+1) -
np.log(np.array(predicted)+1), 2))
def ll(actual, predicted):
"""
Computes the log likelihood.
This function computes the log likelihood between two numbers,
or for element between a pair of lists or numpy arrays.
Parameters
----------
actual : int, float, list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double or list of doubles
The log likelihood error between actual and predicted
"""
actual = np.array(actual)
predicted = np.array(predicted)
err = np.seterr(all='ignore')
score = -(actual*np.log(predicted)+(1-actual)*np.log(1-predicted))
np.seterr(divide=err['divide'], over=err['over'],
under=err['under'], invalid=err['invalid'])
if type(score)==np.ndarray:
score[np.isnan(score)] = 0
else:
if np.isnan(score):
score = 0
return score
def log_loss(actual, predicted):
"""
Computes the log loss.
This function computes the log loss between two lists
of numbers.
Parameters
----------
actual : list of numbers, numpy array
The ground truth value
predicted : same type as actual
The predicted value
Returns
-------
score : double
The log loss between actual and predicted
"""
return np.mean(ll(actual, predicted))