forked from ruudvdent/WAM2layersPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fluxes_and_States_Masterscript.py
525 lines (408 loc) · 28.4 KB
/
Fluxes_and_States_Masterscript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 16 13:24:45 2016
@author: Ent00002
"""
#%% Import libraries
import numpy as np
from netCDF4 import Dataset
import os
# other scripts use exactly this sequence, do not change it unless you change it also in the scripts
def data_path(yearnumber,a, input_folder, interdata_folder):
sp_data = os.path.join(input_folder, str(yearnumber) + '-sp.nc') #surface pressure
sp_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-sp.nc') #surface pressure end of the year
q_f_data = os.path.join(input_folder, str(yearnumber) + '-q_mod.nc') #specific humidity
q_f_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-q_mod.nc')#specific humidity end of the year
tcw_data = os.path.join(input_folder, str(yearnumber) + '-tcw.nc') #total column water
tcw_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-tcw.nc') #total column water end of the year
u_f_data = os.path.join(input_folder, str(yearnumber) + '-u_mod.nc' )
u_f_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-u_mod.nc' )
v_f_data = os.path.join(input_folder, str(yearnumber) + '-v_mod.nc' )
v_f_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-v_mod.nc' )
ewvf_data = os.path.join(input_folder, str(yearnumber) + '-ewvf.nc')
ewvf_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-ewvf.nc')
nwvf_data = os.path.join(input_folder, str(yearnumber) + '-nwvf.nc')
nwvf_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-nwvf.nc')
eclwf_data = os.path.join(input_folder, str(yearnumber) + '-eclwf.nc')
eclwf_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-eclwf.nc')
nclwf_data = os.path.join(input_folder, str(yearnumber) + '-nclwf.nc')
nclwf_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-nclwf.nc')
ecfwf_data = os.path.join(input_folder, str(yearnumber) + '-ecfwf.nc')
ecfwf_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-ecfwf.nc')
ncfwf_data = os.path.join(input_folder, str(yearnumber) + '-ncfwf.nc')
ncfwf_eoy_data = os.path.join(input_folder, str(yearnumber+1) + '-ncfwf.nc')
evaporation_precipitation_data = os.path.join(input_folder, str(yearnumber) + '-E-P.nc')
save_path = os.path.join(interdata_folder, str(yearnumber) + '-' + str(a) + 'fluxes_storages.mat')
return sp_data,sp_eoy_data,q_f_data,q_f_eoy_data,tcw_data,tcw_eoy_data,u_f_data,u_f_eoy_data,v_f_data,v_f_eoy_data,ewvf_data,ewvf_eoy_data,nwvf_data,nwvf_eoy_data,eclwf_data,eclwf_eoy_data,nclwf_data,nclwf_eoy_data,ecfwf_data,ecfwf_eoy_data,ncfwf_data,ncfwf_eoy_data,evaporation_precipitation_data,save_path
#%% Code (no need to look at this for running)
# The model level as downloaded from ERA-Interim are hard-defined within this code. So it has to be changed if other model levels are downloaded
def getW(latnrs,lonnrs,final_time,a,yearnumber,begin_time,count_time,
density_water,latitude,longitude,g,A_gridcell,boundary,datapath):
if a != final_time: # not the end of the year
# surface pressure (state at 00.00, 06.00, 12.00, 18.00)
sp = Dataset(datapath[0], mode = 'r').variables['sp'][begin_time:(begin_time+count_time+1),latnrs,lonnrs] #Pa
# specific humidity (state at 00.00, 06.00, 12.00, 18.00)
q = Dataset(datapath[2], mode = 'r').variables['q'][begin_time:(begin_time+count_time+1),:,latnrs,lonnrs] #kg/kg
# total column water
tcw_ERA = Dataset(datapath[4], mode = 'r').variables['tcw'][begin_time:(begin_time+count_time+1),latnrs,lonnrs] #kg/m2
else: #end of the year
# surface pressure (state at 00.00, 06.00, 12.00, 18.00)
sp_first = Dataset(datapath[0], mode = 'r').variables['sp'][begin_time:(begin_time+count_time),latnrs,lonnrs]
sp = np.insert(sp_first,[4],(Dataset(datapath[1], mode = 'r').variables['sp'][0,latnrs,lonnrs]), axis = 0) #Pa
# specific humidity (state at 00.00 06.00 12.00 18.00)
q_first = Dataset(datapath[2], mode = 'r').variables['q'][begin_time:(begin_time+count_time),:,latnrs,lonnrs]
q = np.insert(q_first,[4],(Dataset(datapath[3], mode = 'r').variables['q'][0,:,latnrs,lonnrs]), axis = 0) #kg/kg
# total column water
tcw_ERA_first = Dataset(datapath[4], mode = 'r').variables['tcw'][begin_time:(begin_time+count_time),latnrs,lonnrs]
tcw_ERA = np.insert(tcw_ERA_first,[4],Dataset(datapath[5], mode = 'r').variables['tcw'][0,latnrs,lonnrs],axis = 0)
# below are the model levels k as downloaded from the ERA-Interim archive, with the pressure defined by A + B * sp
A = np.vstack(np.array([0 , 20, 38.42534 , 63.6478 , 95.63696 , 134.4833 , 180.5844 , 234.7791 , 298.4958 , 373.9719 , 464.6181 ,
575.651 , 713.2181 , 883.6605 , 1094.835 , 1356.475 , 1680.64 , 2082.274 , 2579.889 , 3196.422 , 3960.292 ,
4906.708 , 6018.02 , 7306.631 , 8765.054 , 10376.13 , 12077.45 , 13775.33 , 15379.81 , 16819.47 , 18045.18 ,
19027.70 , 19755.11 , 20222.21 , 20429.86 , 20384.48 , 20097.40 , 19584.33 , 18864.75 , 17961.36 , 16899.47 ,
15706.45 , 14411.12 , 13043.22 , 11632.76 , 10209.50 , 8802.356 , 7438.803 , 6144.315 , 4941.778 , 3850.913 ,
2887.697 , 2063.78 , 1385.913 , 855.3618 , 467.3336 , 210.3939 , 65.88924 , 7.367743 , 0 , 0]))
B = np.vstack(np.array([0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 7.58*(10**-5) ,
0.000461 , 0.001815 , 0.005081 , 0.011143 , 0.020678 , 0.034121 , 0.05169 , 0.073534 , 0.099675 , 0.130023 ,
0.164384 , 0.202476 , 0.243933 , 0.288323 , 0.335155 , 0.383892 , 0.433963 , 0.484772 , 0.53571 , 0.586168 ,
0.635547 , 0.683269 , 0.728786 , 0.771597 , 0.811253 , 0.847375 , 0.879657 , 0.907884 , 0.93194 , 0.951822 ,
0.967645 , 0.979663 , 0.98827 , 0.994019 , 0.99763 , 1]))
k = np.vstack(np.array([0 , 17 , 27 , 32 , 35 , 38 , 41 , 44 , 47 , 48 , 51 , 54 , 55 , 56 , 57 , 58 , 59 , 60]))
p_swap = np.zeros((len(k), count_time+1, len(latitude), len(longitude))) #Pa
for m in range(len(k)):
p_swap[m] = A[k[m]] + B[k[m]] * sp[:,:,:]
# make cwv vector
q_swap = np.swapaxes(q,0,1)
cwv_swap = np.zeros((np.shape(q_swap))) #kg/m2
for n in range(len(k)-1):
cwv_swap[n] = (np.squeeze(q_swap[n])*np.squeeze(p_swap[n+1] - p_swap[n])) / g # column water vapor = specific humidity * pressure levels length / g [kg/m2]
cwv = np.swapaxes(cwv_swap,0,1)
# make tcwv vector
tcwv = np.squeeze(np.sum(cwv,1)) #total column water vapor, cwv is summed over the vertical [kg/m2]
# make cw vector
cw_swap = np.zeros((np.shape(cwv_swap)))
for n in range(len(k)-1):
cw_swap[n] = (tcw_ERA / tcwv) * np.squeeze(cwv_swap[n])
cw = np.swapaxes(cw_swap,0,1)
# just a test, return this variable when running tests
# tcw = np.squeeze(np.sum(cw,1)) #total column water, cw is summed over the vertical [kg/m2]
# testvar = tcw_ERA - tcw # should be around zero for most cells
# put A_gridcell on a 3D grid
A_gridcell2D = np.tile(A_gridcell,[1,len(longitude)])
A_gridcell_1_2D = np.reshape(A_gridcell2D, [1,len(latitude),len(longitude)])
A_gridcell_plus3D = np.tile(A_gridcell_1_2D,[count_time+1,1,1])
# water volumes
vapor_top = np.squeeze(np.sum(cwv[:,0:boundary,:,:],1))
vapor_down = np.squeeze(np.sum(cwv[:,boundary:,:,:],1))
vapor = vapor_top + vapor_down
W_top = tcw_ERA * (vapor_top / vapor) * A_gridcell_plus3D / density_water #m3
W_down = tcw_ERA * (vapor_down / vapor) * A_gridcell_plus3D / density_water #m3
return cw, W_top, W_down
#%% Code
def getwind(latnrs,lonnrs,final_time,a,yearnumber,begin_time,count_time,datapath):
# u stands for wind in zonal direction = west-east
# v stands for wind in meridional direction = south-north
if a != final_time: # not the end of the year
# read the u-wind data
u_f = Dataset(datapath[6], mode = 'r').variables['u'][begin_time:(begin_time+count_time+1),:,latnrs,lonnrs] #m/s
# read the v-wind data
v_f = Dataset(datapath[8], mode = 'r').variables['v'][begin_time:(begin_time+count_time+1),:,latnrs,lonnrs] #m/s
else: #end of year
# read the u-wind data
u_f_first = Dataset(datapath[6], mode = 'r').variables['u'][begin_time:(begin_time+count_time),:,latnrs,lonnrs]
u_f = np.insert(u_f_first,[4],(Dataset(datapath[7], mode = 'r').variables['u'][0,:,latnrs,lonnrs]), axis = 0)
# read the v-wind data
v_f_first = Dataset(datapath[8], mode = 'r').variables['v'][begin_time:(begin_time+count_time),:,latnrs,lonnrs]
v_f = np.insert(v_f_first,[4],(Dataset(datapath[9], mode = 'r').variables['v'][0,:,latnrs,lonnrs]), axis = 0)
U = u_f
V = v_f
return U,V
#%% Code
def getFa(latnrs,lonnrs,boundary,cw,U,V,count_time,begin_time,yearnumber,a,final_time,datapath,latitude,longitude):
if a != final_time: #not the end of the year
#get ERA vertically integrated fluxes
ewvf = Dataset(datapath[10], mode = 'r').variables['p71.162'][begin_time:(begin_time+count_time+1),latnrs,lonnrs]
nwvf = Dataset(datapath[12], mode = 'r').variables['p72.162'][begin_time:(begin_time+count_time+1),latnrs,lonnrs]
eclwf = Dataset(datapath[14], mode = 'r').variables['p88.162'][begin_time:(begin_time+count_time+1),latnrs,lonnrs]
nclwf = Dataset(datapath[16], mode = 'r').variables['p89.162'][begin_time:(begin_time+count_time+1),latnrs,lonnrs]
ecfwf = Dataset(datapath[18], mode = 'r').variables['p90.162'][begin_time:(begin_time+count_time+1),latnrs,lonnrs]
ncfwf = Dataset(datapath[20], mode = 'r').variables['p91.162'][begin_time:(begin_time+count_time+1),latnrs,lonnrs]
else: #end of year
ewvf_first = Dataset(datapath[10], mode = 'r').variables['p71.162'][begin_time:(begin_time+count_time),latnrs,lonnrs]
ewvf = np.insert(ewvf_first,[4],(Dataset(datapath[11], mode = 'r').variables['p71.162'][0,latnrs,lonnrs]), axis = 0)
nwvf_first = Dataset(datapath[12], mode = 'r').variables['p72.162'][begin_time:(begin_time+count_time),latnrs,lonnrs]
nwvf = np.insert(nwvf_first,[4],(Dataset(datapath[13], mode = 'r').variables['p72.162'][0,latnrs,lonnrs]), axis = 0)
eclwf_first = Dataset(datapath[14], mode = 'r').variables['p88.162'][begin_time:(begin_time+count_time),latnrs,lonnrs]
eclwf = np.insert(eclwf_first,[4],(Dataset(datapath[15], mode = 'r').variables['p88.162'][0,latnrs,lonnrs]), axis = 0)
nclwf_first = Dataset(datapath[16], mode = 'r').variables['p89.162'][begin_time:(begin_time+count_time),latnrs,lonnrs]
nclwf = np.insert(nclwf_first,[4],(Dataset(datapath[17], mode = 'r').variables['p89.162'][0,latnrs,lonnrs]), axis = 0)
ecfwf_first = Dataset(datapath[18], mode = 'r').variables['p90.162'][begin_time:(begin_time+count_time),latnrs,lonnrs]
ecfwf = np.insert(ecfwf_first,[4],(Dataset(datapath[19], mode = 'r').variables['p90.162'][0,latnrs,lonnrs]), axis = 0)
ncfwf_first = Dataset(datapath[20], mode = 'r').variables['p91.162'][begin_time:(begin_time+count_time),latnrs,lonnrs]
ncfwf = np.insert(ncfwf_first,[4],(Dataset(datapath[21], mode = 'r').variables['p91.162'][0,latnrs,lonnrs]), axis = 0)
ewf = ewvf + eclwf + ecfwf #kg*m-1*s-1
nwf = nwvf + nclwf + ncfwf #kg*m-1*s-1
#eastward and northward fluxes
Fa_E_p = U * cw
Fa_N_p = V * cw
# uncorrected down and top fluxes
Fa_E_down_uncorr = np.squeeze(np.sum(Fa_E_p[:,boundary:,:,:],1)) #kg*m-1*s-1
Fa_N_down_uncorr = np.squeeze(np.sum(Fa_N_p[:,boundary:,:,:],1)) #kg*m-1*s-1
Fa_E_top_uncorr = np.squeeze(np.sum(Fa_E_p[:,0:boundary,:,:],1)) #kg*m-1*s-1
Fa_N_top_uncorr = np.squeeze(np.sum(Fa_N_p[:,0:boundary,:,:],1)) #kg*m-1*s-1
# correct down and top fluxes
corr_E = np.zeros([count_time+1,len(latitude),len(longitude)])
corr_N = np.zeros([count_time+1,len(latitude),len(longitude)])
for i in range(len(longitude)):
for j in range(len(latitude)):
for k in range(count_time+1):
corr_E[k,j,i] = min(2,max(0,ewf[k,j,i]/(Fa_E_down_uncorr[k,j,i] + Fa_E_top_uncorr[k,j,i])))
corr_N[k,j,i] = min(2,max(0,nwf[k,j,i]/(Fa_N_down_uncorr[k,j,i] + Fa_N_top_uncorr[k,j,i])))
Fa_E_down = corr_E * Fa_E_down_uncorr #kg*m-1*s-1
Fa_N_down = corr_N * Fa_N_down_uncorr #kg*m-1*s-1
Fa_E_top = corr_E * Fa_E_top_uncorr #kg*m-1*s-1
Fa_N_top = corr_N * Fa_N_top_uncorr #kg*m-1*s-1
# make the fluxes during the timestep
Fa_E_down = 0.5*(Fa_E_down[0:-1,:,:]+Fa_E_down[1:,:,:]);
Fa_N_down = 0.5*(Fa_N_down[0:-1,:,:]+Fa_N_down[1:,:,:]);
Fa_E_top = 0.5*(Fa_E_top[0:-1,:,:]+Fa_E_top[1:,:,:]);
Fa_N_top = 0.5*(Fa_N_top[0:-1,:,:]+Fa_N_top[1:,:,:]);
return Fa_E_top,Fa_N_top,Fa_E_down,Fa_N_down
#%% Code
def getEP(latnrs,lonnrs,yearnumber,begin_time,count_time,latitude,longitude,A_gridcell,datapath):
#(accumulated after the forecast at 00.00 and 12.00 by steps of 3 hours in time
evaporation = Dataset(datapath[22], mode = 'r').variables['e'][begin_time*2:(begin_time*2+count_time*2),latnrs,lonnrs] #m
precipitation = Dataset(datapath[22], mode = 'r').variables['tp'][begin_time*2:(begin_time*2+count_time*2),latnrs,lonnrs] #m
#values that apply for the amount fallen/evaporated during the previous three hours
for x in np.arange(0,count_time*2,4):
evaporation[x+3,:,:] = evaporation[x+3,:,:] - evaporation[x+2,:,:]
evaporation[x+2,:,:] = evaporation[x+2,:,:] - evaporation[x+1,:,:]
evaporation[x+1,:,:] = evaporation[x+1,:,:] - evaporation[x,:,:]
precipitation[x+3,:,:] = precipitation[x+3,:,:] - precipitation[x+2,:,:]
precipitation[x+2,:,:] = precipitation[x+2,:,:] - precipitation[x+1,:,:]
precipitation[x+1,:,:] = precipitation[x+1,:,:] - precipitation[x,:,:]
#delete and transfer negative values, change sign convention to all positive
precipitation = np.reshape(np.maximum(np.reshape(precipitation, (np.size(precipitation))) + np.maximum(np.reshape(evaporation, (np.size(evaporation))),0.0),0.0),
(np.int(count_time*2),len(latitude),len(longitude)))
evaporation = np.reshape(np.abs(np.minimum(np.reshape(evaporation, (np.size(evaporation))),0.0)),(np.int(count_time*2),len(latitude),len(longitude)))
#calculate volumes
A_gridcell2D = np.tile(A_gridcell,[1,len(longitude)])
A_gridcell_1_2D = np.reshape(A_gridcell2D, [1,len(latitude),len(longitude)])
A_gridcell_max3D = np.tile(A_gridcell_1_2D,[count_time*2,1,1])
E = evaporation * A_gridcell_max3D
P = precipitation * A_gridcell_max3D
return E, P
#%% Code
def getrefined(Fa_E_top,Fa_N_top,Fa_E_down,Fa_N_down,W_top,W_down,E,P,divt,count_time,latitude,longitude):
#for 3 hourly information
divt2 = divt/2.
oddvector2 = np.zeros((1,np.int(count_time*2*divt2)))
partvector2 = np.zeros((1,np.int(count_time*2*divt2)))
da = np.arange(1,divt2)
for o in np.arange(0,np.int(count_time*2*divt2),12):
for i in range(len(da)):
oddvector2[0,o+i] = (divt2-da[i])/divt2
partvector2[0,o+i+1] = da[i]/divt2
E_small = np.nan*np.zeros((np.int(count_time*2*divt2),len(latitude),len(longitude)))
for t in range(1,np.int(count_time*2*divt2)+1):
E_small[t-1] = (1./divt2) * E[np.int(t/divt2+oddvector2[0,t-1]-1)]
E = E_small
P_small = np.nan*np.zeros((np.int(count_time*2*divt2),len(latitude),len(longitude)))
for t in range(1,np.int(count_time*2*divt2)+1):
P_small[t-1] = (1./divt2) * P[np.int(t/divt2+oddvector2[0,t-1]-1)]
P = P_small
# for 6 hourly info
oddvector = np.zeros((1,np.int(count_time*divt)))
partvector = np.zeros((1,np.int(count_time*divt)))
da = np.arange(1,divt)
divt = np.float(divt)
for o in np.arange(0,np.int(count_time*divt),np.int(divt)):
for i in range(len(da)):
oddvector[0,o+i] = (divt-da[i])/divt
partvector[0,o+i+1] = da[i]/divt
W_top_small = np.nan*np.zeros((np.int(count_time*divt+1),len(latitude),len(longitude)))
for t in range(1,np.int(count_time*divt)+1):
W_top_small[t-1] = W_top[np.int(t/divt+oddvector[0,t-1]-1)] + partvector[0,t-1] * (W_top[np.int(t/divt+oddvector[0,t-1])] - W_top[np.int(t/divt+oddvector[0,t-1]-1)])
W_top_small[-1] = W_top[-1]
W_top = W_top_small
W_down_small = np.nan*np.zeros((np.int(count_time*divt+1),len(latitude),len(longitude)))
for t in range(1,np.int(count_time*divt)+1):
W_down_small[t-1] = W_down[np.int(t/divt+oddvector[0,t-1]-1)] + partvector[0,t-1] * (W_down[np.int(t/divt+oddvector[0,t-1])] - W_down[np.int(t/divt+oddvector[0,t-1]-1)])
W_down_small[-1] = W_down[-1]
W_down = W_down_small
Fa_E_down_small = np.nan*np.zeros((np.int(count_time*divt),len(latitude),len(longitude)))
Fa_N_down_small = np.nan*np.zeros((np.int(count_time*divt),len(latitude),len(longitude)))
Fa_E_top_small = np.nan*np.zeros((np.int(count_time*divt),len(latitude),len(longitude)))
Fa_N_top_small = np.nan*np.zeros((np.int(count_time*divt),len(latitude),len(longitude)))
for t in range(1,np.int(count_time*divt)+1):
Fa_E_down_small[t-1] = Fa_E_down[np.int(t/divt+oddvector[0,t-1]-1)]
Fa_N_down_small[t-1] = Fa_N_down[np.int(t/divt+oddvector[0,t-1]-1)]
Fa_E_top_small[t-1] = Fa_E_top[np.int(t/divt+oddvector[0,t-1]-1)]
Fa_N_top_small[t-1] = Fa_N_top[np.int(t/divt+oddvector[0,t-1]-1)]
Fa_E_down = Fa_E_down_small
Fa_N_down = Fa_N_down_small
Fa_E_top = Fa_E_top_small
Fa_N_top = Fa_N_top_small
return Fa_E_top,Fa_N_top,Fa_E_down,Fa_N_down,E,P,W_top,W_down
#%% Code
def get_stablefluxes(W_top,W_down,Fa_E_top_1,Fa_E_down_1,Fa_N_top_1,Fa_N_down_1,
timestep,divt,L_EW_gridcell,density_water,L_N_gridcell,L_S_gridcell,latitude,longitude,count_time):
#redefine according to units
Fa_E_top_kgpmps = Fa_E_top_1
Fa_E_down_kgpmps = Fa_E_down_1
Fa_N_top_kgpmps = Fa_N_top_1
Fa_N_down_kgpmps = Fa_N_down_1
#convert to m3
Fa_E_top = Fa_E_top_kgpmps * timestep/np.float(divt) * L_EW_gridcell / density_water # [kg*m^-1*s^-1*s*m*kg^-1*m^3]=[m3]
Fa_E_down = Fa_E_down_kgpmps * timestep/np.float(divt) * L_EW_gridcell / density_water # [s*m*kg*m^-1*s^-1*kg^-1*m^3]=[m3]
Fa_N_top_swap = np.zeros((len(latitude),np.int(count_time*np.float(divt)),len(longitude)))
Fa_N_down_swap = np.zeros((len(latitude),np.int(count_time*np.float(divt)),len(longitude)))
Fa_N_top_kgpmps_swap = np.swapaxes(Fa_N_top_kgpmps,0,1)
Fa_N_down_kgpmps_swap = np.swapaxes(Fa_N_down_kgpmps,0,1)
for c in range(len(latitude)):
Fa_N_top_swap[c] = Fa_N_top_kgpmps_swap[c] * timestep/np.float(divt) * 0.5 *(L_N_gridcell[c]+L_S_gridcell[c]) / density_water # [s*m*kg*m^-1*s^-1*kg^-1*m^3]=[m3]
Fa_N_down_swap[c] = Fa_N_down_kgpmps_swap[c] * timestep/np.float(divt) * 0.5*(L_N_gridcell[c]+L_S_gridcell[c]) / density_water # [s*m*kg*m^-1*s^-1*kg^-1*m^3]=[m3]
Fa_N_top = np.swapaxes(Fa_N_top_swap,0,1)
Fa_N_down = np.swapaxes(Fa_N_down_swap,0,1)
#find out where the negative fluxes are
Fa_E_top_posneg = np.ones(np.shape(Fa_E_top))
Fa_E_top_posneg[Fa_E_top < 0] = -1
Fa_N_top_posneg = np.ones(np.shape(Fa_E_top))
Fa_N_top_posneg[Fa_N_top < 0] = -1
Fa_E_down_posneg = np.ones(np.shape(Fa_E_top))
Fa_E_down_posneg[Fa_E_down < 0] = -1
Fa_N_down_posneg = np.ones(np.shape(Fa_E_top))
Fa_N_down_posneg[Fa_N_down < 0] = -1
#make everything absolute
Fa_E_top_abs = np.abs(Fa_E_top)
Fa_E_down_abs = np.abs(Fa_E_down)
Fa_N_top_abs = np.abs(Fa_N_top)
Fa_N_down_abs = np.abs(Fa_N_down)
# stabilize the outfluxes / influxes
stab = 1./2. # during the reduced timestep the water cannot move further than 1/x * the gridcell,
#in other words at least x * the reduced timestep is needed to cross a gridcell
Fa_E_top_stable = np.reshape(np.minimum(np.reshape(Fa_E_top_abs, (np.size(Fa_E_top_abs))), (np.reshape(Fa_E_top_abs, (np.size(Fa_E_top_abs))) /
(np.reshape(Fa_E_top_abs, (np.size(Fa_E_top_abs))) + np.reshape(Fa_N_top_abs, (np.size(Fa_N_top_abs))))) * stab
* np.reshape(W_top[:-1,:,:], (np.size(W_top[:-1,:,:])))),(np.int(count_time*np.float(divt)),len(latitude),len(longitude)))
Fa_N_top_stable = np.reshape(np.minimum(np.reshape(Fa_N_top_abs, (np.size(Fa_N_top_abs))), (np.reshape(Fa_N_top_abs, (np.size(Fa_N_top_abs))) /
(np.reshape(Fa_E_top_abs, (np.size(Fa_E_top_abs))) + np.reshape(Fa_N_top_abs, (np.size(Fa_N_top_abs))))) * stab
* np.reshape(W_top[:-1,:,:], (np.size(W_top[:-1,:,:])))),(np.int(count_time*np.float(divt)),len(latitude),len(longitude)))
Fa_E_down_stable = np.reshape(np.minimum(np.reshape(Fa_E_down_abs, (np.size(Fa_E_down_abs))), (np.reshape(Fa_E_down_abs, (np.size(Fa_E_down_abs))) /
(np.reshape(Fa_E_down_abs, (np.size(Fa_E_down_abs))) + np.reshape(Fa_N_down_abs, (np.size(Fa_N_down_abs))))) * stab
* np.reshape(W_down[:-1,:,:], (np.size(W_down[:-1,:,:])))),(np.int(count_time*np.float(divt)),len(latitude),len(longitude)))
Fa_N_down_stable = np.reshape(np.minimum(np.reshape(Fa_N_down_abs, (np.size(Fa_N_down_abs))), (np.reshape(Fa_N_down_abs, (np.size(Fa_N_down_abs))) /
(np.reshape(Fa_E_down_abs, (np.size(Fa_E_down_abs))) + np.reshape(Fa_N_down_abs, (np.size(Fa_N_down_abs))))) * stab
* np.reshape(W_down[:-1,:,:], (np.size(W_down[:-1,:,:])))),(np.int(count_time*np.float(divt)),len(latitude),len(longitude)))
#get rid of the nan values
Fa_E_top_stable[np.isnan(Fa_E_top_stable)] = 0
Fa_N_top_stable[np.isnan(Fa_N_top_stable)] = 0
Fa_E_down_stable[np.isnan(Fa_E_down_stable)] = 0
Fa_N_down_stable[np.isnan(Fa_N_down_stable)] = 0
#redefine
Fa_E_top = Fa_E_top_stable * Fa_E_top_posneg
Fa_N_top = Fa_N_top_stable * Fa_N_top_posneg
Fa_E_down = Fa_E_down_stable * Fa_E_down_posneg
Fa_N_down = Fa_N_down_stable * Fa_N_down_posneg
return Fa_E_top,Fa_E_down,Fa_N_top,Fa_N_down
#%% Code
def getFa_Vert(Fa_E_top,Fa_E_down,Fa_N_top,Fa_N_down,E,P,W_top,W_down,divt,count_time,latitude,longitude,isglobal):
#total moisture in the column
W = W_top + W_down
#define the horizontal fluxes over the boundaries
# fluxes over the eastern boundary
Fa_E_top_boundary = np.zeros(np.shape(Fa_E_top))
Fa_E_top_boundary[:,:,:-1] = 0.5 * (Fa_E_top[:,:,:-1] + Fa_E_top[:,:,1:])
if isglobal == 1:
Fa_E_top_boundary[:,:,-1] = 0.5 * (Fa_E_top[:,:,-1] + Fa_E_top[:,:,0])
Fa_E_down_boundary = np.zeros(np.shape(Fa_E_down))
Fa_E_down_boundary[:,:,:-1] = 0.5 * (Fa_E_down[:,:,:-1] + Fa_E_down[:,:,1:])
if isglobal == 1:
Fa_E_down_boundary[:,:,-1] = 0.5 * (Fa_E_down[:,:,-1] + Fa_E_down[:,:,0])
# find out where the positive and negative fluxes are
Fa_E_top_pos = np.ones(np.shape(Fa_E_top))
Fa_E_down_pos = np.ones(np.shape(Fa_E_down))
Fa_E_top_pos[Fa_E_top_boundary < 0] = 0
Fa_E_down_pos[Fa_E_down_boundary < 0] = 0
Fa_E_top_neg = Fa_E_top_pos - 1
Fa_E_down_neg = Fa_E_down_pos - 1
# separate directions west-east (all positive numbers)
Fa_E_top_WE = Fa_E_top_boundary * Fa_E_top_pos;
Fa_E_top_EW = Fa_E_top_boundary * Fa_E_top_neg;
Fa_E_down_WE = Fa_E_down_boundary * Fa_E_down_pos;
Fa_E_down_EW = Fa_E_down_boundary * Fa_E_down_neg;
# fluxes over the western boundary
Fa_W_top_WE = np.nan*np.zeros(np.shape(P))
Fa_W_top_WE[:,:,1:] = Fa_E_top_WE[:,:,:-1]
Fa_W_top_WE[:,:,0] = Fa_E_top_WE[:,:,-1]
Fa_W_top_EW = np.nan*np.zeros(np.shape(P))
Fa_W_top_EW[:,:,1:] = Fa_E_top_EW[:,:,:-1]
Fa_W_top_EW[:,:,0] = Fa_E_top_EW[:,:,-1]
Fa_W_down_WE = np.nan*np.zeros(np.shape(P))
Fa_W_down_WE[:,:,1:] = Fa_E_down_WE[:,:,:-1]
Fa_W_down_WE[:,:,0] = Fa_E_down_WE[:,:,-1]
Fa_W_down_EW = np.nan*np.zeros(np.shape(P))
Fa_W_down_EW[:,:,1:] = Fa_E_down_EW[:,:,:-1]
Fa_W_down_EW[:,:,0] = Fa_E_down_EW[:,:,-1]
# fluxes over the northern boundary
Fa_N_top_boundary = np.nan*np.zeros(np.shape(Fa_N_top));
Fa_N_top_boundary[:,1:,:] = 0.5 * ( Fa_N_top[:,:-1,:] + Fa_N_top[:,1:,:] )
Fa_N_down_boundary = np.nan*np.zeros(np.shape(Fa_N_down));
Fa_N_down_boundary[:,1:,:] = 0.5 * ( Fa_N_down[:,:-1,:] + Fa_N_down[:,1:,:] )
# find out where the positive and negative fluxes are
Fa_N_top_pos = np.ones(np.shape(Fa_N_top))
Fa_N_down_pos = np.ones(np.shape(Fa_N_down))
Fa_N_top_pos[Fa_N_top_boundary < 0] = 0
Fa_N_down_pos[Fa_N_down_boundary < 0] = 0
Fa_N_top_neg = Fa_N_top_pos - 1
Fa_N_down_neg = Fa_N_down_pos - 1
# separate directions south-north (all positive numbers)
Fa_N_top_SN = Fa_N_top_boundary * Fa_N_top_pos
Fa_N_top_NS = Fa_N_top_boundary * Fa_N_top_neg
Fa_N_down_SN = Fa_N_down_boundary * Fa_N_down_pos
Fa_N_down_NS = Fa_N_down_boundary * Fa_N_down_neg
# fluxes over the southern boundary
Fa_S_top_SN = np.nan*np.zeros(np.shape(P))
Fa_S_top_SN[:,:-1,:] = Fa_N_top_SN[:,1:,:]
Fa_S_top_NS = np.nan*np.zeros(np.shape(P))
Fa_S_top_NS[:,:-1,:] = Fa_N_top_NS[:,1:,:]
Fa_S_down_SN = np.nan*np.zeros(np.shape(P))
Fa_S_down_SN[:,:-1,:] = Fa_N_down_SN[:,1:,:]
Fa_S_down_NS = np.nan*np.zeros(np.shape(P))
Fa_S_down_NS[:,:-1,:] = Fa_N_down_NS[:,1:,:]
# check the water balance
Sa_after_Fa_down = np.zeros([1,len(latitude),len(longitude)])
Sa_after_Fa_top = np.zeros([1,len(latitude),len(longitude)])
Sa_after_all_down = np.zeros([1,len(latitude),len(longitude)])
Sa_after_all_top = np.zeros([1,len(latitude),len(longitude)])
residual_down = np.zeros(np.shape(P)) # residual factor [m3]
residual_top = np.zeros(np.shape(P)) # residual factor [m3]
for t in range(np.int(count_time*divt)):
# down: calculate with moisture fluxes:
Sa_after_Fa_down[0,1:-1,:] = (W_down[t,1:-1,:] - Fa_E_down_WE[t,1:-1,:] + Fa_E_down_EW[t,1:-1,:] + Fa_W_down_WE[t,1:-1,:] - Fa_W_down_EW[t,1:-1,:] - Fa_N_down_SN[t,1:-1,:]
+ Fa_N_down_NS[t,1:-1,:] + Fa_S_down_SN[t,1:-1,:] - Fa_S_down_NS[t,1:-1,:])
# top: calculate with moisture fluxes:
Sa_after_Fa_top[0,1:-1,:] = (W_top[t,1:-1,:]- Fa_E_top_WE[t,1:-1,:] + Fa_E_top_EW[t,1:-1,:] + Fa_W_top_WE[t,1:-1,:] - Fa_W_top_EW[t,1:-1,:] - Fa_N_top_SN[t,1:-1,:]
+ Fa_N_top_NS[t,1:-1,:] + Fa_S_top_SN[t,1:-1,:]- Fa_S_top_NS[t,1:-1,:])
# down: substract precipitation and add evaporation
Sa_after_all_down[0,1:-1,:] = Sa_after_Fa_down[0,1:-1,:] - P[t,1:-1,:] * (W_down[t,1:-1,:] / W[t,1:-1,:]) + E[t,1:-1,:]
# top: substract precipitation
Sa_after_all_top[0,1:-1,:] = Sa_after_Fa_top[0,1:-1,:] - P[t,1:-1,:] * (W_top[t,1:-1,:] / W[t,1:-1,:])
# down: calculate the residual
residual_down[t,1:-1,:] = W_down[t+1,1:-1,:] - Sa_after_all_down[0,1:-1,:]
# top: calculate the residual
residual_top[t,1:-1,:] = W_top[t+1,1:-1,:] - Sa_after_all_top[0,1:-1,:]
# compute the resulting vertical moisture flux
Fa_Vert_raw = W_down[1:,:,:] / W[1:,:,:] * (residual_down + residual_top) - residual_down # the vertical velocity so that the new residual_down/W_down = residual_top/W_top (positive downward)
# find out where the negative vertical flux is
Fa_Vert_posneg = np.ones(np.shape(Fa_Vert_raw))
Fa_Vert_posneg[Fa_Vert_raw < 0] = -1
# make the vertical flux absolute
Fa_Vert_abs = np.abs(Fa_Vert_raw)
# stabilize the outfluxes / influxes
stab = 1./4. #during the reduced timestep the vertical flux can maximally empty/fill 1/x of the top or down storage
Fa_Vert_stable = np.reshape(np.minimum(np.reshape(Fa_Vert_abs, (np.size(Fa_Vert_abs))), np.minimum(stab*np.reshape(W_top[1:,:,:], (np.size(W_top[1:,:,:]))),
stab*np.reshape(W_down[1:,:,:], (np.size(W_down[1:,:,:]))))),(np.int(count_time*np.float(divt)),len(latitude),len(longitude)))
# redefine the vertical flux
Fa_Vert = Fa_Vert_stable * Fa_Vert_posneg;
return Fa_Vert_raw, Fa_Vert
# #### End of code