-
Notifications
You must be signed in to change notification settings - Fork 31
/
aco.py
executable file
·121 lines (116 loc) · 5.65 KB
/
aco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import random
import numpy as np
import math
import time
import os
class ACO():
def __init__(self, vehicle_num, target_num,vehicle_speed, target, time_lim):
self.num_type_ant = vehicle_num
self.num_city = target_num+1 #number of cities
self.group = 200
self.num_ant = self.group*self.num_type_ant #number of ants
self.ant_vel = vehicle_speed
self.cut_time = time_lim
self.oneee = np.zeros((4,1))
self.target = target
self.alpha = 1 #pheromone
self.beta = 2
self.k1 = 0.03
self.iter_max = 150
#matrix of the distances between cities
def distance_matrix(self):
dis_mat = []
for i in range(self.num_city):
dis_mat_each = []
for j in range(self.num_city):
dis = math.sqrt(pow(self.target[i][0]-self.target[j][0],2)+pow(self.target[i][1]-self.target[j][1],2))
dis_mat_each.append(dis)
dis_mat.append(dis_mat_each)
return dis_mat
def run(self):
print("ACO start, pid: %s" % os.getpid())
start_time = time.time()
#distances of nodes
dis_list = self.distance_matrix()
dis_mat = np.array(dis_list)
value_init = self.target[:,2].transpose()
delay_init = self.target[:,3].transpose()
pheromone_mat = np.ones((self.num_type_ant,self.num_city,self.num_city))
#velocity of ants
path_new = [[0]for i in range (self.num_type_ant)]
count_iter = 0
while count_iter < self.iter_max:
path_sum = np.zeros((self.num_ant,1))
time_sum = np.zeros((self.num_ant,1))
value_sum = np.zeros((self.num_ant,1))
path_mat=[[0]for i in range (self.num_ant)]
value = np.zeros((self.group,1))
atten = np.ones((self.num_type_ant,1)) * 0.2
for ant in range(self.num_ant):
ant_type = ant % self.num_type_ant
visit = 0
if ant_type == 0:
unvisit_list=list(range(1,self.num_city))#have not visit
for j in range(1,self.num_city):
#choice of next city
trans_list=[]
tran_sum=0
trans=0
#if len(unvisit_list)==0:
#print('len(unvisit_list)==0')
for k in range(len(unvisit_list)): # to decide which node to visit
trans +=np.power(pheromone_mat[ant_type][visit][unvisit_list[k]],self.alpha)*np.power(value_init[unvisit_list[k]]*self.ant_vel[ant_type]/(dis_mat[visit][unvisit_list[k]]*delay_init[unvisit_list[k]]),self.beta)
#trans +=np.power(pheromone_mat[ant_type][unvisit_list[k]],self.alpha)*np.power(0.05*value_init[unvisit_list[k]],self.beta)
trans_list.append(trans)
tran_sum = trans
rand = random.uniform(0,tran_sum)
for t in range(len(trans_list)):
if(rand <= trans_list[t]):
visit_next = unvisit_list[t]
break
else:
continue
path_mat[ant].append(visit_next)
path_sum[ant] += dis_mat[path_mat[ant][j-1]][path_mat[ant][j]]
time_sum[ant] += path_sum[ant] / self.ant_vel[ant_type] + delay_init[visit_next]
if time_sum[ant] > self.cut_time:
time_sum[ant]-=path_sum[ant] / self.ant_vel[ant_type] + delay_init[visit_next]
path_mat[ant].pop()
break
value_sum[ant] += value_init[visit_next]
unvisit_list.remove(visit_next)#update
visit = visit_next
if (ant_type) == self.num_type_ant-1:
small_group = int(ant/self.num_type_ant)
for k in range (self.num_type_ant):
value[small_group]+= value_sum[ant-k]
#iteration
if count_iter == 0:
value_new = max(value)
value = value.tolist()
for k in range (0,self.num_type_ant):
path_new[k] = path_mat[value.index(value_new)*self.num_type_ant+k]
path_new[k].remove(0)
else:
if max(value) > value_new:
value_new = max(value)
value = value.tolist()
for k in range (0,self.num_type_ant):
path_new[k] = path_mat[value.index(value_new)*self.num_type_ant+k]
path_new[k].remove(0)
#update pheromone
pheromone_change = np.zeros((self.num_type_ant,self.num_city,self.num_city))
for i in range(self.num_ant):
length = len(path_mat[i])
m = i%self.num_type_ant
n = int(i/self.num_type_ant)
for j in range(length-1):
pheromone_change[m][path_mat[i][j]][path_mat[i][j+1]]+= value_init[path_mat[i][j+1]]*self.ant_vel[m]/(dis_mat[path_mat[i][j]][path_mat[i][j+1]]*delay_init[path_mat[i][j+1]])
atten[m] += (value_sum[i]/(np.power((value_new-value[n]),4)+1))/self.group
for k in range (self.num_type_ant):
pheromone_mat[k]=(1-atten[k])*pheromone_mat[k]+pheromone_change[k]
count_iter += 1
print("ACO result:", path_new)
end_time = time.time()
print("ACO time:", end_time - start_time)
return path_new, end_time - start_time