forked from 1adrianb/2D-and-3D-face-alignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacedetection.lua
48 lines (38 loc) · 1.88 KB
/
facedetection.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
local cv = require 'cv'
require 'cv.objdetect'
local M = {}
local FaceDetector = torch.class('FaceDetector', M)
function FaceDetector:__init(XML_frontalHaarCascade, XML_profileHaarCascade)
local frontalHaarCascade = 'haarcascades/haarcascade_frontalface_default.xml'
local profileHaarCascade = 'haarcascades/haarcascade_profileface.xml'
-- Init Viola-Jones face detector
print('=> Initialising the face detector...')
print('=> Looking for '..frontalHaarCascade..' ...')
local command = io.popen('locate '..frontalHaarCascade, 'r')
local locateOutput = command:read()
local _, endIndex = locateOutput:find(frontalHaarCascade)
local frontalDetectorParamsFile = locateOutput:sub(1, endIndex) or XML_frontalHaarCascade
command:close()
assert(paths.filep(frontalDetectorParamsFile),
frontalHaarCascade..' not found! Try specifing one manually.')
print('=> Looking for '..profileHaarCascade..' ...')
command = io.popen('locate '..profileHaarCascade, 'r')
locateOutput = command:read()
_, endIndex = locateOutput:find(profileHaarCascade)
local profileDetectorParamsFile = locateOutput:sub(1, endIndex) or XML_profileHaarCascade
command:close()
assert(paths.filep(profileDetectorParamsFile),
profileHaarCascade..' not found! Try specifing one manually.')
self.frontalFaceCascade = cv.CascadeClassifier{frontalDetectorParamsFile}
self.profileFaceCascade = cv.CascadeClassifier{profileDetectorParamsFile}
end
function FaceDetector:detect(img)
local grayImg = (image.rgb2y(img)*255):byte()
image.display(grayImg)
-- Stage I (detect frontal)
local faces_frontal = self.frontalFaceCascade:detectMultiScale{grayImg}
-- Stage II (detect profile)
local faces_profile = self.profileFaceCascade:detectMultiScale{grayImg}
return {faces_frontal, faces_profile}
end
return M.FaceDetector