-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRectifiersPaper.tex
1199 lines (1034 loc) · 61.6 KB
/
RectifiersPaper.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{mrlart7}
\def\volno{18}
\def\yrno{2011}
\def\issueno{00}
\setcounter{page}{10001}
\def\lpageno{10019} %temporary numbers
\overfullrule=5pt
\usepackage{amsmath,amscd,amssymb,latexsym,amsthm,amsfonts}
\usepackage{amsrefs}
\usepackage{mathtools}
\usepackage{color}
%\usepackage{hyperref}
\theoremstyle{plain}
\newtheorem{iassumption}{Assumption}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{hypothesis}[theorem]{Hypothesis}
\newtheorem{assumption}[theorem]{Assumption}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{question}[theorem]{Question}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{statement}[theorem]{Statement}
\newtheorem{example}[theorem]{Example}
\newcommand{\HT}[1]{\hat{\HH}{}^{#1}}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{remark}[theorem]{Remark}
\numberwithin{equation}{section}
%\setlength{\oddsidemargin}{0.2in}
%\setlength{\evensidemargin}{0.2in}
%\setlength{\textwidth}{6.1in}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\val}{val}
\DeclareMathOperator{\HH}{H}
\DeclareMathOperator{\Ad}{Ad}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\Fr}{Fr}
\DeclareMathOperator{\Ind}{Ind}
\DeclareMathOperator{\gen}{gen}
\DeclareMathOperator{\Z}{Z}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\GSp}{GSp}
\newcommand{\TT}{\mathcal{T}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\CCx}{\mathbb{C}^\times}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OKn}{\mathcal{O}_{K_n}}
\newcommand{\PK}{\mathcal{P}_K}
\newcommand{\PL}{\mathcal{P}_L}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\Gm}{\mathbb{G}_m}
\newcommand{\Kx}{K^\times}
\newcommand{\Lx}{L^\times}
\newcommand{\Fq}{\mathbb{F}_q}
\newcommand{\Fqb}{\bar{\mathbb{F}}_q}
\newcommand{\Weil}{\mathcal{W}}
\newcommand{\I}{\mathcal{I}}
\newcommand{\WD}{\mathcal{W}'}
\newcommand{\Lpack}{\mathcal{L}}
\newcommand{\Pmin}{P_G^{\min}}
\newcommand{\bmu}{\boldsymbol\mu}
\newcommand{\mumin}{\bmu^{\min}}
\newcommand{\st}{\ensuremath{\ \ \ \vert\ }}
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\invlim}[1]{\varprojlim_{#1}}
\newcommand{\Normalizer}[2]{\operatorname{N}_{#2}(#1)}
\newcommand{\Thadm}{T^*_{\operatorname{adm}}}
\newcommand{\Thinadm}{T^*_{\operatorname{in}}}
\newcommand{\hatT}{T^*}
\begin{document}
\title[Rectifiers and the local Langlands Correspondence]{Rectifiers and the local Langlands Correspondence: the unramified case}
\author{Moshe Adrian}
\email{madrian@math.utah.edu}
\address{Department of Mathematics \\ University of Toronto \\ Toronto, ON M5S 2E4, Canada}
\author{David Roe}
\email{roed.math@gmail.com}
\address{Department of Mathematics \\ University of British Columbia \\ Vancouver, BC V6K 1Z2, Canada}
\subjclass[2010]{22E50}
\keywords{Langlands, rectifiers}
\thanks{The second author was supported by the Pacific Institute for the Mathematical Sciences}
\begin{abstract}
Bushnell and Henniart define rectifiers, which provide a correction term
in the local Langlands correspondence for $\GL_n(K)$. They also give a natural bijection
between essentially tame supercuspidal Langlands parameters
and characters of minisotropic tori, and a second bijection between characters
of minisotropic tori and supercuspidal representations of $\GL_n(K)$. Rectifiers
bridge the gap, adding an intermediate step so that the composition agrees
with the local Langlands correspondence.
In this paper, we begin the process of generalizing rectifiers to other
connected reductive groups, focusing on the case of unramified minisotropic
tori that satisfy a certain cohomology condition.
\end{abstract}
\maketitle
\section{Introduction} \label{section:intro}
Let $G$ be a connected reductive group defined over a $p$-adic field $K$.
The local Langlands conjecture predicts the existence of a finite to one map
from the set of isomorphism classes of irreducible admissible representations
of $G(K)$ to the set of Langlands parameters for $G(K)$.
There has been a significant amount of progress in recent years
focusing on supercuspidal representations of $G(K)$. Bushnell--Henniart \cite{bushnell-henniart:10a},
DeBacker--Reeder \cite{reeder-debacker:09a}, Kaletha \cite{kaletha:13a} and Reeder \cite{reeder:08a}
approach the task of constructing $L$-packets by first attaching
a character of an elliptic torus to a Langlands parameter, and
then associating a collection of supercuspidal representations to this character.
Their constructions all use the local Langlands correspondence for tori in some way. However,
since the image of the Langlands parameter $\Weil_K \rightarrow {}^L G$ is not
necessarily contained within the $L$-group of a maximal torus, they need to make certain
adjustments in order to produce a character of an elliptic torus. The different authors remedy this situation in various ways.
For example, consider the group $G = \PGL_{2}(K)$, and suppose that
$\varphi : \Weil_K \rightarrow \SL_{2}(\CC)$ is an
irreducible representation. Then $\varphi$ is a Langlands parameter corresponding
to a supercuspidal representation of $\PGL_2(K)$. Moreover, the image of $\varphi$
is contained in the normalizer of the dual torus $\hat{T}$, a non-split
extension of $\Gal(L/K)$ by $\hat{T}$, but not in the $L$-group of any torus.
If $p \neq 2$, then there is a tamely ramified quadratic
extension $L/K$ and a character
$\chi$ of $\Lx$ that is trivial on the norms $\Nm_{L/K}(\Lx)$ and nontrivial on $\Kx$, so that
$\varphi = \Ind_{\Weil_L}^{\Weil_K}(\chi)$ \cite{bushnell-henniart:06a}*{\S 34}. In particular, $\chi$ is a character of the group $\Lx / \Nm_{L/K}(\Lx)$.
By Hilbert's theorem 90, the group $\Lx / \Nm_{L/K}(\Lx)$ appears as a covering group of the elliptic torus $L^1$ of norm $1$ elements in $L$:
\begin{align*}
1 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \Lx / \Nm_{L/K}(\Lx) &\rightarrow L^1 \rightarrow 1 \\
x \Nm_{L/K}(L^{\times}) &\mapsto x / \sigma(x);
\end{align*}
here $\sigma$ generates $\Gal(L/K)$. In particular, the Langlands parameter
$\varphi$ naturally provides a character $\chi$, not of the elliptic torus
$L^1 \subset \PGL_2(K)$ (since $\chi$ is nontrivial on $\Kx$),
but of the two-fold cover $\Lx / \Nm_{L/K}(\Lx)$. We can obtain a character $\chi'$ of $L^1$
by tensoring $\chi$ by another character of
$\Lx / \Nm_{L/K}(\Lx)$ that is nontrivial on $\Kx$. One can then attach a supercuspidal representation
of $\PGL_2(K)$ to $\chi'$ via the construction of Bushnell and Kutzko \cite{bushnell-kutzko:AdmissibleDual}.
The tensoring character that gives the correct supercuspidal representation of $\PGL_2(K)$
is precisely what appears in Bushnell and Henniart's rectifier. In \cite{bushnell-henniart:10a},
Bushnell and Henniart compute this rectifier in the \emph{essentially tame} setting for $\GL_n(K)$.
Bushnell and Henniart motivate their rectifier as follows.
Suppose that $\varphi$ is an essentially tame supercuspidal Langlands parameter for
$\GL_n(K)$. The local Langlands correspondence for tori then yields a degree $n$ extension
$L/K$ and a character $\xi$ of $L^{\times}$. We now fix a construction $\chi \mapsto \pi_{\chi}$
of supercuspidal representations of $\GL_n(K)$ from \emph{admissible} characters of $L^{\times}$.
Then the rectifier of $\xi$ is a character $\mu_{\xi}$ of $L^{\times}$ such that
$\varphi \mapsto \pi_{\xi \cdot \mu_{\xi}}$ is the local Langlands correspondence for $\GL_n(K)$.
In the specific case of supercuspidal representations of $\GL_2(K)$ with trivial central character
(i.e. supercuspidal representations of $\PGL_2(K)$), one computes that the character $\mu_{\xi}$ is,
as discussed above, a character of $\Lx / \Nm_{L/K}(\Lx)$ that is nontrivial on $\Kx$.
In this paper, we initiate a program to generalize Bushnell and Henniart's
rectifier to groups other than $\GL_n(K)$. Suppose that $G$ is a connected reductive group defined over $K$.
Let $\varphi : \Weil_K \rightarrow {}^L G$ be a
Langlands parameter for $G(K)$, and suppose that $\varphi$ factors
through the normalizer of a maximal torus in the dual group.
Benedict Gross has recently used his theory of groups of type $L$ to show that one may attach to each such parameter a character of a group that covers a subgroup of a maximal torus in $G(K)$. We briefly describe this construction, since it is needed in our definition of rectifier; for more details see \S \ref{section:groups_of_type_L}.
To $\varphi$, one can associate a maximal $K$-torus $T$ in $G$, unique up to
stable conjugacy. Let $L$ be the splitting field of $T$ and set $\Gamma = \Gal(L/K)$.
Restricting $\varphi$ to $\Weil_L$, the local Langlands correspondence for tori associates to $\varphi|_{\Weil_L}$ a character $\xi$ of $T(L)$. In fact, $\xi$ factors through the coinvariants $T(L)_{\Gamma}$.
Moreover, invariants and coinvariants are related by the norm map
\begin{align*}
N : T(L) &\rightarrow T(K),\\
t &\mapsto \displaystyle\prod_{\sigma \in \Gamma} \sigma(t),
\end{align*}
in the cohomology sequence
\begin{equation} \label{eq:coinv_seq}
1 \rightarrow \HT{-1}(\Gamma,T(L)) \rightarrow T(L)_{\Gamma} \xrightarrow{N} T(K) = T(L)^{\Gamma} \rightarrow \HT{0}(\Gamma,T(L)) \rightarrow 1,
\end{equation}
where $\HT{}$ denotes Tate cohomology. We have attached to each $\varphi$ a character $\xi$ of $T(L)_{\Gamma}$, which is in general a covering group of a finite-index subgroup of $T(K)$. In order to use existing constructions of representations of $G(K)$, we need a character of $T(K)$ itself. The outer terms in \eqref{eq:coinv_seq} provide an obstruction in shifting to a character of $T(K)$.
In this paper, we sidestep half of the problem by assuming that $\HT{0}(\Gamma, T(L)) = 0$. This condition holds for unramified minisotropic tori in both $\GL_n$
and in semisimple groups. Such tori arise for discrete parameters, where $\varphi$ does not factor through a proper Levi subgroup. In the case of $\GL_n$, we also have $\HT{-1}(\Gamma, T(L)) = 0$
for any unramified minisotropic torus, so $T(L)_{\Gamma} \cong T(K)$ can be identified with $L^{\times}$. To construct the local Langlands
correspondence for $\GL_n(K)$, one would then proceed to
attach the supercuspidal representation $\pi_{\xi \cdot \mu_{\xi}}$ to $\xi$, via the construction of Bushnell and Henniart.
For many $G$,
there are constructions of supercuspidal $L$-packets
$\Pi(\chi)$ associated to characters $\chi$ of elliptic tori $T(K) \subset G(K)$. However, a Langlands parameter $\varphi$ does not naturally
provide a character of $T(K)$, but rather a character $\xi$ of
$T(L)_{\Gamma}$. After fixing an association $\chi \mapsto \Pi(\chi)$ of supercuspidal $L$-packets of $G$
to \emph{admissible} characters of $T(K)$ (for example, the association of \cite{reeder-debacker:09a}, \cite{kaletha:13a}, or \cite{reeder:08a}), the \emph{rectifier} will be a character
$\mu_{\xi}$ of the covering group $T(L)_{\Gamma}$ such that $\varphi \mapsto \Pi(\xi \cdot \mu_{\xi})$
agrees with existing constructions of the local Langlands correspondence for $G(K)$, just as in the case of $\GL_n(K)$. We note that if $G(K) = \PGL_2(K)$ and if $\varphi$ is supercuspidal, then the Tate cohomology sequence above is exactly the $2$-fold cover $\Lx / \Nm_{L/K}(\Lx)$ of $L^1$ described earlier.
The associations $\chi \mapsto \Pi(\chi)$ that we use in our definition of rectifiers are those of DeBacker--Reeder and Reeder. We define rectifiers for
unramified minisotropic tori $T$ whose zeroth Tate cohomology is trivial.
We show in Theorem \ref{thm:unique_semisimple} that rectifiers for semisimple $G$ exist
and are unique up to equivalence. In fact, the rectifier that we construct is canonical: it is a character of $T(L)_{\Gamma}$ that is constructed from
a canonical Langlands parameter (see Definition \ref{def:phiu}). We show that our rectifier agrees with that of Bushnell--Henniart in the setting of depth zero
supercuspidal representations of $\GL_{n}(K)$ (see Theorem \ref{thm:bh_agreement}).
Note that there is an obstruction to proving the compatibility of our rectifier with Bushnell--Henniart's in the positive depth case.
In the depth zero case, Deligne--Lusztig representations provide a canonical way of
attaching supercuspidal representations to characters. However, in positive depth there are many:
Adler \cite{adler:98a}, Howe \cite{howe:77a}, Bushnell--Henniart \cite{bushnell-henniart:10a},
Bushnell--Kutzko \cite{bushnell-kutzko:AdmissibleDual}, and Yu \cite{yu:03a}.
In the positive depth setting, the rectifier will depend on the methods
used to construct representations from the character of $T(K)$, and
our rectifier indeed differs from that of Bushnell and Henniart in positive depth.
We would like to remark that the notion of a covering group of a torus occurring in the local Langlands
correspondence is an old one, dating back at least to work of Adams and Vogan \cite{adams-vogan:91}
in the setting of real groups. In the theory of real groups, an admissible homomorphism
$W_{\mathbb{R}} \rightarrow {}^L G$ automatically has image inside the normalizer of a torus in ${}^L G$.
As such, it naturally produces a genuine character $\chi$ of the \emph{$\rho$-cover of $T(\mathbb{R})$},
denoted $T(\mathbb{R})_{\rho}$, a certain double cover of $T(\mathbb{R})$. To $\chi$,
one can naturally attach a collection of representations of $G(\mathbb{R})$ to construct an $L$-packet.
We emphasize that our results do not extend the scope of DeBacker and Reeder's constructions to a broader class of parameters.
Instead, we aim to translate Bushnell and Henniart's notion of rectifier in such a way that it can be applied
to more general groups than $\GL_n$. In this paper we only handle the case where we may attach a torus $T$
to the parameter that is both unramified and satisfies $\HT{0}(\Gamma, T(L)) = 0$. We believe that these restrictions can be removed in future work.
We now present an outline of the paper. In \S\ref{section:BH_recall} we recall
the notion of rectifier due to Bushnell and Henniart and describe
the rectifier in the setting that we will need. In \S\ref{section:padic_tori}
we present some results about Tate cohomology of $p$-adic tori that will be used
in the rest of the paper. In \S\ref{section:groups_of_type_L} we review
the theory of groups of type L. In
\S\ref{section:gross_debacker_reeder} we describe the relationship between the
construction of Gross, via groups of type L, and the constructions $\chi \mapsto \Pi(\chi)$ of
\cite{reeder-debacker:09a} and \cite{reeder:08a}. In \S\ref{Q_T} we study how translation by a character affects
the map $\chi \mapsto \Pi(\chi)$.
In \S\ref{section:general_rectifiers} we
introduce our notion of rectifier and prove our main result, Theorem \ref{thm:unique_semisimple}.
Finally, in \S\ref{section:BH_compat} we show that our rectifier is compatible with
the rectifier of Bushnell and Henniart in the setting of depth zero
supercuspidal representations of $\GL_n(K)$.
\section{Notation and Preliminaries} \label{section:notation}
Throughout, $K$ will denote a nonarchimedean local field of
characteristic zero, $\OK$ its ring of integers, $k$ its residue field of cardinality $q$,
$\PK$ the maximal ideal in $\OK$ and $\varpi$ a fixed uniformizer.
Write $K_n$ for the unramified extension of $K$ of degree $n$, $k_n$ for
the degree $n$ extension of $k$,
and set $\Gamma_n = \Gal(K_n/K) = \Gal(k_n/k)$. Let $\bar{K}$ and $\bar{k}$ be algebraic closures of $K, k$, respectively.
A geometric Frobenius is an element of $\Gal(\bar{K}/K)$
inducing the automorphism $x \mapsto x^{1/p}$ of $\bar{k}$. Under the
Artin reciprocity map of local class field theory the choice of $\varpi$
determines a geometric Frobenius $\Fr$ \cite{serre:LocalClassFieldThy}*{\S 2}.
If $\chi : K^{\times} \rightarrow \mathbb{C}^{\times}$ is a character, we define
the \emph{depth} of $\chi$ to be the smallest integer $r$ such that
$\chi|_{1 + \PK^{r+1}} \equiv 1$ and
$\chi|_{1 + \PK^{r}} \not\equiv 1$.
If $T$ is a torus defined over $K$ we write $X^*(T)$
for the character lattice $\Hom_{\bar{K}}(T, \Gm)$ and $X_*(T)$ for the
cocharacter lattice $\Hom_{\bar{K}}(\Gm, T)$ \cite{humphreys:LinAlgGrps}*{\S 16.2}.
$T$ will split over an extension
$L$ of $K$ if and only if $\Gal(\bar{K}/L)$ acts trivially on $X^*(T)$.
We may thus define \emph{the} splitting field $L$ of $T$ as the
minimal extension of $K$ splitting $T$; note that $L$ is necessarily
Galois over $K$. Write $\Gamma$ for $\Gal(L/K)$. Then $X_*(T)$, $X^*(T)$ and $T(L)$
are all $\Gamma$-modules.
Suppose now that $T \subset G$ for a connected reductive group $G$ over $K$.
We will write $\hat{T} \subset \hat{G}$ for the dual torus in the complex dual group of $G$ \cite{borel:79a}*{\S I.2}.
Let $N$ be the normalizer $\Normalizer{T}{G}$ of $T$ in $G$ and define $W = N/T$;
set $\hat{N} = \Normalizer{\hat{T}}{\hat{G}}$ and
$\hat{W} = \hat{N}/\hat{T}$. The identification of $X^*(T)$ and $X_*(\hat{T})$
yields a canonical anti-isomorphism between $W$ and $\hat{W}$.
Note that $W$ is a scheme over $K$; in general $W(K) \ne N(K) / T(K)$.
Write $\Nm$ for the norm map
\begin{align*}
T(L) &\rightarrow T(K) \\
t &\mapsto \prod_{\sigma \in \Gamma} \sigma(t)
\end{align*}
and for its restriction to $X_*(T)$.
The following theorem, due to Lang \cite{lang:56a}, underpins the facts in
\S\ref{section:padic_tori} on tori over $p$-adic fields.
Let $H$ be a commutative connected algebraic group over a
finite field $k$, and suppose $H$ splits over $k_n$. Denote by $\HT{i}$ the $i^{\mathrm{th}}$
Tate cohomology group.
\begin{theorem} \label{thm:lang}
$\HT{i}(\Gamma_n, H(k_n)) = 0$ for all $i$.
\end{theorem}
\begin{proof}
Since $\Gamma_n$ is cyclic,
$\HT{i}(\Gamma_n, H(k_n)) \cong \HT{i+2}(\Gamma_n, H(k_n))$ \cite{atiyah-wall:CohomologyGrps}*{Thm. 5},
so it suffices to prove the result for $i=1$ and $i=2$, which is done
by Serre \cite{serre:AlgGrpsClassFields}*{\S VI.6}.
\end{proof}
\section{Rectifier for $\GL_{n}(K)$} \label{section:BH_recall}
In this section we recall the rectifier of Bushnell and Henniart and their construction of the
essentially tame local Langlands correspondence for $\GL_{n}(K)$.
An irreducible smooth representation of the Weil group $\Weil_K$ of $K$ is
called \emph{essentially tame} if its restriction to wild inertia is a
sum of characters.
\begin{definition}\label{admissiblepairhowe}
Let $L/K$ be an extension of degree $n$, with $n$ coprime to $p$. A character
$\xi$ of $L^\times$ is \emph{admissible} if
\begin{enumerate}
\item $\xi$ doesn't factors through the norm from a subfield of $L$ containing $K$,
\item If $\xi|_{1 + \PL}$ factors through the norm from a proper subfield $L \supseteq M \supseteq K$, then
$L/M$ is unramified.
\end{enumerate}
\end{definition}
There is a natural bijection
$\varphi_{\xi} \leftrightarrow (L/K, \xi)$ between irreducible smooth essentially tame
$\varphi_{\xi} : \Weil_K \rightarrow \GL_{n}(\mathbb{C})$ and
\emph{admissible pairs} $(L/K, \xi)$.
Bushnell and Henniart
construct a map (see \cite{bushnell-henniart:10a})
\begin{equation*}
\left\{
\begin{array}{cc}
\mathrm{isomorphism \ classes \ of} \\
\mathrm{admissible \ pairs}
\end{array}
\right\} \rightarrow \left\{
\begin{array}{cc}
\mathrm{supercuspidal \ representations} \\
\mathrm{of} \ \GL_{n}(K)
\end{array} \right\}
\end{equation*}
$$\hspace{-.5in} (L/K, \xi) \mapsto \pi_{\xi}$$
However, the map $$\varphi_{\xi} \mapsto \pi_{\xi}$$
is not the local Langlands
correspondence because $\pi_{\xi}$ has the wrong central character.
Instead, the local Langlands correspondence is given by
\begin{equation}\label{llcgln}
\varphi_{\xi} \mapsto \pi_{\xi \cdot {}_K \mu_{\xi}} \tag{$\star$}
\end{equation}
for some subtle finite order
character ${}_K \mu_{\xi}$ of $\Lx$. Since we will not be changing $K$
in this paper we will write $\mu_\xi$ for ${}_K \mu_{\xi}$.
The relation $\eqref{llcgln}$ does not determine $\mu_{\xi}$ uniquely. As pointed out
in \cite{bushnell-henniart:10a}, the obstruction to uniqueness revolves around the
group $\GL_2(\mathbb{F}_3)$. Bushnell and Henniart therefore make the following definition \cite{bushnell-henniart:10a}*{Def. 1}.
\begin{definition}\label{rectifierbushnellhenniart}
Let $L/K$ be a finite, tamely ramified field extension of degree $n$. A \emph{rectifier}
for $L/K$ is a function
$$\bmu : (L/K, \xi) \mapsto \mu_{\xi}$$
which attaches to each admissible pair $(L/K, \xi)$ a character $\mu_{\xi}$ of $L^{\times}$
satisfying the following conditions:
\begin{enumerate}
\item The character $\mu_{\xi}$ is tamely ramified.
\item Writing $\xi' = \xi \cdot \mu_{\xi}$, the pair $(L/K, \xi')$ is admissible and
$\varphi_{\xi} \mapsto \pi_{\xi \cdot \mu_{\xi}}$ is the local Langlands correspondence
for $\GL_n(K)$.
\item If $(L/K, \xi_i), i = 1,2$, are admissible pairs such that $\xi_1^{-1} \xi_2$ is
tamely ramified, then $ \mu_{\xi_1} = \mu_{\xi_2}$.
\end{enumerate}
\end{definition}
Bushnell and Henniart then prove \cite{bushnell-henniart:10a}*{Thm. A}:
\begin{theorem}
Any finite, tamely ramified, field extension $L/K$ admits a unique rectifier
$\bmu : (L/K, \xi) \mapsto \mu_{\xi}$.
\end{theorem}
Both the description of and the
intuition behind the rectifiers $\bmu$ have been
studied (see \cite{bushnell-henniart:10a}, \cite{tam:12a}, \cite{adrian:13a}). In order to
generalize rectifiers to groups other than $\GL_n(K)$ we
will will need a description of the characters $\mu_{\xi}$ in certain cases. The following result comes immediately from \cite{bushnell-henniart:10a}*{Prop. 21}.
\begin{proposition}\label{prop:BH_result1}
Suppose that $(L/K, \xi)$ is an admissible pair, where $\xi$ has depth $0$.
Then $\mu_{\xi}$ is unramified and
$\mu_{\xi}(\varpi) = (-1)^{n-1}$.
\end{proposition}
\section{Tori over $p$-adic fields} \label{section:padic_tori}
We first recall the definition of a minisotropic torus.
\begin{definition}[{\cite{reeder:08a}*{\S3.1}}]\label{minisotropictorus}
If $T$ is an unramified maximal $K$-torus in $G$, we say that $T$ is $K$-\emph{minisotropic} if $T(K)/Z(K)$ is compact.
\end{definition}
Now let $T \subset G$ be a torus defined over $K$ with splitting field $L$, let $K_n$ be the maximal
unramified subextension $L/K$, set $\Gamma = \Gal(L/K)$ and $I = \Gal(L/K_n)$.
In studying rectifiers for groups other than $\GL_n$, the following exact sequence
in Tate cohomology plays a crucial role:
\begin{equation} \label{eq:tate4}
1 \rightarrow \HT{-1}(\Gamma,T(L)) \rightarrow T(L)_{\Gamma} \xrightarrow{\Nm} T(K)
= T(L)^{\Gamma} \rightarrow \HT{0}(\Gamma,T(L)) \rightarrow 1.
\end{equation}
\noindent We make the following definition as a matter of notational convenience, since
it will serve as a running hypothesis on $T$ for most of the rest of the paper.
\begin{definition} \label{def:coverable}
We say that $T$ is \emph{coverable} if it is $K$-minisotropic and $\HT{0}(\Gamma, T(L)) = 0$.
\end{definition}
We require that $T$ be minisotropic in order to be able to use the local Langlands correspondence
given by Reeder \cite{reeder:08a} and Debacker--Reeder \cite{reeder-debacker:09a}; the condition
on $\HT{0}(\Gamma, T(L))$ will allow us to define characters of $T(K)$ from characters of
$T(L)_\Gamma$. In the remainder of this section recall some tools for computing Tate cohomology
groups over tori and give examples of coverable and non-coverable tori.
Let $\TT$ be the N\'eron model of $T$, a canonical model of $T$
over $\OK$ \cite{bosch-lutkebohmert-reynaud:NeronModels}*{Ch. 10}.
As a consequence of the N\'eron mapping
property, we may identify $\TT(\OK)$ with $T(K)$. The connected
component of the identity, $\TT^\circ$, cuts out a subgroup
$T(K)_0 = \TT^\circ(\OK)$ of $T(K)$; we also write $T(K_n)_0$ for
$\TT^\circ(\OKn)$.
In fact, this subgroup of $T(K)$ is the first in a decreasing filtration.
Moy and Prasad \cite{moy-prasad:96a}
define one such filtration by
embedding $T$ into an induced torus and defining the filtration of
$\Res_{L/K} \Gm$ in terms of the valuation on $L$. Yu \cite{yu:03a}*{\S 5}
describes a different filtration, agreeing with that of Moy and Prasad
in the case of tame tori but with nicer features in the presence of wild
ramification. Let $\{\TT_r\}_{r \ge 0}$ be the integral models of $T$ defined in Yu's
minimal congruent filtration and let $\{T(K)_r\}_{r \ge 0}$ and
$\{T(K_n)_r\}_{r \ge 0}$ be the corresponding filtrations of $T(K)$ and
$T(K_n)$.
Let $\C$ be the scheme of
connected components of $\TT$,
which we may identify with the
components of $\TT \times \Spec(k)$ since $T = \TT \times \Spec(K)$
is connected. The structure of $\C$ is described by Bertapelle and Gonz\'alez-Avil\'es:
\begin{proposition}[{\cite{bertrapelle-gonzales:13b}*{Thm. 1.1}}]
As $\Gal(\bar{k}/k)$-modules,
\[
\C \cong X_*(T)_I.
\]
\end{proposition}
Using our filtration of $T(K_n)$, we may relate the cohomology of $T(K_n)$
with that of $\C$.
\begin{proposition}\label{prop:T0_cohom_triv}
$\HT{i}(\Gamma_n, T(K_n)_0) = 0$ for all $i$.
\end{proposition}
\begin{proof}
Note that
$$T(K_n)_0 = \invlim{r} T(K_n)_0 / T(K_n)_r.$$
So by a result of Serre \cite{serre:LocalClassFieldThy}*{Lem. 3}, it suffices to prove that
\\ $\HT{i}(\Gamma_n, T(K_n)_r / T(K_n)_{r+}) = 0$ for all $i$. But $T(K_n)_r / T(K_n)_{r+}$
is connected \cite{yu:03a}*{Prop. 5.2} and thus has trivial cohomology by
Theorem \ref{thm:lang}.
\end{proof}
\begin{corollary} \label{cor:cohom_tori}
$\HT{i}(\Gamma_n, T(K_n)) \cong \HT{i}(\Gamma_n, X_*(T)_I)$.
\end{corollary}
\begin{proof}
This follows from the long exact sequence in cohomology associated to the sequence
$$0 \rightarrow \TT^0 \rightarrow \TT \rightarrow \C \rightarrow 0.$$
\end{proof}
Using this corollary, we can give examples of coverable and non-coverable tori.
\begin{example} $ $
\begin{enumerate}
\item Each minisotropic torus in $\GL_m$ is of the form $T = \Res_{N/K} \Gm$ for a degree $m$ extension $N$ of $K$.
Write $L$ for the Galois closure of $N$ and $H = \Gal(L/N)$. As usual, set $\Gamma=\Gal(L/K)$, let $K_n$ be the
maximal unramified subextension of $N$ and choose a Frobenius lift $\Fr \in \Gamma$.
We may take a basis $\{e_C\}$ for $X_*(T)$ indexed by left cosets $C$ of $H$ in $\Gamma$, with $\Gamma$
permuting the basis through left multiplication on the index. Then $X_*(T)_I$ is spanned by the classes of
$e_{\Fr^i H}$ for $0 \le i < m$, permuted cyclically. An easy computation using Corollary \ref{cor:cohom_tori} now shows that
\[
\HT{-1}(\Gamma_n, T(K_n)) = \HT{0}(\Gamma_n, T(K_n)) = 0.
\]
\item For an example of an unramified torus with nontrivial cohomology, let $T$ be a torus in $\GSp_4$ \cite{morris:91a}*{Prop. 1.3}, split over a quartic unramified extension
$L/K$ with $\Gamma = \Gal(L/K) = \langle \tau \rangle$, with cocharacter lattice
\begin{align*}
X_*(T) = &\{(a,b,c,d) \in \ZZ^4 \: : \: a + d = b + c\} \\
& \tau(a,b,c,d) = (c,a,d,b).
\end{align*}
Then $T$ is minisotropic but has $\HT{0}(\Gamma, T(L)) \cong \ZZ/2\ZZ$ by Corollary \ref{cor:cohom_tori}:
$X_*(T)^\Gamma$ is spanned by $(1,1,1,1)$ while the image of the norm map $(a,b,c,d) \mapsto (a+b+c+d,\ldots,a+b+c+d)$
is spanned by $(2,2,2,2)$. A similar computation shows that $\HT{-1}(\Gamma, T(L)) = 0$.
\end{enumerate}
\end{example}
On the other hand, if $G$ is semisimple, examples as in (2) above do not occur, as seen from the following proposition.
\begin{proposition}\label{prop:vanishing_H0}
If $T$ is unramified and anisotropic, then $\HT{0}(\Gamma, T(L)) = 0$.
\end{proposition}
\begin{proof}
Since $T$ is anisotropic, $X_*(T)^{\Gamma} = 0$, giving $\HT{0}(\Gamma, T(L)) = 0$ by Corollary
\ref{cor:cohom_tori}.
\end{proof}
For unramified $T$ the jumps in the filtration on $T(K)$ and $T(L)$ occur at integers, and we write
\begin{align*}
T(\OK) &= T(K)_0, \\
T(\OL) &= T(L)_0, \\
T(\PK^r) &= T(K)_r\qquad \mbox{for $r > 0$}, \\
T(\PL^r) &= T(L)_r\qquad\,\,\mbox{for $r > 0$}.
\end{align*}
\section{Groups of type L} \label{section:groups_of_type_L}
We now review the theory of groups of type L \cite{roe:13a}*{\S 7}.
For a torus $T$ over $K$ recall that the dual torus $\hat{T}$ is equipped with
an action of $\Gamma$.
\begin{definition}
A \emph{group of type L} is a group extension of $\Gamma$ by $\hat{T}$.
\end{definition}
For such a group $D$ we have by definition an exact sequence
$$1 \rightarrow \hat{T} \rightarrow D \rightarrow \Gamma \rightarrow 1.$$
We now describe how we can naturally attach a character of the coinvariants
$T(L)_{\Gamma}$ to a Langlands parameter
$$\varphi : \Weil_K \rightarrow D$$
with values in a group of type L.
Restricting $\varphi$ to $\Weil_L$ we get a homomorphism
$$\varphi|_{\Weil_L} : \Weil_L \rightarrow \hat{T},$$
and by the Langlands correspondence for tori a character
$\xi_{\varphi} : T(L) \rightarrow \CCx$. Since $\varphi|_{\Weil_L}$ extends
to $\varphi$ we have that
$$\xi_{\varphi}(\sigma(t)) = \xi_{\varphi}(t)\ \mbox{for all $\sigma \in \Gamma$.}$$
Thus $\xi_{\varphi}$ is trivial on the augmentation ideal $I_{\Gamma}(T(L))$
and descends to $$\xi_{\varphi} : T(L)_\Gamma \rightarrow \CCx.$$
Invariants
and coinvariants are related by the norm map
in the Tate cohomology sequence
$$1 \rightarrow \HT{-1}(\Gamma,T(L)) \rightarrow T(L)_{\Gamma} \xrightarrow{\Nm} T(K)
= T(L)^{\Gamma} \rightarrow \HT{0}(\Gamma,T(L)) \rightarrow 1.$$
We will assume in \S \ref{section:general_rectifiers} that $\HT{0}(\Gamma,T(L)) = 0$, in which case
$\xi_\varphi$ is a character of a cover of $T(K)$.
We will need the following structural result about Langlands
parameters mapping to groups of type L for the proof of
Proposition \ref{prop:existenceofrectifier}. Suppose now that $L/K$ is unramified of degree $n$ and that
$\varphi$ and $\varphi'$ are two Langlands parameters
with $\varphi'(\Fr) \varphi(\Fr)^{-1} \in \hat{T}$.
Let $\xi$ and $\xi'$ be the associated characters of $T(L)_{\Gamma}$.
\begin{lemma} \label{lem:toral_modification}
$\xi$ and $\xi'$ have the same restriction to $\HT{-1}(\Gamma, T(L))$.
\end{lemma}
\begin{proof}
Set $y = \varphi(\Fr) \in D$. By Corollary \ref{cor:cohom_tori},
$\HT{-1}(\Gamma, T(L)) = \HT{-1}(\Gamma, X_*(T))$.
If suffices to show that $\xi(\lambda) = \xi'(\lambda)$ for any $\lambda \in \ker(\Nm : X_*(T) \rightarrow X_*(T))$.
Via the canonical identification $X_*(T) \cong X^*(\hat{T})$,
we regard $\lambda$ as an element of $X^*(\hat{T})$. Note that $y^n \in \hat{T} \cong X_*(\hat{T}) \otimes \CC^\times$. We assume that $y^n$ is a simple tensor $y^n = \mu \otimes z$, for some $\mu \in X_*(\hat{T})$ and
$z \in \CC^{\times}$; for general $y^n$, the ensuing computations are analogous. Write $\langle , \rangle$ for the canonical pairing $X_*(\hat{T}) \times X^*(\hat{T}) \to \ZZ$. The local Langlands
correspondence for tori implies that $\xi(\lambda) = z^{\langle \mu, \lambda \rangle}$.
Let $t = \varphi'(\Fr)\varphi(\Fr)^{-1} \in \hat{T}$, and let $w$ be the image of $y$ in the Weyl group. Again we assume that $t$ is a simple tensor $t = \mu' \otimes z'$ for $\mu' \in X_*(\hat{T})$
and $z' \in \mathbb{C}^{\times}$. Then
\begin{align*}
(ty)^n &= t yty^{-1} y^2 t y^{-2} \cdots y^{n-1} t y^{1-n} y^n \\
&= t w(t) w^2(t) \cdots w^{n-1}(t) y^n \\
&=(\Nm(\mu' ) \otimes z') \cdot (\mu \otimes z),
\end{align*}
where here $\Nm$ denotes norm map on $\hat{T}$ corresponding to the given Galois action on $\hat{T}$.
We conclude again by the local Langlands correspondence for tori that
\[
\xi'(\lambda) = z^{\langle \mu, \lambda \rangle} (z' )^{\langle \Nm(\mu'), \lambda \rangle}.
\]
Since $\langle , \rangle$ is Galois equivariant, $\langle \Nm(\mu'), \lambda \rangle = \langle\mu', \Nm(\lambda)\rangle$.
But $\lambda \in \ker(\Nm : X_*(T) \rightarrow X_*(T))$, so $\langle\mu', \Nm(\lambda)\rangle = 0$.
Therefore $\xi'(\lambda) = z^{\langle\mu, \lambda\rangle} = \xi(\lambda)$.
\end{proof}
We will also need the following lemma in order to define our notion of admissible pair
in \S\ref{section:general_rectifiers}.
\begin{lemma} \label{lem:weyl_groups}
Let $G$ be a connected reductive $K$-group and let $T$ be a maximal
$K$-torus of $G$ that has splitting field $L$.
\begin{enumerate}
\item $\Normalizer{T(K)}{G(L)} / T(L) \cong W(K)$.
\item The conjugation action of $\Normalizer{T(L)}{G(L)} / T(L)$ on $T(L)$ determines
actions of $\Normalizer{T(L)}{G(L)}^\Gamma / T(K)$ and $W(K)$
on $T(L)$ which factor to actions on $T(L)_\Gamma$.
\end{enumerate}
\end{lemma}
\begin{proof}
See \cite{adrian-lansky:ppa}*{Lem. 9.1}.
\end{proof}
\section{The relationship between the Gross construction and the DeBacker--Reeder and Reeder construction}
\label{section:gross_debacker_reeder}
Let $\varphi : \Weil_K \rightarrow {}^L G$ be a regular semisimple elliptic Langlands
parameter for an unramified connected reductive group $G$
(see \cite{reeder-debacker:09a} and \cite{reeder:08a}).
Here, ${}^L G = \langle \hat{\theta} \rangle \ltimes \hat{G}$,
where $\hat{\theta}$ is the dual Frobenius automorphism on $\hat{G}$
(see \cite{reeder-debacker:09a}*{\S 3}).
Since $\varphi$ is elliptic, its image is contained in a group of type $L$ for an unramified $K$-minisotropic torus $T$.
Let $L$ be the splitting field of $T$ and let $\Gamma = \Gal(L/K)$ and $\xi_\varphi$ be as in Section \ref{section:groups_of_type_L}.
Then $\varphi(I_K) \subset \hat{T}$ and
$\varphi(\Fr) = \hat{\theta} f$ for some $f \in \hat{N}$. Let $\hat{w}$
be the image of $f$ in $\hat{W}$.
DeBacker--Reeder \cite{reeder-debacker:09a} and Reeder \cite{reeder:08a}
associate a character $\chi_{\varphi}$ of $T(K)$ to $\varphi$.
We now recall the definition of
the Tits group and some of its properties. Choose a set $\{ X_{\alpha} \}$ of root vectors
indexed by the set of simple roots of $\hat{T}$ in $\hat{B}$. Then $(\hat{T}, \hat{B}, \{X_{\alpha} \})$
is a pinning as in \cite{reeder:10a}*{\S 3.1}.
For each simple root $\alpha$, define $\phi_{\alpha} : \SL_2 \rightarrow \hat{G}$
by
\begin{align*}
\phi_{\alpha}\begin{pmatrix}z & 0 \\ 0 & z^{-1}\end{pmatrix} &= \alpha^{\vee}(z) \\
d \phi_{\alpha}\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} &= X_{\alpha}.
\end{align*}
Let $\sigma_{\alpha} = \phi_{\alpha}\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}$.
\begin{definition}
The Tits group $\widetilde{W}$ is the subgroup of $\hat{N}$
generated by $\{\sigma_{\alpha} \}$ for simple roots $\alpha$.
\end{definition}
For each simple root $\alpha$, let $m_{\alpha} = \sigma_{\alpha}^2 = \alpha^{\vee}(-1)$ and
let $\hat{T}_2$ be the subgroup of $\hat{T}$ generated by the $m_{\alpha}$.
\begin{theorem}{\cite{adams-vogan:12}*{Prop. 5.2}}
\begin{enumerate}
\item The kernel of the natural map $\widetilde{W} \rightarrow \hat{W}$
is $\hat{T}_2$,
\item The elements $\sigma_{\alpha}$ satisfy the braid relations,
\item There is a canonical lifting of $\hat{W}$ to a subset of
$\widetilde{W}$: take a reduced expression $w = s_{\alpha_1} \cdots s_{\alpha_n}$,
and let $\tilde{w} = \sigma_{\alpha_1} ... \sigma_{\alpha_n}$.
\end{enumerate}
\end{theorem}
% Can we get a more precise reference, from Tits' article, for the above Theorem??
We remark that the lifting $\hat{W} \rightarrow \widetilde{W}$ is not necessarily a homomorphism,
as shown by the example of $\SL_2$.
\begin{definition} \label{def:phiu}
Given $\hat{u} \in \hat{W}$, let $\tilde{u}$ be its canonical lift to $\widetilde{W}$.
We define a homomorphism $\varphi_{\hat{u}} : \Weil_K \rightarrow {}^L G$ by
\begin{enumerate}
\item $\varphi_{\hat{u}}|_{I_K} \equiv 1$,
\item $\varphi_{\hat{u}}(\Fr) = \hat{\theta} \tilde{u}$.
\end{enumerate}
\end{definition}
By
\S\ref{section:groups_of_type_L}, $\varphi$ and $\varphi_{\hat{w}}$ give rise to characters
$\xi_{\varphi}$ and $\xi_{\varphi_{\hat{w}}}$ of $T(L)_{\Gamma}$ respectively.
%Note that $\varphi_{\hat{u}}$ arises in the theory of real groups as a ``base point.''
The following proposition relates the character $\xi_\varphi$ defined through groups of type $L$
to the character $\chi_\varphi$ constructed by DeBacker--Reeder and Reeder.
\begin{lemma} \label{lem:GDR_compat}
$\xi_{\varphi}$ and $\chi_{\varphi} \circ \Nm$ have the same restriction to $T(\OL)_{\Gamma}$.
\end{lemma}
\begin{proof}
We have the exact sequence
$$1 \rightarrow \HT{-1}(\Gamma, T(L)) \rightarrow T(L)_{\Gamma} \rightarrow T(K)
\rightarrow \HT{0}(\Gamma, T(L)) \rightarrow 1.$$
Recall that the character $\xi_{\varphi}$ is associated to $\varphi$ by
the local Langlands correspondence for tori (see \S\ref{section:groups_of_type_L}).
Note that the above exact sequence restricts to an exact sequence
$$1 \rightarrow \HT{-1}(\Gamma, T(\OL)) \rightarrow T(\OL)_{\Gamma}
\rightarrow T(\OK) \rightarrow \HT{0}(\Gamma, T(\OL)) \rightarrow 1.$$
Moreover, by Proposition \ref{prop:T0_cohom_triv}, we have
$\HT{-1}(\Gamma, T(\OL)) = \HT{0}(\Gamma, T(\OL)) = 1$.
Therefore, the map
$$T(\OL)_{\Gamma} \xrightarrow{\Nm} T(\OK)$$
is an isomorphism, so
$\xi_{\varphi}|_{T(\OL)_{\Gamma}}$ factors to a character of
$T(\OK)$ via this isomorphism. But this is exactly how the character
$\chi_{\varphi}|_{T(\OK)}$ is constructed in \cite{reeder-debacker:09a} and \cite{reeder:08a}.
\end{proof}
In the case that $G$ is semisimple, we can say even more.
\begin{proposition}\label{prop:existenceofrectifier}
If $G$ is semisimple, then $\chi_{\varphi} \circ \Nm = \xi_{\varphi} \otimes \xi_{\varphi_{\hat{w}}}^{-1}$.
\end{proposition}
\begin{proof}
Since $G$ is semisimple, $T(K)$ is compact. In particular,
$\HT{0}(\Gamma, T(L)) = 0$ by Proposition \ref{prop:vanishing_H0},
so we have the following exact sequence:
$$1 \rightarrow \HT{-1}(\Gamma, T(L)) \rightarrow T(L)_{\Gamma} \rightarrow T(K) \rightarrow 1.$$
Note that $T(K) = T(\OK)$ and thus
$T(\OL)_{\Gamma}$ surjects onto $T(K)$ via the norm map
$\Nm$. Therefore $\HT{-1}(\Gamma,T(L))$ and
$T(\OL)_{\Gamma}$ together generate $T(L)_{\Gamma}$. It thus suffices to check that
$\xi_{\varphi} \otimes \xi_{\varphi_{\hat{w}}}^{-1} = \chi_{\varphi} \circ \Nm$
on each of these two subgroups.
Since $\varphi_{\hat{w}}|_{I_K} \equiv 1$, $\xi_{\varphi_{\hat{w}}}$ is trivial on
$T(\OL)_{\Gamma}$ so Lemma
\ref{lem:GDR_compat} implies equality on $T(\OL)_{\Gamma}$.
Equality on $\HT{-1}(\Gamma,T(L))$ is Lemma \ref{lem:toral_modification}.
\end{proof}
The character $\xi_{\varphi_{\hat{w}}}^{-1}$ is the key ingredient in the rectifier that we construct
(see the proof of Theorem \ref{thm:unique_semisimple}). It is canonical in the sense that the
Langlands parameter $\varphi_{\hat{w}}$ is a canonical Langlands parameter.
We note that for semisimple $G$ we may replace $\tilde{w}$ by another
lift $w'$ of $\hat{w}$ to $\hat{N}$ in the definition of $\varphi_{\hat{w}}$.
In fact, if we define $\varphi'$ by
\begin{align*}
\varphi'|_{I_K} &\equiv 1 \\
\varphi'(\Fr) &= w'
\end{align*}
then Lemma \ref{lem:toral_modification} implies $\xi_{\varphi_{\hat{w}}} = \xi_{\varphi'}$.
We will justify the Tits group lift $\tilde{w}$ in \S\ref{section:BH_compat} for $\GL_n(K)$.
\section{$L$-packets fixed under translation by a character}\label{Q_T}
The general definition of rectifier is complicated by the fact that different
characters of a torus can yield the same $L$-packet. Consider the following archetypical example.
Let $K = \QQ_3$, $G = \SL_2$ and $T$ be an unramified anisotropic torus in $G$. There are four depth zero
characters: two admissible and two inadmissible, notions defined below. Since the two admissible characters are interchanged
by the action of the Weyl group, the corresponding $L$-packets are isomorphic \cite{murnaghan:11}*{\S10}.
In this section we investigate nontrivial depth zero characters $\alpha$ of $T(K)$ that leave the association
$\chi \mapsto \Pi(\chi)$ of \cite{reeder-debacker:09a} invariant upon translation:
$$\Pi(\chi) = \Pi(\alpha\cdot\chi) \mbox{ for all depth zero admissible $\chi$}.$$
\begin{definition} \label{def:admissible}
Let $T$ be a $K$-minisotropic torus, that splits over an unramified
extension $L$ (see \cite{reeder:08a}*{\S3}). Suppose $\xi$ is a character of $T(L)_{\Gamma}$.
\begin{enumerate}
\item The pair $(T, \xi)$ is called \emph{admissible} if $\xi$ is not fixed
by any nontrivial element of $W(K)$ (c.f. Lemma \ref{lem:weyl_groups}); we
denote by $P_G(K)$ the set of admissible pairs in $G$.
\item We call two admissible pairs $(T, \xi)$ and $(T', \xi')$ \emph{isomorphic} if there
exists a $g \in G(K)$ such that $gT(K)g^{-1} = T'(K)$ and $\xi(t) = \xi'(gtg^{-1})$
for all $t \in T(K)$.
\end{enumerate}
Similarly, we will call a character of $T(K)$ \emph{admissible} if
it is not fixed by any nontrivial element of $W(K)$
(c.f. \cite{reeder-debacker:09a}*{p. 802} and \cite{reeder:08a}*{\S3})
\end{definition}
Note that this definition of admissible pair generalizes
Bushnell--Henniart's notion of admissible pair \cite{bushnell-henniart:10a} in
the case of unramified tori. Indeed,
if $G = \GL_n$, and $T$ is an elliptic torus in $G$ splitting over
an unramified extension $L/K$, then one can show that
$W(K) = \Gamma$. In this case, the following are equivalent conditions
on a character $\xi$ of $T(K) = \Lx$:
\begin{enumerate}
\item $\xi$ is fixed by a nontrivial element of $W(K)$,
\item $\xi$ is fixed by a nontrivial subgroup of $\Gamma$,
\item $\xi$ factors through the norm map $\Nm_{L/M}$ for some intermediate field $K \subseteq M \subset L$.
\end{enumerate}
Note that for non-adjoint groups it is not sufficient to consider only reflections.
For example, the depth zero character of the split torus in $\SL_3(\QQ_7)$ inflated from
$$\begin{pmatrix} 3^x & & \\ & 3^y & \\ & & 3^{-x-y} \end{pmatrix} \mapsto \zeta_3^{x + y}$$
is fixed by a 3-cycle in the Weyl group and thus not admissible.
In the next section we will be particularly interested in depth zero characters; write $\hatT$ for the set of
depth zero characters of $T(\OK)$, $\Thadm$ for the admissible
ones and $\Thinadm$ for the inadmissible ones. Each of these
sets is finite since they may be identified with characters of $T(k)$.
\begin{definition}
Write $Q_T$ for the set of $\alpha \in \hatT$ with the following property:
\begin{itemize}
\item For every $\chi \in \Thadm$ there is a $w \in W(K)$ with $\alpha = \frac{\chi}{w(\chi)}$.
\end{itemize}
\end{definition}
The $\SL_2(\QQ_3)$ example above has $Q_T$ of order two, but $Q_T$ is trivial for most tori.
We spend the rest of this section giving criteria constraining $Q_T$.
\begin{proposition} \label{irr-sub}
The set $Q_T$ is a subgroup of $\hatT$, contained within $\Thinadm$ and stable under the action of $W(K)$.
\end{proposition}
\begin{proof}
If $\alpha \in \Thadm \cap Q_T$ then there is some $w \in W(K)$ with
$\frac{\alpha}{w(\alpha)} = \alpha$, so $\alpha = 1$ which is not admissible.
We now show that $Q_T$ is a group. Certainly $1 \in Q_T$. Suppose
$\alpha, \alpha' \in Q_T$ and $\chi \in \Thadm$. Then there are $w, w' \in W(K)$ with
\begin{align*}
\frac{\chi}{w(\chi)} &= \alpha, \\
\frac{w(\chi)}{w'(w(\chi))} &= \alpha'.
\end{align*}
Multiplying the two relations yields $\frac{\chi}{w'w(\chi)} = \alpha\alpha'$, so
$\alpha\alpha' \in Q_T$. We finish by noting that $Q_T$ is finite and thus closure under
multiplication implies closure under inversion.
Finally, suppose $\tau \in W(K)$. Given $\chi \in \Thadm$ with $\alpha = \frac{\chi}{w(\chi)}$ we have
$$\tau(\alpha) = \frac{\tau(\chi)}{\tau w(\chi)} = \frac{\tau(\chi)}{w' \tau(\chi)}$$
for some $w' \in W(K)$. Since $\tau$ permutes the admissible characters we get that $\tau(\alpha) \in Q_T$.
\end{proof}
The condition on $\alpha \in Q_T$ is an extremely stringent one, and an abundance of admissible
characters will preclude a nontrivial $\alpha$. We can make this statement precise:
\begin{proposition} \label{pigeonhole}
Suppose $\#\Thadm > (\# W(K) - 1) \cdot \# \Thinadm$. Then $Q_T = \{ 1 \}$.
\end{proposition}
\begin{proof}
Suppose $\alpha \in Q_T$. For $w \in W(K)$, set
$$S_w = \{\chi \in \Thadm \st \frac{\chi}{w(\chi)} = \alpha\}.$$
Note that if $S_1$ is nonempty then we get $\alpha = 1$ immediately, so we may
assume the contrary. Then by the pigeonhole principle, there is a $w \in W(K)$
with $\# S_w > \# \Thinadm$. Pick $\chi \in S_w$; since $\# S_w > \#\Thinadm$
there is some $\chi' \in S_w$ with $\frac{\chi}{\chi'}$ admissible. We now have
$$\frac{\chi}{w(\chi)} = \alpha = \frac{\chi'}{w(\chi')}$$
and therefore $\frac{\chi}{\chi'}$ is fixed by $w$. Since $\frac{\chi}{\chi'}$ is admissible, we must have $w = 1$ and thus
$$\alpha = \frac{\chi}{\chi} = 1.$$
\end{proof}
Recall that Frobenius acts on $X^*(T)$ via an endomorphism $F = qF_0$, where
$F_0$ is an automorphism of finite order \cite{carter:93a}*{p. 82}. So it makes sense
to vary $q$: we fix $F_0$ and consider the tori dual to the $\Gal(\Fqb/\Fq)$-modules
with Frobenius acting through $qF_0$.
\begin{corollary}[{cf \cite{carter:93a}*{Lem. 8.4.2}}]
Consider the family of tori $T_q$ with the same $F_0$. Then for sufficiently large $q$,
$Q_{T_q} = \{ 1 \}$ (regardless of the $G$ in which $T_q$ is embedded).
\end{corollary}
\begin{proof}
We will write $T$ for a general torus in the family and $r$ for the common dimension.
Note that $\hatT$ is the set of $\Fq$ points of a dual torus, also of rank $r$ over $\Fq$.
For $w \in W(K)$ with $w \ne 1$ the centralizer $\Z_{\hatT}(w)$ is a proper $F$-stable
subgroup of $\hatT$, and thus $\dim(\Z_{\hatT}(w)) \le r - 1$. By \cite{carter:93a}*{3.3.5},
$\# \hatT$ is a polynomial in $q$ of degree $r$ and $\# \Z_{\hatT}(w)$ is a polynomial
in $q$ of degree at most $r-1$. Thus the ratio
$$\frac{\# \Thadm}{\# \Thinadm} = \frac{\# \hatT - \sum_{1 \ne w \in W} \# \Z_{\hatT}(w)}{\sum_{1 \ne w \in W} \# \Z_{\hatT}(w)}$$
grows without bound as $q$ does. There are finitely many possibilities for the absolute
Weyl group of $T$, so Proposition \ref{pigeonhole} gives the desired result.
\end{proof}
In computing $Q_T$ for small $q$ the following result is useful:
\begin{proposition} \label{orderdiv}
If $\alpha \in Q_T$ has order $d$ and $\chi \in \Thadm$ has order $m$ then $d$ divides $m$.
\end{proposition}
\begin{proof}
There is a $w \in W(K)$ with
$$\frac{\chi}{w(\chi)} = \alpha.$$
Since $w(\chi)$ also has order $m$, raising both sides to the $m$th power yields $\alpha^m = 1$.
\end{proof}
We would like to make a remark about associations $\chi \mapsto \Pi(\chi)$ of \emph{positive depth}
supercuspidal $L$-packets to characters of minisotropic tori. In particular, we would like
to remark that there cannot generally be such an association that could be left invariant by a
depth zero character $\alpha$. To see this, suppose that
$$\Pi(\chi) = \Pi(\alpha\cdot\chi) \mbox{ for all admissible $\chi$ of positive depth $r$}.$$
Then for each such $\chi$, there exists $w(\chi)$ such that
$${}^{w(\chi)} (\alpha \cdot \chi) = \chi.$$
Restricting this equation to $T(\PK)$ yields $({}^{w(\chi)} \chi)|_{T(\PK)} \equiv \chi|_{T(\PK)}$,
since $\alpha$ is depth zero. As long as one can find a $\chi$ of depth $r$ that is \emph{minimal}
(see Definition \ref{def:general_pair}), we get a contradiction.
Finally, we note that Lemma 8 of Bushnell--Henniart \cite{bushnell-henniart:10a}*{p. 511} is equivalent to
the statement that $Q_T$ is trivial when $T$ is a $K$-minisotropic torus in $\GL_n$.
\section{Rectifiers for general reductive groups} \label{section:general_rectifiers}
Suppose that $G$ is a connected reductive group defined over a
$p$-adic field $K$. Fix an unramified $K$-torus $T \subset G$ with splitting field $L$.
Let $\varphi : \Weil_K \rightarrow {}^L G$ be a
Langlands parameter for $G(K)$, and suppose that $\varphi$ factors
through a group of type L for $T$. Any Langlands parameter with image in the normalizer
of a maximal torus will factor in this way for some $T$.
As in \S\ref{section:groups_of_type_L}, one can canonically
associate to $\varphi$ a character $\xi_{\varphi}$ of $T(L)_{\Gamma}$.
Recall again the Tate cohomology sequence
$$1 \rightarrow \HT{-1}(\Gamma,T(L)) \rightarrow T(L)_{\Gamma} \xrightarrow{\Nm} T(K)
= T(L)^{\Gamma} \rightarrow \HT{0}(\Gamma,T(L)) \rightarrow 1.$$
Suppose that $\HT{0}(\Gamma, T(L)) = 0$, in which case
$T(L)_{\Gamma}$ surjects onto $T(K)$. Let us also suppose that
$\varphi$ does not factor through a proper Levi subgroup, so that the
representations in the $L$-packet associated to $\varphi$ are
conjecturally all supercuspidal (see \cite{reeder-debacker:09a}*{\S 3.5}).
When $G = \GL_n$ we show in \S\ref{section:BH_compat} that
$\HT{0}(\Gamma, T(L)) = \HT{-1}(\Gamma, T(L)) = 0$ and thus
$T(L)_{\Gamma} \cong T(K) \cong \Lx$. In this case
$(L/K, \xi_{\varphi})$ is an admissible pair; to construct the local Langlands
correspondence one proceeds as in \S\ref{section:BH_recall} by
attaching the supercuspidal representation $\pi_{\xi_{\varphi} \cdot
\mu_{\xi_{\varphi}}}$ to $\xi_{\varphi}$, via the construction of Bushnell and Henniart.
For other groups $G$ there are some constructions of supercuspidal $L$-packets $\Pi(\chi)$
from characters $\chi$ of $T(K)$ \cites{reeder-debacker:09a, kaletha:13a, reeder:08a}.
These constructions depend on a particular construction of supercuspidal representations.
In the case of \cites{kaletha:13a, reeder:08a}, the choice of construction is Adler's \cite{adler:98a}.
As we have seen, a Langlands parameter $\varphi$ does not naturally
provide a character of $T(K)$, but rather a character of
$T(L)_{\Gamma}$. We consider here the maps $\chi \mapsto \Pi(\chi)$ of \cites{reeder-debacker:09a, reeder:08a}.
Moreover, for general groups $G$ there are some constructions of correspondences from Langlands
parameters to $L$-packets of $G$ \cites{reeder-debacker:09a, kaletha:13a, reeder:08a}.
More specifically, in the mentioned work, a map
\begin{equation}\label{langlandsmap}
\Lpack: \Phi_{\Lpack}(G, T) \rightarrow \Pi(G)
\end{equation}
is constructed, where $\Phi_{\Lpack}(G, T)$ is some subset of Langlands parameters that
factor through a group of type $L$, and $\Pi(G)$ is the set of $L$-packets of $G$.
We denote by $\Lpack_{DR}$ the map coming from either \cite{reeder-debacker:09a} or \cite{reeder:08a}.
Let $\Lpack$ be any map of the form \eqref{langlandsmap}, and set
$P_{G, \Lpack}(K) = \{ (T, \xi_{\varphi}) \in P_G(K) | \varphi \in \Phi_{\Lpack}(G, T) \}$.
\begin{definition} \label{def:rectifier}
Let $T$ be a coverable torus in $G$, with unramified splitting field $L$. An $\Lpack$-\emph{rectifier} for $T$ is a function
$$\bmu : (T, \xi) \mapsto \mu_{\xi}$$
which attaches to each $(T, \xi) \in P_{G, \Lpack}(K)$ a character
$\mu_{\xi}$ of $T(L)_{\Gamma}$ satisfying the following conditions:
\begin{enumerate}
\item The character $\mu_{\xi}$ is tamely ramified (i.e. trivial on
$T(\PL)_{\Gamma}$),
\item The character $\xi \cdot \mu_{\xi}$ descends to $T(K)$, is admissible,
and $\varphi \mapsto \Pi(\xi_{\varphi} \cdot \mu_{\xi_{\varphi}})$
agrees with the correspondence $\Lpack$,
\item If $(T, \xi_1)$ and $(T, \xi_2)$ are admissible pairs such that
$\xi_1^{-1} \xi_2$ is tamely ramified then
$\mu_{\xi_1} = \mu_{\xi_2}$.
\end{enumerate}
We say that two rectifiers $\bmu$ and $\bmu'$ for $T$ are \emph{equivalent}
if there is some $\alpha \in Q_T$ so that
\begin{align*}
\mu_\xi' &= \alpha \mu_\xi \qquad \mbox{for depth zero $\xi$,} \\
\mu_\xi' &= \mu_\xi \qquad\ \ \mbox{for positive depth $\xi$.}
\end{align*}
\end{definition}
This notion of equivalence is made in order to prove uniqueness of a $\mathcal{L}_{DR}$-rectifier
(see Theorem \ref{thm:unique_semisimple}). More specifically, this notion is needed because
of the very rare phenomenon that we described in \S\ref{Q_T} whereby all supercuspidal
$L$-packets could be left invariant by a depth zero character $\alpha$.
Since we have assumed $\HT{0}(\Gamma,T(L)) = 0$, the condition (in Definition \ref{def:rectifier}) that $\xi \cdot \mu_\xi$
descends to $T(K)$ is equivalent to $\xi \cdot \mu_\xi$ vanishing on $\HT{-1}(\Gamma, T(L))$.
\begin{conjecture} \label{conj:unique_rectifier}
For $T$ as in Definition \ref{def:rectifier} and $\Lpack$ any map of the form \eqref{langlandsmap},
$T$ admits a unique $\Lpack$-rectifier up to equivalence.
\end{conjecture}
We note that, as the local Langlands correspondence is not known in general, we must restrict
ourselves to cases where supercuspidal $L$-packets have been constructed.
Since we are in the present paper considering the situation when $T$ is unramified,
we consider those $L$-packets constructed in \cite{reeder-debacker:09a} and \cite{reeder:08a}.
We also note that an $\Lpack$-rectifier implicitly depends on a construction of supercuspidal
representations, as it does in the work of Bushnell and Henniart.
\begin{definition}\label{def:general_pair}
Suppose $(T, \xi) \in P_G(K)$.