forked from edukera-japanese-translation/translation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoc_en.properties
1780 lines (1780 loc) · 81.2 KB
/
doc_en.properties
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
axiom_Antonym1_diagnostic=antonymy
axiom_Antonym1_justification=by antonymy of 'youngest' and 'oldest'
axiom_Antonym2_diagnostic=antonymy
axiom_Antonym2_justification=by antonymy of 'youngest' and 'oldest'
axiom_Superlative1_diagnostic=uniqueness
axiom_Superlative1_justification=by uniqueness of the youngest
axiom_Superlative2_diagnostic=uniqueness
axiom_Superlative2_justification=by uniqueness of the oldest
axiom_adabsurdium_diagnostic=ad absurdum
axiom_adabsurdium_justification=by ad absurdum reasoning
axiom_addsub_diagnostic=addition and subtraction
axiom_addsub_justification=by adding and subtracting {1} to {0}
axiom_app_def_diagnostic=mapping
axiom_app_def_justification=by definition of {0} applied to {1}
axiom_app_sqrt_bounded_diagnostic=square root
axiom_app_sqrt_bounded_justification=by applying the square root function
axiom_app_sqrt_diagnostic=square root
axiom_app_sqrt_justification=by applying the square root function
axiom_app_square_bounded_diagnostic=square
axiom_app_square_bounded_justification=by squaring
axiom_app_square_diagnostic=square
axiom_app_square_justification=by squaring
axiom_apply_forall_diagnostic=mapping
axiom_apply_forall_justification=by applying to {0}
axiom_apply_fun_lr_diagnostic=functional mapping
axiom_apply_fun_lr_justification=by mapping left and right sides of {0}
axiom_apply_ineq_inverse_diagnostic=multiplicative inverse
axiom_apply_ineq_inverse_justification=by decrease of multplicative inverse on ℝ*
axiom_apply_ineq_sqrt_diagnostic=square root
axiom_apply_ineq_sqrt_justification=by applying the square root function
axiom_apply_ineq_square_diagnostic=square
axiom_apply_ineq_square_justification=by squaring
axiom_arith_def_diagnostic=definition
axiom_arith_def_justification=by definition of an arithmetic progression
axiom_arith_pro_diagnostic=functional expression
axiom_arith_pro_justification=by functional expression of an arithmetic progression
axiom_ax_bad_diagnostic=lies of swindlecants
axiom_ax_bad_justification=by lies telling of swindlecants
axiom_ax_good_diagnostic=truth of honestants
axiom_ax_good_justification=by truth telling of honestcants
axiom_back_elim_equiv_diagnostic=definition
axiom_back_elim_equiv_justification=by definition of equivalence
axiom_bound_conj_diagnostic=double inequality
axiom_bound_conj_justification=by definition of double inequality
axiom_bound_to_eq_diagnostic=double inequality
axiom_bound_to_eq_justification=by definition of double inequality
axiom_bounded_elim_diagnostic=double inequality
axiom_bounded_elim_justification=by definition
axiom_case_base_binary_diagnostic=excluded middle
axiom_case_base_binary_justification=by principle of excluded middle
axiom_case_base_diagnostic=by disjunction of case
axiom_case_base_justification=by case base reasoning
axiom_case_good_or_bad_diagnostic=honestants or swindlecants
axiom_case_good_or_bad_justification=by disjonction of honestants and swindlecants
axiom_comb_comp_lt_diagnostic=composition
axiom_comb_comp_lt_justification=by composition of inclusions
axiom_combadd_diagnostic=addition
axiom_combadd_justification=by addition
axiom_combine_cmp_minus_diagnostic=subtraction
axiom_combine_cmp_minus_justification=by subtraction of inequalities
axiom_combine_cmp_plus_diagnostic=addition
axiom_combine_cmp_plus_justification=by addition of inequalities
axiom_combsub_diagnostic=subtraction
axiom_combsub_justification=by subtraction
axiom_commutativity_diagnostic=commutativity
axiom_commutativity_justification=by commutativity
axiom_conj_diagnostic=conjunction
axiom_conj_justification=by conjunction
axiom_deduce_not_color_diagnostic=binary color
axiom_deduce_not_color_justification=by binarity of colors
axiom_def_fbij_diagnostic=bijection
axiom_def_fbij_justification=by definition of a bijection
axiom_def_fcomp_diagnostic=composition of functions
axiom_def_fcomp_justification=by definition of function composition
axiom_def_finj_diagnostic=injection
axiom_def_finj_justification=by definition of an injection
axiom_def_finvol_diagnostic=involution
axiom_def_finvol_justification=by definition of an involution
axiom_def_fsurj_diagnostic=surjection
axiom_def_fsurj_justification=by definition of a surjection
axiom_def_rantisym_diagnostic=antisymmetric relation
axiom_def_rantisym_justification=by definition of an anti-symmetric relation
axiom_def_rcomp_diagnostic=composition of relations
axiom_def_rcomp_justification=by definition of composition of relations
axiom_def_rfun_diagnostic=functional relation
axiom_def_rfun_justification=by definition of a functional relation
axiom_def_rident_diagnostic=identity relation
axiom_def_rident_justification=by definition of the identity relation
axiom_def_rinj_diagnostic=injective relation
axiom_def_rinj_justification=by definition of an injective relation
axiom_def_rinv_diagnostic=inverse relation
axiom_def_rinv_justification=by definition of an inverse relation
axiom_def_rrefl_diagnostic=reflexive relation
axiom_def_rrefl_justification=by definition of a reflexive relation
axiom_def_rsurj_diagnostic=surjective relation
axiom_def_rsurj_justification=by definition of a surjective relation
axiom_def_rsym_diagnostic=symmetric relation
axiom_def_rsym_justification=by definition of a symmetric relation
axiom_def_rtotleft_diagnostic=left-total relation
axiom_def_rtotleft_justification=by definition of a left-total relation
axiom_def_rtrans_diagnostic=transitive relation
axiom_def_rtrans_justification=by definition of a transitive relation
axiom_elim_comp_diagnostic=inequality
axiom_elim_comp_justification=by definition of inequality
axiom_elim_conj_left_diagnostic=left deduction
axiom_elim_conj_left_justification=by left deduction
axiom_elim_conj_right_diagnostic=right deduction
axiom_elim_conj_right_justification=by right deduction
axiom_elim_eqfun_diagnostic=functional equality
axiom_elim_eqfun_justification=by definition of function equality
axiom_elim_eqset_diagnostic=set equality
axiom_elim_eqset_justification=by definition of set equality
axiom_elim_even_def_diagnostic=parity
axiom_elim_even_def_justification=by definition of parity
axiom_elim_false_exset_diagnostic=empty set
axiom_elim_false_exset_justification=by definition of the empty set
axiom_elim_gen_app_rel_diagnostic=relational membership
axiom_elim_gen_app_rel_justification=by relational membership
axiom_elim_has_finite_limit_decr_diagnostic=decreasing convergence
axiom_elim_has_finite_limit_decr_justification=by decreasing and reducing
axiom_elim_has_finite_limit_incr_diagnostic=increasing convergence
axiom_elim_has_finite_limit_incr_justification=by increasing et growing
axiom_elim_is_elem_universe_diagnostic=universe
axiom_elim_is_elem_universe_justification=by definition of the universe
axiom_elim_multiple_diagnostic=definition
axiom_elim_multiple_justification=by definition of divisibility
axiom_elim_negation_diagnostic=by definition
axiom_elim_negation_justification=by definition of negation
axiom_elim_pprod_diagnostic=cartesian product
axiom_elim_pprod_justification=by definition of cartesian product
axiom_elim_requiv_diagnostic=equivalence relation
axiom_elim_requiv_justification=by definition of an equivalence relation
axiom_elim_scomp_diagnostic=complement
axiom_elim_scomp_justification=by definition of the complement of a set
axiom_elim_sdiff_diagnostic=difference
axiom_elim_sdiff_justification=by definition of set difference
axiom_elim_sequiv_diagnostic=equivalence class
axiom_elim_sequiv_justification=by definition of an equivalence class
axiom_elim_set_lteq_diagnostic=set inclusion
axiom_elim_set_lteq_justification=by definition of set inclusion
axiom_elim_shas_lower_bound_diagnostic=lower bound
axiom_elim_shas_lower_bound_justification=by definition
axiom_elim_shas_upper_bound_diagnostic=upper bound
axiom_elim_shas_upper_bound_justification=by definition
axiom_elim_sinter_diagnostic=intersection
axiom_elim_sinter_justification=by definition of set intersection
axiom_elim_sis_decreasing_diagnostic=decrease
axiom_elim_sis_decreasing_justification=by definition
axiom_elim_sis_gt_zero_diagnostic=positive series
axiom_elim_sis_gt_zero_justification=by definition
axiom_elim_sis_increasing_diagnostic=increase
axiom_elim_sis_increasing_justification=by definition
axiom_elim_sis_lt_zero_diagnostic=suites négative
axiom_elim_sis_lt_zero_justification=by definition
axiom_elim_subset_diagnostic=power set
axiom_elim_subset_justification=by definition of power set
axiom_elim_sunion_diagnostic=set union
axiom_elim_sunion_justification=by definition of set union
axiom_elim_true_at_rank_diagnostic=definition of P
axiom_elim_true_at_rank_justification=by definition of {0}
axiom_eq_inverse_diagnostic=reverse
axiom_eq_inverse_justification=by changing to the reverse
axiom_eq_reverse_diagnostic=opposite
axiom_eq_reverse_justification=by taking the opposite
axiom_eq_symmetry_diagnostic=symmetry
axiom_eq_symmetry_justification=by symmetry of the equality relation
axiom_eq_trans_diagnostic=transitivity
axiom_eq_trans_justification=by transitivity of the equality relation
axiom_equiv_rtrans_diagnostic=inclusion-based formulation
axiom_equiv_rtrans_justification=by inclusion-based formulation of a transitive relation
axiom_ex_elim_diagnostic=by extraction
axiom_ex_elim_justification=by extraction of witness
axiom_ex_intro_diagnostic=by construction
axiom_ex_intro_justification=by construction
axiom_expand_diagnostic=expansion
axiom_expand_justification=by expanding
axiom_factorize_diagnostic=remarkable factorisation
axiom_factorize_justification=by factorising by {1}
axiom_falseall_diagnostic=ex falso quodlibet
axiom_falseall_justification=by deducing a contradiction
axiom_gen_factorize_diagnostic=factorisation
axiom_gen_factorize_justification=by factorising {0} by {1}
axiom_geo_def_diagnostic=definition
axiom_geo_def_justification=by definition of a geometric progression
axiom_geo_pro_diagnostic=functional expression
axiom_geo_pro_justification=by functional expression of a geometric progression
axiom_inclusionsimpl_diagnostic=simplify
axiom_inclusionsimpl_justification=by rewriting {1} as {0}
axiom_ind_basic_forall_diagnostic=induction
axiom_ind_basic_forall_justification=by induction
axiom_ind_init_diagnostic=induction from
axiom_ind_init_justification=by induction
axiom_ineq_sym_rew_diagnostic=symmetry
axiom_ineq_sym_rew_justification=by symmetrical rewriting
axiom_intro_false_diagnostic=non-contradiction
axiom_intro_false_justification=by the principle of non-contradiction
axiom_intro_or_left_diagnostic=par justification à gauche
axiom_intro_or_left_justification=par justification à gauche
axiom_intro_or_right_diagnostic=par justification à droite
axiom_intro_or_right_justification=par justification à droite
axiom_intro_sqrt_square_diagnostic=square root
axiom_intro_sqrt_square_justification=by simplifying the square root
axiom_limit_finite_diagnostic=finite limit
axiom_limit_finite_justification=by calculating a finite limit
axiom_limit_inf_diagnostic=+∞ limit
axiom_limit_inf_justification=by calculating the limit at + ∞
axiom_limit_neg_inf_diagnostic=-∞ limit
axiom_limit_neg_inf_justification=by calculating the limit at -∞
axiom_linearsimpl_diagnostic=simplification
axiom_linearsimpl_justification=by simplifying {0}
axiom_local_theo_justification=by local theorem {0}
axiom_lradd_bounded_diagnostic=addition
axiom_lradd_bounded_justification=by adding to left and right sides of {0}
axiom_lradd_diagnostic=addition
axiom_lradd_ineq_diagnostic=addition
axiom_lradd_ineq_justification=by adding to left and right sides of {0}
axiom_lradd_justification=by adding {0} to both sides
axiom_lradd_neq_diagnostic=addition
axiom_lradd_neq_justification=by adding to left and right sides of {0}
axiom_lrdiv_bounded_diagnostic=division
axiom_lrdiv_bounded_justification=by dividing left and right sides by {0}
axiom_lrdiv_diagnostic=division
axiom_lrdiv_ineq_diagnostic=division
axiom_lrdiv_ineq_justification=by dividing left and right sides by {0}
axiom_lrdiv_justification=by dividing both sides by {0}
axiom_lrdiv_neq_diagnostic=division
axiom_lrdiv_neq_justification=by dividing left and right sides of {0}
axiom_lrmul_bounded_diagnostic=multiplication
axiom_lrmul_bounded_justification=by multiplying left and right sides by {0}
axiom_lrmul_diagnostic=multiplication
axiom_lrmul_ineq_diagnostic=multiplication
axiom_lrmul_ineq_justification=by multiplying left and right sides by {0}
axiom_lrmul_justification=by multiplying both sides by {0}
axiom_lrmul_neq_diagnostic=multiplication
axiom_lrmul_neq_justification=by multiplying left and right sides by {0}
axiom_lrsub_bounded_diagnostic=subtraction
axiom_lrsub_bounded_justification=by subtracting left and right sides of {0}
axiom_lrsub_diagnostic=subtraction
axiom_lrsub_ineq_diagnostic=subtraction
axiom_lrsub_ineq_justification=by subtracting left and right sides of {0}
axiom_lrsub_justification=by subtracting {0} from both sides
axiom_lrsub_neq_diagnostic=subtraction
axiom_lrsub_neq_justification=by subtracting left and right sides of {0}
axiom_lt_next_int_diagnostic=next integer
axiom_lt_next_int_justification=by transition to the next integer
axiom_modus_ponens_diagnostic=modus ponens
axiom_modus_ponens_justification=by applying modus ponens
axiom_muldiv_diagnostic=multiplication and division
axiom_muldiv_justification=by multiplying and dividing by {1}
axiom_neq_symmetry_diagnostic=symétrie
axiom_neq_symmetry_justification=par symétrie de la relation d'inégalité
axiom_non_zero_gt_diagnostic=strictly greater than
axiom_non_zero_gt_justification=par supériorité stricte
axiom_non_zero_lt_diagnostic=strictly less than
axiom_non_zero_lt_justification=par infériorité stricte
axiom_polysquare_diagnostic=remarkable formulas
axiom_polysquare_justification=by identifying the perfect square {0}
axiom_proddecompl_diagnostic=decomposition
axiom_proddecompl_justification=by product decomposition
axiom_proddef_diagnostic=assocication
axiom_proddef_justification=by associativity of the product operator applied to {0}
axiom_prodinverse_diagnostic=reverse indexing
axiom_prodinverse_justification=by reverse indexing
axiom_prodlinear_diagnostic=associativity
axiom_prodlinear_justification=by associativity of the product operator applied to {0}
axiom_prodresult1_diagnostic=prodresult1
axiom_prodresult1_justification=prodresuult1
axiom_prodsimpl_diagnostic=prodsimpl
axiom_prodsimpl_justification=prodsimpl
axiom_produpshift_diagnostic=index shifting
axiom_produpshift_justification=by index shifting
axiom_reason_capacity_diagnostic=ability to reason
axiom_reason_capacity_justification=by hat wearer's ability to reason
axiom_red_true_at_rank_diagnostic=by definition
axiom_red_true_at_rank_justification=by definition of {0}
axiom_reducedenom_diagnostic=common denominator
axiom_reducedenom_justification=by reduction to a common denominator
axiom_rewriting_diagnostic=rewriting
axiom_rewriting_justification=by rewriting {0} as {1}
axiom_sandwich_diagnostic=sandwich
axiom_sandwich_justification=by the sandwich theorem
axiom_section_diagnostic=in a range
axiom_section_justification=demonstration
axiom_set_absorb_diagnostic=absorbtion
axiom_set_absorb_justification=by absorption
axiom_set_adabsurdum_diagnostic=ad absurdum
axiom_set_adabsurdum_justification=by involution of set complement
axiom_set_demorgan_diagnostic=De Morgan's laws
axiom_set_demorgan_justification=according to the laws of De Morgan
axiom_set_eq_symmetry_diagnostic=symmetry
axiom_set_eq_symmetry_justification=by symmetry of the equality relation
axiom_set_eq_trans_diagnostic=transitivity
axiom_set_eq_trans_justification=by transitivity of the equality relation
axiom_set_excluded_diagnostic=excluded middle
axiom_set_excluded_justification=by applying the excluded middle principle
axiom_set_inter_comb_diagnostic=intersection
axiom_set_inter_comb_justification=by intersection left and right
axiom_set_lteq_transitivity_diagnostic=transitivity
axiom_set_lteq_transitivity_justification=by transitivity of inclusion
axiom_set_neutral_diagnostic=identity element
axiom_set_neutral_justification=by property of the identity element
axiom_set_rewriting_diagnostic=rewriting
axiom_set_rewriting_justification=by rewriting {0} in {1}
axiom_set_union_comb_diagnostic=union
axiom_set_union_comb_justification=by union left and right
axiom_setassociative_diagnostic=associativity
axiom_setassociative_justification=by associativity
axiom_setcommutative_diagnostic=commutativity
axiom_setcommutative_justification=by commutativity
axiom_setdevelopp_diagnostic=expansion
axiom_setdevelopp_justification=by developping
axiom_setfactorize_diagnostic=factorisation
axiom_setfactorize_justification=by factorising
axiom_sigmadecompl_diagnostic=decomposition
axiom_sigmadecompl_justification=by decomposing sigma
axiom_sigmadef_diagnostic=definition
axiom_sigmadef_justification=by definition of the sigma function applied to {0}
axiom_sigmainverse_diagnostic=reverse
axiom_sigmainverse_justification=by reverse indexing
axiom_sigmalinear_diagnostic=linearity
axiom_sigmalinear_justification=by linearity of the sigma function applied to {0}
axiom_sigmaresult1_diagnostic=first integers
axiom_sigmaresult1_justification=by sum of the first integers
axiom_sigmaresult2_diagnostic=first squares
axiom_sigmaresult2_justification=by the sum of the first square roots
axiom_sigmaresult3_diagnostic=first powers
axiom_sigmaresult3_justification=by sum of the first powers
axiom_sigmasimpl_diagnostic=count
axiom_sigmasimpl_justification=by definition of the sigma function
axiom_sigmaupshift_diagnostic=index shifting
axiom_sigmaupshift_justification=by the difference of the indices
axiom_slim_def_elim_diagnostic=limit
axiom_slim_def_elim_justification=by definition of limit
axiom_slim_inf_def_elim_diagnostic=infinite limit
axiom_slim_inf_def_elim_justification=by definition of an infinite limit
axiom_slimfinite_inf_elim_diagnostic=infinite limit
axiom_slimfinite_inf_elim_justification=
axiom_square_diff_diagnostic=remarkable formula
axiom_square_diff_justification=by factorising the difference of two squares
axiom_subadd_diagnostic=subtraction and addition
axiom_subadd_justification=by subtracting and adding {1} to {0}
axiom_trans_lt_gt_diagnostic=transitivity
axiom_trans_lt_gt_justification=by transitivity
axiom_updownsimpl_diagnostic=simplification up and down
axiom_updownsimpl_justification=by simplification up and down
axiom_varchange_diagnostic=change of variables
axiom_varchange_justification=by rewriting {0} in {1}
basic_A=A
basic_BeMarried=to be married
basic_BeMarried_neg=to not be married
basic_BeScottish=to be Scottish
basic_BeScottish_neg=to not be Scottish
basic_BlackHat=black
basic_ExprGT={0} > {1}
basic_ExprGTEQ={0} ≥ {1}
basic_ExprLT={0} < {1}
basic_ExprLTEQ={0} ≤ {1}
basic_FBij={0} is a bijection
basic_FComp={0} ∘ {1}
basic_FFInj={1} is an injection on [ 0 ... {0} ]
basic_FFMono={1} is strictly monotonic on [ 0 ... {0} ]
basic_FInj={0} is an injection
basic_FInj_neg={0} is not an injection
basic_FInvolution={0} is an involution
basic_FSurj={0} is a surjection
basic_FSurj_neg={0} is not a surjection
basic_False=contradiction
basic_False_sci=false
basic_FindX=Find the value of x.
basic_FindY=Find the value of y.
basic_GoOutSundays=to go out on Sundays
basic_GoOutSundays_neg=to not go out on Sundays
basic_GoToMatch=to go to a football match tomorrow
basic_GoToMatch_neg=to not go to the match tomorrow
basic_GoToTraining=to go to training today
basic_GoToTraining_neg=to not go to training today
basic_O1FInj={0} is an injection
basic_O1FInj_neg={0} is not an injection
basic_O1FSurj={0} is a surjection
basic_O1FSurj_neg={0} is not a surjection
basic_OldYoungUtterance=Who is the oldest and who is the youngest?
basic_Oldest={0} is the oldest
basic_Oldest_neg={0} is not the oldest
basic_PropDependentN=proposition depending on n
basic_RAntiSym={2} is an antisymmetric relation
basic_RComp={6} . {7}
basic_REquiv={2} is an equivalence relation
basic_RFun={4} is a functional relation
basic_RIRRefl={2} is an irreflexive relation
basic_RInj={4} is an injective relation
basic_RInv={4} ⁻¹
basic_RRefl={2} is a relflexive relation
basic_RSurj={4} is a surjective relation
basic_RSym={2} is a symmetric relation
basic_RTot={4} is a total relation
basic_RTotLeft={4} is a left-total relation
basic_RTrans={2} is a transitive relation
basic_ScottishUtterance=Rules are so strict that no one can be accepted in the club.
basic_Set=ensemble
basic_ToBeHuman=to be human
basic_ToBeHuman_neg=is not human
basic_ToBeMortal=to be mortal
basic_ToBeMortal_neg=is not mortal
basic_ToBeSocrate=to be Socrates
basic_ToBeSocrate_neg=is not Socrate
basic_WearAKilt=to wear a kilt
basic_WearAKilt_neg=does not wear a kilt
basic_WearRedSocks=to wear red socks
basic_WearRedSocks_neg=does not wear red socks
basic_WhiteHat=white
basic_Youngest={0} is the youngest
basic_Youngest_neg={0} is not the youngest
basic_addition=by adding {0}
basic_and=and
basic_and_sci=∧
basic_app_fun_exset={2} ( {3} )
basic_app_prop={1} ( {2} )
basic_app_prop2={1} ( {2} , {3} )
basic_app_prop2_sci={1} ( {2} , {3} )
basic_app_prop_sci={1} ( {2} )
basic_app_rel={1} {0} {2}
basic_app_rel_sci={1} {0} {2}
basic_are_collinear={0} are collinear
basic_are_collinear_neg={0} are not collinear
basic_are_parallel={0} and {1} are parallel
basic_are_parallel_neg={0} and {1} are not parallel
basic_arith_elim=by definition of an arithmetic sequence
basic_case=case {0} : {1}
basic_demonstrate_lim=Prove that {0} has a limit of {1}
basic_determine=Determine {0}
basic_determine_lim=Determine the limit of {0}
basic_determine_reason=Determine the common difference of the series {0}
basic_determine_value=Determine the value of {0}
basic_development=by expansion
basic_division=dividing by {0}
basic_division_and_multiplication=dividing and multiplying by {0}
basic_elim_is_solution_equiv=by definition
basic_elim_limit_expr_b=by definition of a left or right limit
basic_elim_rewrite_equiv=by rewriting
basic_eq_symmetry_equiv=by symmetry of the equality relation
basic_equation=the equation {1}
basic_equation_systeq=the equation system {1}
basic_equiv={0} {math:⇔} {1}
basic_equiv1={0} {math:⇔} {1}
basic_equiv1_sci={0} {math: ⇔} {1}
basic_equiv_sci={0} {math:⇔} {1}
basic_expansion=by expanding
basic_expansion_of_power=by definition of powers
basic_expr_is_defined_on={1} is defined on {2}
basic_expr_is_defined_on_neg={0} is not defined on {1}
basic_factorization=by factorising
basic_findLimitExpr=determine the limit value {1} such that {2}
basic_find_asymptot={find} the asymptotic behavior of {2} at {3}
basic_find_expr={find} the value of {0} {justTags}
basic_find_limit={find} the limit of {2} as x approaches {3} {justTags}
basic_find_limit_type={find} the behavior of {4} at infinity
basic_find_series_type={find} the type of series {0}
basic_floor_id=Floor
basic_fun_has_finite_limit={4} is convergent
basic_fun_has_lower_bound={4} is bounded below
basic_fun_has_upper_bound={4} is bounded above
basic_fun_is_bounded={4} is limited
basic_fun_is_constant={4} is constant
basic_fun_is_decreasing={4} is decreasing
basic_fun_is_decreasing_neg={4} is not decreasing
basic_fun_is_defined_on={4} is defined on {5}
basic_fun_is_gt_zero={4} is strictly positive
basic_fun_is_increasing={4} is increasing
basic_fun_is_increasing_neg={4} is not increasing
basic_fun_is_lt_zero={4} is negative
basic_gen_app_rel={5} {4} {6}
basic_gen_app_rel_sci={5} {4} {6}
basic_geoconstr=by construction of {0}
basic_id={0}
basic_imply=implies
basic_imply_sci={math:⇒}
basic_ind_basic_evar_0=Rank of initialisation
basic_is_a_neighborhood={1} is a neighborhood of {2}
basic_is_add_increasing=Addition is increasing for relation '{0}'
basic_is_aware={0} knows that {1}
basic_is_aware_neg={0} does not know that {1}
basic_is_bad={0} is a swindlecant
basic_is_big_enough={0} is big
basic_is_crossed=the quadrilateral {0} is intersected
basic_is_crossed_neg=quadrilateral {0} is not crossed
basic_is_defined_on={0} is defined on {1}
basic_is_definition_set={0} is the set of definitions of {1}
basic_is_element={1} {math:∊} {2}
basic_is_element_dom={0} {math:∊} {1}
basic_is_element_neg={1} does not belong to {2}
basic_is_element_sci={1} {math:∊} {2}
basic_is_element_sci_neg={1} {math:∉} {2}
basic_is_even={0} is even
basic_is_good={0} is an honestant
basic_is_in_neighbourhood_of={0} is in the neighborhood of {1}
basic_is_integer={0} is an integer
basic_is_lci={0} is a binary operation on {1}
basic_is_lci_neg={0} is not a binary operation on {1}
basic_is_middle_segment={0} is the midpoint of the segment {1}
basic_is_middle_segment_neg={0} is not the midpoint of the segment {1}
basic_is_monotonic_on={1} is decreasing on {2}
basic_is_multiple_of={0} is divisible by {1}
basic_is_multiple_of_neg={0} is not divisible by {1}
basic_is_odd={0} is odd
basic_is_parallelogram={0} is a parallelogram
basic_is_parallelogram_neg={0} is not a parallelogram
basic_is_partition={1} is a partition of {0}
basic_is_polynom={1} is a polynomial
basic_is_projected_on={0} is the orthogonal projection of {1} on {2}
basic_is_reflexive=Relation '{0}' is reflexive
basic_is_restriction={5} is the restriction of {6} to {2}
basic_is_solution={0} is the set of solutions of {1}
basic_is_solution_neg={0} is not the solution of {1}
basic_is_symmetric={0} is the symmetric of {2} with respect to {1}
basic_is_transitive=Relation '{0}' is transitive
basic_isolate=Isolate {0}
basic_knows_hatcolor={0} knows the colour of their hat
basic_knows_hatcolor_neg={0} does not know the colour of their hat
basic_le=≤
basic_lor_elim=sufficient hypothesis
basic_multiplication_and_division=by multiplying and dividing by {0}
basic_nats={0} with {1}
basic_neighborset={1}
basic_not=not
basic_not_sci=¬
basic_oldyoung=oldest and youngest
basic_or=or
basic_or_sci=∨
basic_pis_element={2} belongs to {3}
basic_pis_element_neg={1} does not belong to {2}
basic_pis_element_sci={2} {math:∊} {3}
basic_pis_element_sci_neg={1} {math:∉} {2}
basic_proddecompr=by decomposition
basic_proddownshift=by index shifting
basic_pset3={0} {1} and {2}
basic_rel_is_defined_on={0} is defined on {1}
basic_rel_is_defined_on_neg={0} is not defined on {1}
basic_rel_le=≤
basic_resolve=Resolve {0}
basic_rewrite_in={1} is rewritten {2} in {0}
basic_ror_elim=Sufficient hypothesis
basic_say={0} says that {1}
basic_set_lt={0} ⊂ {1}
basic_set_lteq={1} ⊆ {2}
basic_shas_finite_limit={0} is convergent
basic_shas_limit={0} has a limit of {1}
basic_shas_limit_neg={0} does not have a limit of {1}
basic_sigmadecompr=by decomposing sigma
basic_sigmadownshift=by the difference of the indices
basic_sis_arith={0} is arithmetic
basic_sis_arith_neg={0} is not arithmetic
basic_sis_arith_reason={2} is arithmetic for reason {3}
basic_sis_arith_reason_neg={2} is not arithmetic because of {3}
basic_sis_caracterized=Is the series {0} arithmetic or geometric?
basic_sis_element={0} {math:∊} {1}
basic_sis_element_neg={0} {math:∉} {1}
basic_sis_element_sci={0} {math:∊} {1}
basic_sis_element_sci_neg={0} {math:∉} {0}
basic_sis_geo={0} is a geometric series
basic_sis_geo_neg={0} is not a geometric series
basic_sis_geo_reason={2} is geometric with common ratio {3}
basic_sis_geo_reason_neg={2} is not a geometric series because with common ratio {3}
basic_subtraction=by subtracting {0}
basic_subtraction_and_addition=by subtracting or adding {0}
basic_triv_div_lr=by dividing the two members by {0}
basic_true_at_rank={0} is true at rank {1}
basic_true_at_rank_neg={0} is false on rank {1}
basic_true_at_rank_sci={0} ( {1} )
basic_true_at_rank_sci_neg=¬ {0} ( {1} )
basic_uprod={0}×{1}
basic_wears_hat={0} wears a hat {1}
basic_wears_hat_neg={0} does not wear a {1} hat
help_part_content=Content
help_part_paper=Digital paper
help_section_browsing=Navigation
help_section_commutativity=Commutativity
help_section_evar=Reasoning variable
help_section_exercises=Exercises
help_section_proof=Proof
help_section_selection=Selection
help_section_trophy=Cockades
help_section_unification=Unifications
key_Product=Product
key_access_content=Content
key_access_date=Date
key_access_role=Role
key_access_role_ref=Admin
key_access_role_user=Student
key_account=My account
key_add=Add
key_add_exercise_message=Type exercise utterance ...
key_add_exercise_title=Request new exercise
key_and=and
key_apply=Apply
key_ask_hint_button=Hint
key_assume=Assume
key_back_connection_panel=To get back to previous screen,
key_browsing_train=Exercises
key_by=according to {0}
key_cancel=Cancel
key_catchme=Catch me
key_change_password=Change password
key_chapters=Chapters
key_character_not_available=character not available
key_check_box=Check box
key_check_cgu=GTU
key_check_text_cgu=Accept
key_class=Class
key_class_default_message=No class found.
key_click_here=click here
key_clickme=Click here
key_clickme_fix=Fix it and click here to validate
key_clickme_valid=Click here to validate
key_commuteme=Obtain below the following value:
key_conclusion=Conclusion
key_confirm_delete_tab_message=Delete scope ?
key_confirm_delete_tab_message_yes=Yes
key_confirm_password=Confirm password
key_confirm_quit_exercise=Give up exercise?
key_congrats=Well done, the exercise is proved!
key_connection=Connection
key_construct=Construct
key_context=Context
key_create_account=Create account
key_create_account_connect=Create account / login
key_credits=tokens
key_credits_content_message=Buy application content directly.
key_credits_content_title=Content
key_credits_pack_message=Unlock content in the application with tokens.
key_credits_pack_pack1_title=Discovery
key_credits_pack_pack2_title=Training
key_credits_pack_pack3_title=Ultimate
key_credits_pack_title=Credits
key_deduce=Deduce
key_deduce_in=Deduce in
key_deduce_of=Deduction from
key_deduce_scope=Deduce in this scope
key_delete=Delete
key_delete_account=Delete account
key_delete_account_message=A deletion link has been sent to your email address
key_delete_message=To delete the account, type 'DELETE' in the text field below and click the OK button.
key_delete_word=DELETE
key_deleted_account={0} account has been deleted.
key_demonstrate=Prove:
key_description_back=<div>Justify statement <!--{type="tag" input="{statementId}"}--> with the rule : <!--{type="axiom_api" input="{axiomId}"}--></div>
key_description_backsel=<div>Justify statement <!--{type="tag" input="{statementId}"}--> with the rule : <!--{type="axiom_api" input="{axiomId}"}--></div>
key_description_delete=<div>Delete statement <!--{type="tag" input="{statementId}"}--></div>
key_description_deleteby=<div>Delete justification of statement <!--{type="tag" input="{statementId}"}--></div>
key_description_for=<div>Deduce from <!--{type="tag" input="{statementId}"}--> with <!--{type="axiom_api" input="{axiomId}"}--></div>
key_description_forsel=<div>Deduce from <!--{type="tag" input="{statementId}"}--> with <!--{type="axiom_api" input="{axiomId}"}--></div>
key_description_inst=Assign value <!--{type="expr" input="{actTypArg2}"}--> to <!--{type="paper_evar" input="{actTypArg}"}--></div>
key_description_section=Open scope for statement <!--{type="tag" input="{statementId}"}-->
key_description_success=<div>Congrats, exercise solved!</div>
key_description_unif=Unify statements <!--{type="tag" input="{actTypArg}"}--> and <!--{type="tag" input="{statementId}"}-->
key_diagnostic_no_diag=The entries in this chapter are not yet available.
key_disconnect=Disconnect
key_draggable_title=Move titles
key_dragme=Drag here
key_email=Email
key_email_not_authorized=email not authorized
key_email_not_found=email not found
key_email_not_valid=email not valid
key_email_not_verif=email not verified
key_email_unknown=email unknown
key_email_used=email used
key_email_valid=email valid
key_empty_field=empty field
key_empty_suggest=Nothing available for this action
key_error_paper_subtitle=Not found
key_error_paper_title=cannot retrieve this paper
key_exercise=Exercise
key_exercises=Exercises
key_fill_evar=Value of
key_find=Find
key_firstname=Firstname
key_focus_text=Context
key_follow_us=News
key_forbid_mobile=The application is not available on mobile
key_forgot_password=Forgot password ?
key_geo_figure=Geometrical figure
key_get_credits=Get credits
key_goal=Goal
key_got_it=Got it.
key_graph=Graph
key_group_popup_button=Add
key_group_popup_input_default=access code
key_group_popup_title=Enter access code
key_help=Help
key_help_tooltip_chapter_icon_all=Indique la résolution ou non de tous les exercices du chapitre.
key_help_tooltip_chapter_icon_diag=Indique la résolution ou non de tous les exercices de type incontournable sur le chapitre.
key_help_tooltip_chapter_icon_tuto=Indique la résolution ou non de tous les exercices du didacticiel.
key_help_tooltip_chapter_icon_unavoidable=Indique la résolution ou non de tous les exercices de type incontournable sur le chapitre.
key_help_tooltip_clearall=clear all
key_help_tooltip_deduce=deduction diagnosis
key_help_tooltip_exercise_icon_diag=Exercice débloquant le mode diagnostic
key_help_tooltip_exercise_icon_difficulty_easy=Exercice de difficulté facile
key_help_tooltip_exercise_icon_difficulty_hard=Exercice de difficulté moyenne
key_help_tooltip_exercise_icon_difficulty_medium=Exercice de difficulté difficile
key_help_tooltip_exercise_icon_hint=Exercice prenant en charge des indications ou non.
key_help_tooltip_exercise_icon_unavoidable=Exercice de type incontournable ou non
key_help_tooltip_hint=hint
key_help_tooltip_justify=justification diagnosis
key_help_tooltip_lock_access_no=Not available
key_help_tooltip_lock_access_without_deadline=accessible
key_help_tooltip_print=print
key_help_tooltip_redo=redo
key_help_tooltip_section=Creation of scope
key_help_tooltip_undo=undo
key_help_tooltip_unify=unification
key_highlight_icon_backward=backward
key_highlight_icon_definition=definition
key_highlight_icon_forward=forward
key_highlight_icon_reduce=reduce
key_hint_message=Click the button below to display a hint
key_hintpopup_action=Action
key_hintpopup_actions=Actions
key_hintpopup_description=Description
key_hintpopup_preview=Preview
key_hintpopup_tab_desc=Description
key_hintpopup_tab_hint=Hint
key_home_credits_text=Number of tokens
key_home_dashboard_badges=Cockades
key_home_dashboard_exercises=Solved exercises
key_home_profile_text=Welcome, {firstname}
key_ice=An internal error occurred. Please reload.
key_id_connection=Connection
key_if=if
key_img_text_1=Mettre à jour
key_img_text_2=ma photo de profil
key_inputme=Enter the following value:
key_justify=Justify
key_justify_of=Justification of
key_language=Language
key_lastname=Lastname
key_legend=Legend:
key_levels=Levels
key_loading_message=Loading, please wait ...
key_local_theorem=Local theorem
key_login_with=Log in with:
key_main_scope=main scope
key_membership_alreadyadd=already added
key_membership_error=Error
key_membership_notfound=unknown code
key_membership_overused=quota reached
key_modify=Modify
key_nats={0} with {1}
key_need_help=Need help ?
key_new_exercise=New exercise
key_next=Next
key_no_email_message=email hidden, cannot log in.
key_not_yet_register=If you're not registered yet,
key_ok=OK
key_or=or
key_password=Password
key_password_confirmed=password confirmed
key_password_current=Current password
key_password_incorrect=password incorrect
key_password_new=New password
key_password_not_confirmed=password not confirmed
key_password_too_short=password is too short (at least 6 characters)
key_password_valid=password valid
key_password_with_digit=password must contained at least 1 digit
key_premises=Premises
key_preview=Preview
key_preview_deduce=Preview of deduction of
key_preview_justify=Preview of justification of
key_profile_informations=Profile information
key_proof_of=Proof of
key_propdeftag_def=the definition
key_propdeftag_prop=proposition
key_prove_text=Proof
key_prove_text_close=Proof ...
key_prove_text_open=Proof:
key_register=Register
key_registration=Registration
key_reinit=Reset
key_reinit_password=Enter your email address to reset your password.
key_reinit_password_message=A reset link has been sent to your email address.
key_report_input_default=Give feedback or ask for help
key_report_label=Send us a message
key_report_label_email=Your email address:
key_report_message_sent=Message sent !
key_report_modify_message=Edit message
key_report_next=Next
key_report_placeholder_email=Email address
key_report_recontact=We will get back to you.
key_report_send=Send
key_require_message=To access this chapter, get the cockade 'tutorial' of chapters below:
key_require_message_exercise=To access this exercise, get the cockade 'tutorial' of chapters below:
key_require_message_part=Get 'tutorial' cockades for access to chapters below
key_required=Prerequisites
key_save=Save
key_scroll_down=Scroll down
key_scroll_up=Scroll up
key_segments=Segments
key_selectme=Select the value above
key_send=Send
key_social_login=<div class="{0}"> <a target="_blank" href="http://en.wikipedia.org/wiki/Social_login" class="{1}">social login</a> is the easiest and safest way to sign-in and login. Nothing will be published on your "wall". </div> <div class="{2}">By clicking on one of the buttons, you are accepting <a target="_blank" href="{3}" class="{4}">our conditions of use and our confidentiality policy</a>. </div>
key_sorry_whitelist=The application is not available. If you with to sign up, please send an email to: contact@edukera.com
key_start=Start
key_status_report=Report a problem
key_step_choice_axiom=<div class="instruction-item"><!--{type="hint_itemize"}--> In part <span class="hint-text"> <!--{type="label_toolbox" input="{TPartId}"}--></span> <!--{type="toolbox_button" input="{TPartId}"}--> access toolbox chapter by clicking on <!--{type="label_toolbox" input="{TChapterId}"}--> <!--{type="toolbox_button" input="{TChapterId}"}--> <!--{type="hint_check"}--></div>
key_step_choice_axiom_in_diag=<div class="instruction-item"> <!--{type="hint_itemize"}--> Select rule <!--{type="diag_axiom" input="{axiomId}"}--> in section <!--{type="diag_axiom_part" input="{TSectionId}"}--> <!--{type="hint_check"}--></div>
key_step_choice_question_tab=<div class="instruction-item"> <!--{type="hint_itemize"}--> Select tab <!--{type="question_tab" input="{tabQuestionValue}"}--> <!--{type="hint_check"}--></div>
key_step_choice_tab_index_in_diag=<div class="instruction-item"> <!--{type="hint_itemize"}--> Click on tab <!--{type="diag_tab" input="{actIdx}"}--> <!--{type="hint_check"}--></div>
key_step_click_apply=<div class="instruction-item"> <!--{type="hint_itemize"}--> Click on <!--{type="button_apply"}--> in 'preview section'. <!--{type="hint_check"}--></div>
key_step_click_deduce=<div class="instruction-item"> <!--{type="hint_itemize"}--> Click on <!--{type="button_deduce"}--> of <!--{type="propdeftag" input="{statementId}"}--> <!--{type="tag" input="{statementId}"}--> to display diagnostic window. <!--{type="hint_check"}--></div>
key_step_click_justify=<div class="instruction-item"> <!--{type="hint_itemize"}--> Click on <!--{type="button_justify"}--> of statement <!--{type="tag" input="{statementId}"}--> to diaply diagnostic window. <!--{type="hint_check"}--></div>
key_step_delete=<div class="instruction-item"> <!--{type="hint_itemize"}--> Delete statement <!--{type="tag" input="{statementId}"}--> <!--{type="hint_check"}--></div>
key_step_deleteby=<div class="instruction-item"> <!--{type="hint_itemize"}--> Delete justification of statement <!--{type="tag" input="{statementId}"}--> <!--{type="hint_check"}--></div>
key_step_drag=<div class="instruction-item"> <!--{type="hint_itemize"}--> Drag rule <!--{type="toolbox_item" readonly="true" input="{axiomId}"}--> from section <!--{type="label_toolbox" class="toolbox-section-title-content" input="{TSectionId}"}-->. <!--{type="hint_check"}--></div>
key_step_drop=<div class="instruction-item"> <!--{type="hint_itemize"}--> Drop it on statement <!--{type="propdeftag" input="{statementId}"}--> <!--{type="tag" input="{statementId}"}--> <!--{type="hint_check"}--></div>
key_step_enter_expr_in_diag=<div class="instruction-item"> <!--{type="hint_itemize"}--> Enter value <!--{type="expr" statement="{statementId}" input="{actArgItemSecond}"}--> with virutal keyboard for proof variable <!--{type="evar" input="{evarId}"}--> <!--{type="hint_check"}--></div>
key_step_inst=<div class="instruction-item"> <!--{type="hint_itemize"}--> Enter value <!--{type="expr" input="{actTypArg2}"}--> for <!--{type="paper_evar" input="{actTypArg}"}--> <!--{type="hint_check"}--></div>
key_step_open_toolbox=<div class="instruction-item"> <!--{type="hint_itemize"}--> Open toolbox by clicking on <!--{type="toolbox_header_button"}--> <!--{type="hint_check"}--></div>
key_step_section=<div class="instruction-item"> <!--{type="hint_itemize"}--> Click on <!--{type="button_section"}--> of statement <!--{type="tag" input="{statementId}"}--> <!--{type="hint_check"}--></div>
key_step_selection=<div class="instruction-item"> <!--{type="hint_itemize"}--> Select, in statement <!--{type="tag" input="{statementId}"}-->, the term hilighted in blue below : <br> <div> <!--{type="prop" statement="{statementId}" input="{selectionProp}"}--> <!--{type="hint_check"}--> </div></div>
key_step_unification=<div class="instruction-item"> <!--{type="hint_itemize"}--> Click on <!--{type="button_unify" input="{actTypArg}"}--> of statement <!--{type="tag" input="{statementId}"}--> <!--{type="hint_check"}--></div>
key_step_unify_in_diag=<div class="instruction-item"> <!--{type="hint_itemize"}--> Click on <!--{type="button_unify" input="{actUnifItem}"}--> <!--{type="hint_check"}--></div>
key_sub_subscription_sentence=Thank you ! A confirmation link has been sent to your email address.
key_success_trophy_message=Congratulations, you just get the cockade {trophyId}, for chapter {chapterId}
key_success_trophy_title=Cockade {trophyId}
key_task_justify_label=Justify
key_then=then
key_to_justify=to justify
key_toolbox_error_message=This rule does not apply to this statement.
key_tooltip_axiom_close=hide formula
key_tooltip_axiom_open=display formula
key_tooltip_context_close=display context
key_tooltip_context_open=hide context
key_tooltip_section_close=hide scope
key_tooltip_section_open=display scope
key_trophy_diagnostic=diagnosis
key_trophy_exercises=Fiscal Year 2010
key_trophy_tutorial=tutorial
key_trophy_unavoidable=unavoidable
key_tutorial=Tutorial
key_uid=ID
key_unlock=Unlock
key_update_browser=You are currently using {browser} in version {current_version}. This version is not compatible with edukera application. Please, update or change your browser.
key_usage=Usage
key_utterance=Utterance
key_validate=Validate
key_with=with
key_without_hint=No hint for this exercise.
key_yes=Yes
pager_account=My account
pager_adabusrdum=Ad absurdum
pager_algebra=Algebra
pager_algebra_structures=Structures algébriques
pager_algebra_structures_01=
pager_analysis=Analysis
pager_analysis_induction=Induction
pager_analysis_limits=Limits
pager_analysis_series=Series
pager_analysis_series_05=
pager_badges=Cockades
pager_classical=Classical
pager_comb=Systems of equations
pager_commutativity=Commutativity
pager_credits=Credits
pager_dashboard=Dashboard
pager_demo_bernoulli_1=Bernoulli inequality 1
pager_demo_bernoulli_2=Bernoulli inequality 2
pager_demo_medium_ex_02=Divisibility
pager_demo_seg=Calculus
pager_demo_tuto_app=Applications
pager_demo_tuto_comb=Combinations
pager_demo_tuto_first=Left and right operations
pager_demo_tuto_fun=Definitions
pager_demo_tuto_neq=Inequality
pager_demo_tuto_rel=Transitivity
pager_demo_tuto_serie=Limit of 1/n
pager_demo_tuto_sigma=The sum of the first n integers
pager_demorgan=De Morgan
pager_easy=Easy
pager_enigma=Enigmas
pager_eq_seg=Equality
pager_eqothers=Mixtures
pager_existence=Existence
pager_expansion=Distributivity
pager_finj=Injectivity
pager_funpigeon=Pigeonhole principle
pager_funsurj=Surjectivity
pager_good_bad=Truths and lies
pager_hard=Hard
pager_ind_bernouilli=Inequalities
pager_ind_divis=Divisibility
pager_ind_sum=Calculations of sum
pager_ineq_ex_15=Operations
pager_ineq_ex_20=Combinations
pager_ineq_ex_22=Double inequality
pager_ineq_ex_24=Applications
pager_ineq_ex_25=Relation
pager_ineq_seg=Inequality
pager_ineq_system=Systems of inequalities
pager_ineqs=Inequalities
pager_limits_finite=Limits of functions at a finite point
pager_limits_inf=Functions limit at infinity
pager_limits_prop=Properties by definition
pager_limits_series=eries limits
pager_logic=Logic
pager_logic_connector=Connectors
pager_logic_connector_abs_peirce=Peirce's law by reduction ad absurdium
pager_logic_connector_associativity=Associativities
pager_logic_connector_classical=Classical logic
pager_logic_connector_constructivism=Constructivist logic
pager_logic_connector_deMorgan_laws=De Morgan's laws
pager_logic_connector_distributivity=Distributive properties
pager_logic_connector_ex_easy_01=Distributivity of disjunction
pager_logic_connector_ex_easy_02=Distributivity of the conjunction
pager_logic_connector_ex_easy_06=The universe of integers 1/2
pager_logic_connector_ex_easy_08=The syllogism
pager_logic_connector_ex_easy_12=De Morgan's laws 3/3
pager_logic_connector_ex_easy_13=De Morgan's laws 1/3
pager_logic_connector_ex_easy_14=Associativity of conjunction
pager_logic_connector_ex_easy_16=Contraposition 1/2
pager_logic_connector_ex_easy_17=Contraposition 2/2
pager_logic_connector_ex_easy_27=Associativity of disjunction
pager_logic_connector_ex_easy_31=Ad absurdium reasoning
pager_logic_connector_ex_easy_32=De Morgan’s laws 2/3
pager_logic_connector_ex_easy_33=Distributivity of disjunction
pager_logic_connector_ex_easy_34=Distributivity of conjunction
pager_logic_connector_negation=Negations
pager_logic_connector_peirce_abs_te=reduction ad absurdium by Peirce's law
pager_logic_connector_peirce_law=Peirce's law
pager_logic_connector_reasoning=Reasonings
pager_logic_connector_training=Basics
pager_logic_connector_tuto_01=To deduce from a conjunction
pager_logic_connector_tuto_02=To prove a conjunction
pager_logic_connector_tuto_03=To Prove a disjunction
pager_logic_connector_tuto_04=Case base reasoning
pager_logic_connector_tuto_06=To prove an implication
pager_logic_connector_tuto_07=To deduce from an implication
pager_logic_connector_tuto_08=To prove a negation
pager_logic_connector_tuto_085=To deduce from a negation
pager_logic_connector_tuto_09=Ex False quodlibet
pager_logic_connector_tuto_10=Excluded middle
pager_logic_function=Functions
pager_logic_quantifer_tuto_2=The universe of integers 2/2
pager_logic_quantifier=Quantifiers
pager_logic_quantifier_21=The Scottish Club
pager_logic_quantifier_ex_01=Distributivity of union
pager_logic_quantifier_ex_02=Distributivity of intersection
pager_logic_quantifier_ex_03=De Morgan Law 1/2
pager_logic_quantifier_ex_04=De Morgan law 2/2
pager_logic_quantifier_ex_05=Power set
pager_logic_quantifier_ex_06=Distributivity of the cartesian product
pager_logic_quantifier_ex_07=Existential distributivity
pager_logic_quantifier_ex_easy_08=De Morgan law 2/2
pager_logic_quantifier_ex_easy_09=De Morgan law 1/2
pager_logic_quantifier_ex_le_01=Is less than
pager_logic_quantifier_ex_le_02=Is less than (2)
pager_logic_quantifier_ex_le_03=Is less than (3)
pager_logic_quantifier_ex_le_04=Honestants and Swindlecants 1/4
pager_logic_quantifier_ex_le_05=Honestants and Swindlecants 2/4
pager_logic_quantifier_ex_le_06=Honestants and Swindlecants 3/4
pager_logic_quantifier_ex_le_07=Honestants and Swindlecants 4/4
pager_logic_quantifier_ex_le_08=Inverse, Injection
pager_logic_quantifier_ex_le_10=Total relations
pager_logic_quantifier_ex_le_13=The Pigeonhole Principle 1/2
pager_logic_quantifier_ex_le_14=The Pigeonhole Principle 2/2
pager_logic_quantifier_ex_le_15=Binary relations
pager_logic_quantifier_ex_le_37=Distributivity of the cartesian product
pager_logic_quantifier_ex_le_40=Function, injection
pager_logic_quantifier_ex_le_41=Surjection function
pager_logic_quantifier_ex_le_42=Involution, bijection
pager_logic_quantifier_ex_le_43=Composition
pager_logic_quantifier_ex_le_48=Law of excluded middle by ad absurdium reasoning
pager_logic_quantifier_ex_le_52=Symmetry of equality
pager_logic_quantifier_ex_le_53=Transitivity of equality
pager_logic_quantifier_ex_le_54=Transitivity of inclusion
pager_logic_quantifier_ex_le_67=Intersection of equalities
pager_logic_quantifier_ex_le_68=Union of equalities
pager_logic_quantifier_ex_le_69=Intersection of inclusions
pager_logic_quantifier_ex_le_70=Union of inclusions
pager_logic_quantifier_ex_le_71=Ms. Confuse
pager_logic_quantifier_ex_le_72=Three hats enigma
pager_logic_quantifier_tuto_01=To prove an existence
pager_logic_quantifier_tuto_02=To deduce an existence
pager_logic_quantifier_tuto_03=To prove a theorem
pager_logic_quantifier_tuto_04=To deduce from a theorem
pager_logic_relation=Relations
pager_logic_relation_tuto_01=Graph of a relation
pager_logic_relation_tuto_04=Equivalence
pager_logic_relation_tuto_05=Composition
pager_logic_set_rewrite_01=Rewriting
pager_logic_set_rewrite_03=Associativity
pager_logic_set_rewrite_04=Commutativity
pager_logic_set_rewrite_05=Simplification
pager_logic_set_rewrite_06=Development / Factoring
pager_logic_set_rewrite_08=Symmetry of equality
pager_logic_set_rewrite_09=Transitivity of equality
pager_logic_set_rewrite_10=Transitivity of inclusion
pager_logic_set_rewrite_11=Combinations
pager_logic_settheory_tuto_01=Intersection
pager_logic_settheory_tuto_02=Union
pager_logic_settheory_tuto_03=Difference
pager_logic_settheory_tuto_04=Complement
pager_logic_settheory_tuto_05=Inclusion