forked from schani/metapixel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwavelet.c
248 lines (207 loc) · 7.01 KB
/
wavelet.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
* wavelet.c
*
* metapixel
*
* Copyright (C) 1997-2004 Mark Probst
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include "api.h"
static float index_weights[NUM_WAVELET_INDEXES];
static index_t weight_ordered_index_to_index[NUM_WAVELET_INDEXES];
static index_t index_to_weight_ordered_index[NUM_WAVELET_INDEXES];
static int
compute_index (int real_index, int channel, int sign)
{
return real_index + (channel + (sign > 0 ? 1 : 0) * NUM_CHANNELS) * WAVELET_IMAGE_PIXELS;
}
static void
uncompute_index (int index, int *real_index, int *channel, int *sign)
{
*real_index = index % (WAVELET_IMAGE_PIXELS);
*channel = (index / WAVELET_IMAGE_PIXELS) % NUM_CHANNELS;
*sign = (index / (NUM_CHANNELS * WAVELET_IMAGE_PIXELS)) ? 1 : -1;
}
static float
weight_function (int index)
{
static float weight_table[NUM_CHANNELS][6] =
{
{ 5.00, 0.83, 1.01, 0.52, 0.47, 0.30 },
{ 19.21, 1.26, 0.44, 0.53, 0.28, 0.14 },
{ 34, 0.36, 0.45, 0.14, 0.18, 0.27 }
};
int real_index, channel, sign;
int i, j, bin;
uncompute_index(index, &real_index, &channel, &sign);
i = real_index % WAVELET_IMAGE_SIZE;
j = real_index / WAVELET_IMAGE_SIZE;
bin = MIN(MAX(i, j), 5);
return weight_table[channel][bin] * weight_factors[channel];
}
static void
compute_index_weights (void)
{
int i;
for (i = 0; i < NUM_WAVELET_INDEXES; ++i)
index_weights[i] = weight_function(i);
for (i = 0; i < NUM_WAVELET_INDEXES; ++i)
weight_ordered_index_to_index[i] = i;
qsort(weight_ordered_index_to_index, NUM_WAVELET_INDEXES, sizeof(index_t), compare_indexes_by_weight_descending);
for (i = 0; i < NUM_WAVELET_INDEXES; ++i)
index_to_weight_ordered_index[weight_ordered_index_to_index[i]] = i;
}
static void
decompose_row (float *row)
{
int h = WAVELET_IMAGE_SIZE, i;
float new_row[WAVELET_ROW_LENGTH];
for (i = 0; i < WAVELET_ROW_LENGTH; ++i)
row[i] = row[i] / SQRT_OF_WAVELET_IMAGE_SIZE;
while (h > 1)
{
h = h / 2;
for (i = 0; i < h; ++i)
{
int channel;
for (channel = 0; channel < NUM_CHANNELS; ++channel)
{
float val1 = row[channel + 2 * i * NUM_CHANNELS],
val2 = row[channel + (2 * i + 1) * NUM_CHANNELS];
new_row[channel + i * NUM_CHANNELS] = (val1 + val2) / SQRT_OF_TWO;
new_row[channel + (h + i) * NUM_CHANNELS] = (val1 - val2) / SQRT_OF_TWO;
}
}
memcpy(row, new_row, sizeof(float) * NUM_CHANNELS * h * 2);
}
}
static void
decompose_column (float *column)
{
int h = WAVELET_IMAGE_SIZE, i, channel;
float new_column[WAVELET_ROW_LENGTH];
for (i = 0; i < WAVELET_IMAGE_SIZE; ++i)
for (channel = 0; channel < NUM_CHANNELS; ++channel)
column[channel + i * WAVELET_ROW_LENGTH] =
column[channel + i * WAVELET_ROW_LENGTH] / SQRT_OF_WAVELET_IMAGE_SIZE;
while (h > 1)
{
h = h / 2;
for (i = 0; i < h; ++i)
{
for (channel = 0; channel < NUM_CHANNELS; ++channel)
{
float val1 = column[channel + (2 * i) * WAVELET_ROW_LENGTH],
val2 = column[channel + (2 * i + 1) * WAVELET_ROW_LENGTH];
new_column[channel + i * NUM_CHANNELS] = (val1 + val2) / SQRT_OF_TWO;
new_column[channel + (h + i) * NUM_CHANNELS] = (val1 - val2) / SQRT_OF_TWO;
}
}
for (i = 0; i < h * 2; ++i)
for (channel = 0; channel < NUM_CHANNELS; ++channel)
column[channel + i * WAVELET_ROW_LENGTH] = new_column[channel + i * NUM_CHANNELS];
}
}
void
wavelet_decompose_image (float *image)
{
int row;
for (row = 0; row < WAVELET_IMAGE_SIZE; ++row)
decompose_row(image + WAVELET_ROW_LENGTH * row);
for (row = 0; row < WAVELET_IMAGE_SIZE; ++row)
decompose_column(image + NUM_CHANNELS * row);
}
static int
compare_coeffs_with_index (const void *p1, const void *p2)
{
const coefficient_with_index_t *coeff1 = (const coefficient_with_index_t*)p1;
const coefficient_with_index_t *coeff2 = (const coefficient_with_index_t*)p2;
if (fabs(coeff1->coeff) < fabs(coeff2->coeff))
return 1;
else if (fabs(coeff1->coeff) == fabs(coeff2->coeff))
return 0;
return -1;
}
void
wavelet_find_highest_coeffs (float *image, coefficient_with_index_t highest_coeffs[NUM_COEFFS])
{
int index, channel;
for (channel = 0; channel < NUM_CHANNELS; ++channel)
{
for (index = 1; index < SIGNIFICANT_WAVELET_COEFFS + 1; ++index)
{
float coeff = image[channel + NUM_CHANNELS * index];
int sign = coeff > 0.0 ? 1 : -1;
highest_coeffs[index - 1 + channel * SIGNIFICANT_WAVELET_COEFFS].index = compute_index(index, channel, sign);
highest_coeffs[index - 1 + channel * SIGNIFICANT_WAVELET_COEFFS].coeff = coeff;
}
qsort(highest_coeffs + channel * SIGNIFICANT_WAVELET_COEFFS, SIGNIFICANT_WAVELET_COEFFS,
sizeof(coefficient_with_index_t), compare_coeffs_with_index);
}
for (index = SIGNIFICANT_COEFFS + 1; index < WAVELET_IMAGE_PIXELS; ++index)
{
for (channel = 0; channel < NUM_CHANNELS; ++channel)
{
float coeff = image[channel + NUM_CHANNELS * index];
if (fabs(coeff) > fabs(highest_coeffs[(channel + 1) * SIGNIFICANT_WAVELET_COEFFS - 1].coeff))
{
int significance;
int sign = coeff > 0.0 ? 1 : -1;
for (significance = (channel + 1) * SIGNIFICANT_WAVELET_COEFFS - 2;
significance >= channel * SIGNIFICANT_WAVELET_COEFFS;
--significance)
if (fabs(coeff) <= fabs(highest_coeffs[significance].coeff))
break;
++significance;
memmove(highest_coeffs + significance + 1,
highest_coeffs + significance,
sizeof(coefficient_with_index_t) * ((channel + 1) * SIGNIFICANT_WAVELET_COEFFS
- 1 - significance));
highest_coeffs[significance].index = compute_index(index, channel, sign);
highest_coeffs[significance].coeff = coeff;
}
}
}
}
static int
compare_indexes (const void *p1, const void *p2)
{
index_t *i1 = (index_t*)p1;
index_t *i2 = (index_t*)p2;
return *i1 - *i2;
}
void
wavelet_generate_coeffs (wavelet_coefficients_t *search_coeffs, float sums[NUM_WAVELET_COEFFS],
coefficient_with_index_t raw_coeffs[NUM_WAVELET_COEFFS])
{
int i;
float sum;
for (i = 0; i < NUM_WAVELET_COEFFS; ++i)
search_coeffs->coeffs[i] = index_to_weight_ordered_index[raw_coeffs[i].index];
qsort(search_coeffs->coeffs, NUM_WAVELET_COEFFS, sizeof(index_t), compare_indexes);
sum = 0.0;
for (i = NUM_WAVELET_COEFFS - 1; i >= 0; --i)
{
sum += index_weights[weight_ordered_index_to_index[search_coeffs->coeffs[i]]];
sums[i] = sum;
}
}
void
init_wavelet (void)
{
compute_index_weights();
}