diff --git a/R/bibentries.R b/R/bibentries.R index 7bf1ed35..0b72ceb2 100644 --- a/R/bibentries.R +++ b/R/bibentries.R @@ -13,13 +13,12 @@ cite = function(entry){ volume = "45", number = "1", pages = "5--32", - doi = "10.1023/A:1010933404324", + # doi = "10.1023/A:1010933404324", issn = "1573-0565" ), ishwaran_2008 = utils::bibentry( "article", - doi = "10.1214/08-aoas169", - url = "https://doi.org/10.1214/08-aoas169", + # doi = "10.1214/08-aoas169", year = "2008", month = "9", publisher = "Institute of Mathematical Statistics", @@ -31,7 +30,7 @@ cite = function(entry){ ), jaeger_2019 = utils::bibentry( "article", - doi = "10.1214/19-aoas1261", + # doi = "10.1214/19-aoas1261", year = "2019", month = "9", publisher = "Institute of Mathematical Statistics", @@ -46,7 +45,7 @@ cite = function(entry){ title = "Accelerated and interpretable oblique random survival forests", author = "Byron C. Jaeger and Sawyer Welden and Kristin Lenoir and Jaime L. Speiser and Matthew W. Segar and Ambarish Pandey and Nicholas M. Pajewski", journal = "Journal of Computational and Graphical Statistics", - doi = "10.1080/10618600.2023.2231048", + # doi = "10.1080/10618600.2023.2231048", year = "2023", month = "8", publisher = "Taylor & Francis", diff --git a/Rmd/orsf-fit-intro.Rmd b/Rmd/orsf-fit-intro.Rmd index 1d20ebe9..c10a536a 100644 --- a/Rmd/orsf-fit-intro.Rmd +++ b/Rmd/orsf-fit-intro.Rmd @@ -23,7 +23,7 @@ bill_fit ``` -My personal favorite is the oblique survival RF with accelerated Cox regression because it was the first type of oblique RF that `aorsf` provided (see [JCGS paper](https://doi.org/10.1080/10618600.2023.2231048)). Here, we use it to predict mortality risk following diagnosis of primary biliary cirrhosis: +My personal favorite is the oblique survival RF with accelerated Cox regression because it was the first type of oblique RF that `aorsf` provided (see [JCGS paper](https://www.tandfonline.com/doi/full/10.1080/10618600.2023.2231048)). Here, we use it to predict mortality risk following diagnosis of primary biliary cirrhosis: ```{r} # An oblique survival RF diff --git a/man/orsf.Rd b/man/orsf.Rd index 51de151a..9d08ae14 100644 --- a/man/orsf.Rd +++ b/man/orsf.Rd @@ -388,9 +388,9 @@ penguin_fit ## N trees: 5 ## N predictors total: 7 ## N predictors per node: 3 -## Average leaves per tree: 6 +## Average leaves per tree: 5.8 ## Min observations in leaf: 5 -## OOB stat value: 0.98 +## OOB stat value: 0.99 ## OOB stat type: AUC-ROC ## Variable importance: anova ## @@ -415,9 +415,9 @@ bill_fit ## N trees: 5 ## N predictors total: 7 ## N predictors per node: 3 -## Average leaves per tree: 49.4 +## Average leaves per tree: 50.6 ## Min observations in leaf: 5 -## OOB stat value: 0.72 +## OOB stat value: 0.71 ## OOB stat type: RSQ ## Variable importance: anova ## @@ -426,9 +426,9 @@ bill_fit My personal favorite is the oblique survival RF with accelerated Cox regression because it was the first type of oblique RF that \code{aorsf} -provided (see \href{https://doi.org/10.1080/10618600.2023.2231048}{JCGS paper}). Here, we use it -to predict mortality risk following diagnosis of primary biliary -cirrhosis: +provided (see \href{https://www.tandfonline.com/doi/full/10.1080/10618600.2023.2231048}{JCGS paper}). +Here, we use it to predict mortality risk following diagnosis of primary +biliary cirrhosis: \if{html}{\out{