diff --git a/vignettes/pd.Rmd b/vignettes/pd.Rmd index 378f58e1..f977339a 100644 --- a/vignettes/pd.Rmd +++ b/vignettes/pd.Rmd @@ -43,6 +43,7 @@ pbc_orsf_test <- pbc_orsf[-index_train, ] fit <- orsf(data = pbc_orsf_train, formula = Surv(time, status) ~ . - id, + n_tree = 50, oobag_pred_horizon = pred_horizon) fit @@ -92,7 +93,7 @@ You can compute PD three ways with `aorsf`: - new data PD shows how the model predicts outcomes for observations it has not seen. This is helpful if you want to test your model's reliability or fairness. -Let's re-fit our ORSF to all available data before proceeding to the next sections. +Let's re-fit our ORSF model to all available data before proceeding to the next sections. ```{r} @@ -100,6 +101,7 @@ set.seed(329730) fit <- orsf(pbc_orsf, Surv(time, status) ~ . -id, + n_tree = 50, oobag_pred_horizon = pred_horizon) ``` @@ -171,7 +173,7 @@ Now would it be tedious if you wanted to do this for all the variables? You bet. ```{r} -pd_smry <- orsf_summarize_uni(fit) +pd_smry <- orsf_summarize_uni(fit, n_variables = 4) pd_smry