diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION index 3cd5703a..fb9d4485 100644 --- a/CRAN-SUBMISSION +++ b/CRAN-SUBMISSION @@ -1,3 +1,3 @@ Version: 0.1.2 -Date: 2024-01-14 22:34:29 UTC -SHA: e2720672022846736ccc88d783d0f1a3f382df9a +Date: 2024-01-15 02:07:42 UTC +SHA: 2f3e67b75fc2de3aff1823040068c854c37a18a9 diff --git a/man/orsf.Rd b/man/orsf.Rd index 15a56a85..1bd56e89 100644 --- a/man/orsf.Rd +++ b/man/orsf.Rd @@ -388,7 +388,7 @@ penguin_fit ## N trees: 5 ## N predictors total: 7 ## N predictors per node: 3 -## Average leaves per tree: 5.6 +## Average leaves per tree: 4.4 ## Min observations in leaf: 5 ## OOB stat value: 0.99 ## OOB stat type: AUC-ROC @@ -415,9 +415,9 @@ bill_fit ## N trees: 5 ## N predictors total: 7 ## N predictors per node: 3 -## Average leaves per tree: 50.4 +## Average leaves per tree: 51.2 ## Min observations in leaf: 5 -## OOB stat value: 0.72 +## OOB stat value: 0.77 ## OOB stat type: RSQ ## Variable importance: anova ## @@ -447,10 +447,10 @@ pbc_fit ## N trees: 5 ## N predictors total: 17 ## N predictors per node: 5 -## Average leaves per tree: 21.4 +## Average leaves per tree: 20 ## Min observations in leaf: 5 ## Min events in leaf: 1 -## OOB stat value: 0.75 +## OOB stat value: 0.76 ## OOB stat type: Harrell's C-index ## Variable importance: anova ## @@ -497,7 +497,7 @@ take to fit the forest before you commit to it: orsf_time_to_train() }\if{html}{\out{}} -\if{html}{\out{
}}\preformatted{## Time difference of 2.426429 secs +\if{html}{\out{
}}\preformatted{## Time difference of 2.4331 secs }\if{html}{\out{
}} \enumerate{ \item If fitting multiple forests, use the blueprint along with @@ -568,12 +568,12 @@ brier_scores \if{html}{\out{
}}\preformatted{## # A tibble: 6 x 4 ## .metric .estimator .eval_time .estimate ## -## 1 brier_survival standard 500 0.0275 -## 2 brier_survival standard 1000 0.0658 -## 3 brier_survival standard 1500 0.0480 -## 4 brier_survival standard 2000 0.0623 -## 5 brier_survival standard 2500 0.138 -## 6 brier_survival standard 3000 0.146 +## 1 brier_survival standard 500 0.0466 +## 2 brier_survival standard 1000 0.0754 +## 3 brier_survival standard 1500 0.0612 +## 4 brier_survival standard 2000 0.0885 +## 5 brier_survival standard 2500 0.133 +## 6 brier_survival standard 3000 0.141 }\if{html}{\out{
}} \if{html}{\out{
}}\preformatted{roc_scores <- test_pred \%>\% @@ -585,12 +585,12 @@ roc_scores \if{html}{\out{
}}\preformatted{## # A tibble: 6 x 4 ## .metric .estimator .eval_time .estimate ## -## 1 roc_auc_survival standard 500 0.988 -## 2 roc_auc_survival standard 1000 0.959 -## 3 roc_auc_survival standard 1500 0.992 -## 4 roc_auc_survival standard 2000 0.987 -## 5 roc_auc_survival standard 2500 0.908 -## 6 roc_auc_survival standard 3000 0.909 +## 1 roc_auc_survival standard 500 0.947 +## 2 roc_auc_survival standard 1000 0.939 +## 3 roc_auc_survival standard 1500 0.982 +## 4 roc_auc_survival standard 2000 0.961 +## 5 roc_auc_survival standard 2500 0.929 +## 6 roc_auc_survival standard 3000 0.942 }\if{html}{\out{
}} } } diff --git a/vignettes/pd.Rmd b/vignettes/pd.Rmd index f03f34dd..f8f153e8 100644 --- a/vignettes/pd.Rmd +++ b/vignettes/pd.Rmd @@ -317,11 +317,11 @@ pbc_orsf$edema_05 <- NULL ## Find interactions using PD -Random forests are good at using interactions, but less good at telling you about them. Use `orsf_vint()` to apply the method for variable interaction scoring with PD described by Greenwell et al (2018). This can take a little while if you have lots of predictors, so setting `verbose_progress = TRUE` may be helpful. +Random forests are good at using interactions, but less good at telling you about them. Use `orsf_vint()` to apply the method for variable interaction scoring with PD described by Greenwell et al (2018). This can take a little while if you have lots of predictors. ```{r} -vint_scores <- orsf_vint(fit_surv, verbose_progress = TRUE) +vint_scores <- orsf_vint(fit_surv) vint_scores[1:5]