diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION
index 3cd5703a..fb9d4485 100644
--- a/CRAN-SUBMISSION
+++ b/CRAN-SUBMISSION
@@ -1,3 +1,3 @@
Version: 0.1.2
-Date: 2024-01-14 22:34:29 UTC
-SHA: e2720672022846736ccc88d783d0f1a3f382df9a
+Date: 2024-01-15 02:07:42 UTC
+SHA: 2f3e67b75fc2de3aff1823040068c854c37a18a9
diff --git a/man/orsf.Rd b/man/orsf.Rd
index 15a56a85..1bd56e89 100644
--- a/man/orsf.Rd
+++ b/man/orsf.Rd
@@ -388,7 +388,7 @@ penguin_fit
## N trees: 5
## N predictors total: 7
## N predictors per node: 3
-## Average leaves per tree: 5.6
+## Average leaves per tree: 4.4
## Min observations in leaf: 5
## OOB stat value: 0.99
## OOB stat type: AUC-ROC
@@ -415,9 +415,9 @@ bill_fit
## N trees: 5
## N predictors total: 7
## N predictors per node: 3
-## Average leaves per tree: 50.4
+## Average leaves per tree: 51.2
## Min observations in leaf: 5
-## OOB stat value: 0.72
+## OOB stat value: 0.77
## OOB stat type: RSQ
## Variable importance: anova
##
@@ -447,10 +447,10 @@ pbc_fit
## N trees: 5
## N predictors total: 17
## N predictors per node: 5
-## Average leaves per tree: 21.4
+## Average leaves per tree: 20
## Min observations in leaf: 5
## Min events in leaf: 1
-## OOB stat value: 0.75
+## OOB stat value: 0.76
## OOB stat type: Harrell's C-index
## Variable importance: anova
##
@@ -497,7 +497,7 @@ take to fit the forest before you commit to it:
orsf_time_to_train()
}\if{html}{\out{}}
-\if{html}{\out{
}}\preformatted{## Time difference of 2.426429 secs
+\if{html}{\out{
}}\preformatted{## Time difference of 2.4331 secs
}\if{html}{\out{
}}
\enumerate{
\item If fitting multiple forests, use the blueprint along with
@@ -568,12 +568,12 @@ brier_scores
\if{html}{\out{
}}\preformatted{## # A tibble: 6 x 4
## .metric .estimator .eval_time .estimate
##
-## 1 brier_survival standard 500 0.0275
-## 2 brier_survival standard 1000 0.0658
-## 3 brier_survival standard 1500 0.0480
-## 4 brier_survival standard 2000 0.0623
-## 5 brier_survival standard 2500 0.138
-## 6 brier_survival standard 3000 0.146
+## 1 brier_survival standard 500 0.0466
+## 2 brier_survival standard 1000 0.0754
+## 3 brier_survival standard 1500 0.0612
+## 4 brier_survival standard 2000 0.0885
+## 5 brier_survival standard 2500 0.133
+## 6 brier_survival standard 3000 0.141
}\if{html}{\out{
}}
\if{html}{\out{
}}\preformatted{roc_scores <- test_pred \%>\%
@@ -585,12 +585,12 @@ roc_scores
\if{html}{\out{
}}\preformatted{## # A tibble: 6 x 4
## .metric .estimator .eval_time .estimate
##
-## 1 roc_auc_survival standard 500 0.988
-## 2 roc_auc_survival standard 1000 0.959
-## 3 roc_auc_survival standard 1500 0.992
-## 4 roc_auc_survival standard 2000 0.987
-## 5 roc_auc_survival standard 2500 0.908
-## 6 roc_auc_survival standard 3000 0.909
+## 1 roc_auc_survival standard 500 0.947
+## 2 roc_auc_survival standard 1000 0.939
+## 3 roc_auc_survival standard 1500 0.982
+## 4 roc_auc_survival standard 2000 0.961
+## 5 roc_auc_survival standard 2500 0.929
+## 6 roc_auc_survival standard 3000 0.942
}\if{html}{\out{
}}
}
}
diff --git a/vignettes/pd.Rmd b/vignettes/pd.Rmd
index f03f34dd..f8f153e8 100644
--- a/vignettes/pd.Rmd
+++ b/vignettes/pd.Rmd
@@ -317,11 +317,11 @@ pbc_orsf$edema_05 <- NULL
## Find interactions using PD
-Random forests are good at using interactions, but less good at telling you about them. Use `orsf_vint()` to apply the method for variable interaction scoring with PD described by Greenwell et al (2018). This can take a little while if you have lots of predictors, so setting `verbose_progress = TRUE` may be helpful.
+Random forests are good at using interactions, but less good at telling you about them. Use `orsf_vint()` to apply the method for variable interaction scoring with PD described by Greenwell et al (2018). This can take a little while if you have lots of predictors.
```{r}
-vint_scores <- orsf_vint(fit_surv, verbose_progress = TRUE)
+vint_scores <- orsf_vint(fit_surv)
vint_scores[1:5]