From 5f796179f397d0e9b610f6e7dedbf367dec5a26d Mon Sep 17 00:00:00 2001
From: bcjaeger You can also compute variable importance using
@@ -243,10 +243,10 @@ A faster alternative to permutation and negation importance is
@@ -256,9 +256,9 @@ The out-of-bag estimate of Harrell’s C-index (the default method to
-evaluate out-of-bag predictions) is 0.7737671.Oblique RFs for
#> N trees: 500
#> N predictors total: 7
#> N predictors per node: 3
-#> Average leaves per tree: 5.648
+#> Average leaves per tree: 5.544
#> Min observations in leaf: 5
#> OOB stat value: 1.00
#> OOB stat type: AUC-ROC
@@ -158,9 +158,9 @@
Oblique RFs for
#> N trees: 500
#> N predictors total: 7
#> N predictors per node: 3
-#> Average leaves per tree: 49.674
+#> Average leaves per tree: 49.872
#> Min observations in leaf: 5
-#> OOB stat value: 0.82
+#> OOB stat value: 0.81
#> OOB stat type: RSQ
#> Variable importance: anova
#>
@@ -185,7 +185,7 @@
Oblique RFs for
#> N trees: 5
#> N predictors total: 17
#> N predictors per node: 5
-#> Average leaves per tree: 22
+#> Average leaves per tree: 21.4
#> Min observations in leaf: 5
#> Min events in leaf: 1
#> OOB stat value: 0.77
@@ -226,14 +226,14 @@
Variable importance
+#> bili spiders copper albumin sex
+#> 0.1671647745 0.0520379071 0.0432409174 0.0292245433 0.0258174901
+#> alk.phos trt protime ast stage
+#> 0.0207262097 0.0196654076 0.0147894928 0.0138953587 0.0094377622
+#> age ascites trig edema platelet
+#> 0.0063243985 0.0053495205 0.0021405459 0.0018460367 0.0008203822
+#> hepato chol
+#> 0.0004910894 -0.0128635357
orsf_vi_negate(pbc_fit)
-#> copper stage protime sex ascites
-#> 0.1188219833 0.0665535400 0.0464884356 0.0384596473 0.0344990821
-#> hepato bili ast trig albumin
-#> 0.0317538618 0.0277185671 0.0271787128 0.0246554066 0.0217429643
-#> age chol alk.phos trt spiders
-#> 0.0150528840 0.0126460875 0.0026088161 0.0016801827 0.0007598719
-#> edema platelet
-#> -0.0006134379 -0.0066584545
Variable importance
+#> bill_length_mm flipper_length_mm bill_depth_mm island
+#> 0.1738256958 0.0898851835 0.0810334484 0.0655328821
+#> body_mass_g sex year
+#> 0.0647936728 0.0191948220 0.0005500798
orsf_vi_permute(penguin_fit)
-#> bill_length_mm flipper_length_mm bill_depth_mm body_mass_g
-#> 0.169789864 0.100880436 0.076946210 0.067635877
-#> island sex year
-#> 0.061011929 0.019879728 0.001228741
Variable importance
orsf_vi_anova(bill_fit)
#> species sex island flipper_length_mm
-#> 0.34412460 0.21024699 0.11541213 0.08715245
+#> 0.35859861 0.20116912 0.11896429 0.08734940
#> body_mass_g bill_depth_mm year
-#> 0.07891657 0.06775045 0.01330396
+#> 0.08107428 0.06459390 0.01368270
Don’t specify a
control
# unspecified control is much faster
time_net['elapsed'] / time_fast['elapsed']
-#> elapsed
-#> 45.43478
+#> elapsed
+#> 44.125
Use
n_thread
@@ -218,11 +218,11 @@ Don’t wait. Estimate! time_est <- orsf_time_to_train(fit_spec, n_tree_subset = 5)
)
#> user system elapsed
-#> 0.268 0.008 0.275
+#> 0.286 0.020 0.307
# the estimated training time:
time_est
-#> Time difference of 110.1083 secs
Out-of-bag predictions and error# what is the output from this function?
fit$eval_oobag$stat_values
#> [,1]
-#> [1,] 0.7737671
+#> [1,] 0.7652389
<=4azEQ%DfVus=Emgkd
zsMQOyaO_l7iMmV;ZMT5J ?V)P+K+fFeKrW1Wv>w>$*~MNfu~;_Q*dsUmM*UkD)^
z_$u>h4Fne3)V=v46S=J*K@={X9=un^(XV+qe|uz-yRdRr`K|Qvi=AiKsP
zyg^Ww=eW4?Yg~A@nMOU{gQ%k7dQlJl_J^I=Dx9>+0x!Va!f{
zvM3&}dj!#@M+~hzkmj35>z$#V2Z}yl!HRz{B!#A8@#|w<*;L1n`J@Dhr0sj2V~3(rT