Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

class_table(): show a dataframe of the classes #167

Open
njtierney opened this issue Mar 13, 2024 · 4 comments
Open

class_table(): show a dataframe of the classes #167

njtierney opened this issue Mar 13, 2024 · 4 comments

Comments

@njtierney
Copy link
Collaborator

This is another quick workaround for showing class information, see #166

library(visdat)
class_table <- function(data){
  data %>% 
    dplyr::slice_head(n = 1) %>% 
    data_vis_dat() %>% 
    dplyr::select(-rows) %>% 
    dplyr::rename(
      class = valueType,
      first_value = value
    )
}

class_table(typical_data)
#> # A tibble: 9 × 3
#>   variable   class     first_value
#>   <chr>      <chr>     <chr>      
#> 1 Age        <NA>      0001       
#> 2 Died       logical   Black      
#> 3 Height(cm) numeric   <NA>       
#> 4 ID         character Male       
#> 5 IQ         numeric   175.9      
#> 6 Income     factor    110        
#> 7 Race       factor    FALSE      
#> 8 Sex        factor    4334.29    
#> 9 Smokes     logical   FALSE

Created on 2024-03-13 with reprex v2.1.0

Session info
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.3.3 (2024-02-29)
#>  os       macOS Sonoma 14.3.1
#>  system   aarch64, darwin20
#>  ui       X11
#>  language (EN)
#>  collate  en_US.UTF-8
#>  ctype    en_US.UTF-8
#>  tz       Australia/Hobart
#>  date     2024-03-13
#>  pandoc   3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package     * version date (UTC) lib source
#>  cli           3.6.2   2023-12-11 [1] CRAN (R 4.3.1)
#>  digest        0.6.34  2024-01-11 [1] CRAN (R 4.3.1)
#>  dplyr         1.1.4   2023-11-17 [1] CRAN (R 4.3.1)
#>  evaluate      0.23    2023-11-01 [1] CRAN (R 4.3.1)
#>  fansi         1.0.6   2023-12-08 [1] CRAN (R 4.3.1)
#>  fastmap       1.1.1   2023-02-24 [1] CRAN (R 4.3.0)
#>  fs            1.6.3   2023-07-20 [1] CRAN (R 4.3.0)
#>  generics      0.1.3   2022-07-05 [1] CRAN (R 4.3.0)
#>  glue          1.7.0   2024-01-09 [1] CRAN (R 4.3.1)
#>  htmltools     0.5.7   2023-11-03 [1] CRAN (R 4.3.1)
#>  knitr         1.45    2023-10-30 [1] CRAN (R 4.3.1)
#>  lifecycle     1.0.4   2023-11-07 [1] CRAN (R 4.3.1)
#>  magrittr      2.0.3   2022-03-30 [1] CRAN (R 4.3.0)
#>  pillar        1.9.0   2023-03-22 [1] CRAN (R 4.3.0)
#>  pkgconfig     2.0.3   2019-09-22 [1] CRAN (R 4.3.0)
#>  purrr         1.0.2   2023-08-10 [1] CRAN (R 4.3.0)
#>  R.cache       0.16.0  2022-07-21 [2] CRAN (R 4.3.0)
#>  R.methodsS3   1.8.2   2022-06-13 [2] CRAN (R 4.3.0)
#>  R.oo          1.26.0  2024-01-24 [2] CRAN (R 4.3.1)
#>  R.utils       2.12.3  2023-11-18 [2] CRAN (R 4.3.1)
#>  R6            2.5.1   2021-08-19 [1] CRAN (R 4.3.0)
#>  reprex        2.1.0   2024-01-11 [2] CRAN (R 4.3.1)
#>  rlang         1.1.3   2024-01-10 [1] CRAN (R 4.3.1)
#>  rmarkdown     2.25    2023-09-18 [1] CRAN (R 4.3.1)
#>  rstudioapi    0.15.0  2023-07-07 [1] CRAN (R 4.3.0)
#>  sessioninfo   1.2.2   2021-12-06 [2] CRAN (R 4.3.0)
#>  styler        1.10.2  2023-08-29 [2] CRAN (R 4.3.0)
#>  tibble        3.2.1   2023-03-20 [1] CRAN (R 4.3.0)
#>  tidyr         1.3.1   2024-01-24 [1] CRAN (R 4.3.1)
#>  tidyselect    1.2.0   2022-10-10 [1] CRAN (R 4.3.0)
#>  utf8          1.2.4   2023-10-22 [1] CRAN (R 4.3.1)
#>  vctrs         0.6.5   2023-12-01 [1] CRAN (R 4.3.1)
#>  visdat      * 0.6.0   2023-02-02 [2] CRAN (R 4.3.0)
#>  withr         3.0.0   2024-01-16 [1] CRAN (R 4.3.1)
#>  xfun          0.42    2024-02-08 [1] CRAN (R 4.3.1)
#>  yaml          2.3.8   2023-12-11 [1] CRAN (R 4.3.1)
#> 
#>  [1] /Users/nick/Library/R/arm64/4.3/library
#>  [2] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────
@njtierney
Copy link
Collaborator Author

This sometimes captures NA values, it might be best to use something like:

map_dfr(
  data,
  class
) %>% 
  pivot_longer(
    cols = everything(),
    names_to = "variable",
    values_to = "class"
  ) %>% 
  arrange(
    class, 
    variable
  )

Or to look more closely at the internals of fingerprint or something?

@njtierney
Copy link
Collaborator Author

njtierney commented Mar 13, 2024

Alright here we go:

library(visdat)

variable_first_value <- function(data){
  data %>% 
    dplyr::slice_head(n = 1) %>% 
    tidyr::pivot_longer(
      cols = tidyselect::everything(),
      names_to = "variable",
      values_to = "first_value",
      values_transform = as.character
    )
}

class_info <- function(data){
  data %>% 
    purrr::map_dfr(
      class
    ) %>% 
    tidyr::pivot_longer(
      cols = tidyselect::everything(),
      names_to = "variable",
      values_to = "class"
    ) %>% 
    dplyr::arrange(
      class, 
      variable
    )
}

class_table <- function(data){
  dplyr::left_join(
    x = class_info(data),
    y = variable_first_value(data),
    by = "variable"
  )
}

class_table(typical_data)
#> # A tibble: 9 × 3
#>   variable   class     first_value
#>   <chr>      <chr>     <chr>      
#> 1 Age        character <NA>       
#> 2 ID         character 0001       
#> 3 Income     factor    4334.29    
#> 4 Race       factor    Black      
#> 5 Sex        factor    Male       
#> 6 Died       logical   FALSE      
#> 7 Smokes     logical   FALSE      
#> 8 Height(cm) numeric   175.9      
#> 9 IQ         numeric   110

Created on 2024-03-13 with reprex v2.1.0

Session info
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.3.3 (2024-02-29)
#>  os       macOS Sonoma 14.3.1
#>  system   aarch64, darwin20
#>  ui       X11
#>  language (EN)
#>  collate  en_US.UTF-8
#>  ctype    en_US.UTF-8
#>  tz       Australia/Hobart
#>  date     2024-03-13
#>  pandoc   3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package     * version date (UTC) lib source
#>  cli           3.6.2   2023-12-11 [1] CRAN (R 4.3.1)
#>  digest        0.6.34  2024-01-11 [1] CRAN (R 4.3.1)
#>  dplyr         1.1.4   2023-11-17 [1] CRAN (R 4.3.1)
#>  evaluate      0.23    2023-11-01 [1] CRAN (R 4.3.1)
#>  fansi         1.0.6   2023-12-08 [1] CRAN (R 4.3.1)
#>  fastmap       1.1.1   2023-02-24 [1] CRAN (R 4.3.0)
#>  fs            1.6.3   2023-07-20 [1] CRAN (R 4.3.0)
#>  generics      0.1.3   2022-07-05 [1] CRAN (R 4.3.0)
#>  glue          1.7.0   2024-01-09 [1] CRAN (R 4.3.1)
#>  htmltools     0.5.7   2023-11-03 [1] CRAN (R 4.3.1)
#>  knitr         1.45    2023-10-30 [1] CRAN (R 4.3.1)
#>  lifecycle     1.0.4   2023-11-07 [1] CRAN (R 4.3.1)
#>  magrittr      2.0.3   2022-03-30 [1] CRAN (R 4.3.0)
#>  pillar        1.9.0   2023-03-22 [1] CRAN (R 4.3.0)
#>  pkgconfig     2.0.3   2019-09-22 [1] CRAN (R 4.3.0)
#>  purrr         1.0.2   2023-08-10 [1] CRAN (R 4.3.0)
#>  R.cache       0.16.0  2022-07-21 [2] CRAN (R 4.3.0)
#>  R.methodsS3   1.8.2   2022-06-13 [2] CRAN (R 4.3.0)
#>  R.oo          1.26.0  2024-01-24 [2] CRAN (R 4.3.1)
#>  R.utils       2.12.3  2023-11-18 [2] CRAN (R 4.3.1)
#>  R6            2.5.1   2021-08-19 [1] CRAN (R 4.3.0)
#>  reprex        2.1.0   2024-01-11 [2] CRAN (R 4.3.1)
#>  rlang         1.1.3   2024-01-10 [1] CRAN (R 4.3.1)
#>  rmarkdown     2.25    2023-09-18 [1] CRAN (R 4.3.1)
#>  rstudioapi    0.15.0  2023-07-07 [1] CRAN (R 4.3.0)
#>  sessioninfo   1.2.2   2021-12-06 [2] CRAN (R 4.3.0)
#>  styler        1.10.2  2023-08-29 [2] CRAN (R 4.3.0)
#>  tibble        3.2.1   2023-03-20 [1] CRAN (R 4.3.0)
#>  tidyr         1.3.1   2024-01-24 [1] CRAN (R 4.3.1)
#>  tidyselect    1.2.0   2022-10-10 [1] CRAN (R 4.3.0)
#>  utf8          1.2.4   2023-10-22 [1] CRAN (R 4.3.1)
#>  vctrs         0.6.5   2023-12-01 [1] CRAN (R 4.3.1)
#>  visdat      * 0.6.0   2023-02-02 [2] CRAN (R 4.3.0)
#>  withr         3.0.0   2024-01-16 [1] CRAN (R 4.3.1)
#>  xfun          0.42    2024-02-08 [1] CRAN (R 4.3.1)
#>  yaml          2.3.8   2023-12-11 [1] CRAN (R 4.3.1)
#> 
#>  [1] /Users/nick/Library/R/arm64/4.3/library
#>  [2] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────

@njtierney
Copy link
Collaborator Author

Could maybe change first_value to typical_value to use the first non_missing value...or something?

@njtierney
Copy link
Collaborator Author

Haaaa this is what dplyr::glimpse() does. Ugh. I still maintain it is useful.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant