-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_simuDipole.cc
254 lines (214 loc) · 9.39 KB
/
example_simuDipole.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include <iostream>
#include <fstream>
#include <vector>
#include <sys/stat.h>
// Files
#include "events.h"
#include "coverage.h"
#include "angdist.h"
#include "maptools.h"
#include "projmap.h"
#include "simuevents.h"
#include "common.h"
#include "Cl.h"
#include "rayleigh.h"
#include "fitdipole.h"
// ROOT
#include "TRint.h"
#include "TROOT.h"
#include "TStyle.h"
#ifdef gcc323
char* operator+( std::streampos&, char* );
#endif
using namespace std;
void Usage(string myname)
{
cout << endl;
cout << " Synopsis : " << endl;
cout << myname << " -h, --help to obtain this message" << endl;
cout << myname << endl << endl;
cout << " Description :" << endl;
cout << "Events are simulated following a dipolar modulation (amplitude and orientation are fixed in "
<< myname << ") in addition to a constant acceptance. The coverage map assuming a flat acceptance is "
<< "computed. Using the events and coverage maps, the power spectrum is drawn. A Rayleigh analysis to "
<< "the Right Ascension of the events and a direct fit are also performed."
<< endl;
exit(0);
}
int main(int argc, char* argv[])
{
////////////////////////////////////////////////////////////////////////////
// //
// To start (initialization) //
// //
////////////////////////////////////////////////////////////////////////////
// Command line
if(argc != 1) Usage(argv[0]);
int fargc = 1;
string extension;
TRint *rint = new TRint("simuDipole", &fargc, argv);
gROOT->SetStyle("Plain");
gStyle->SetTitleFont(30,"TITLE");
extension = ".png";
////////////////////////////////////////////////////////////////////////////
// //
// Simulation of the dipole & the events //
// //
////////////////////////////////////////////////////////////////////////////
// Simulation of my dipole
unsigned int nSide = 64;
int sizeX = 800, sizeY = 400;
double decLimit = 25.;
double longStep = 60., latStep = 30.;
THealpixMap dipoleMap(nSide);
vector<long> iPix(dipoleMap.NPix());
vector<double> lPix; // Deg
vector<double> bPix; // Deg
for(unsigned int i = 0; i < dipoleMap.NPix(); i++) iPix[i] = i;
dipoleMap.GiveLB(iPix,lPix,bPix);
double raDipole, decDipole, lDipole, bDipole, ampDipole;
ampDipole = 0.1;
raDipole = 0.;
decDipole = -20.;
radec2gal(raDipole/15., decDipole, &lDipole, &bDipole);
vector<double> uvDipole = ll2uv(lDipole, bDipole);
for(unsigned int i = 0; i < dipoleMap.NPix(); i++)
{
vector<double> uvPix = ll2uv(lPix[i], bPix[i]);
dipoleMap[i] = ampDipole*(uvPix[0]*uvDipole[0]+uvPix[1]*uvDipole[1]+uvPix[2]*uvDipole[2]);
}
dipoleMap = 1.+dipoleMap;
TProjMap dipoleMapProj(dipoleMap, sizeX, sizeY, 90.);
dipoleMapProj.SkyMap("Full Sky Dipole");
dipoleMapProj.SetPalette(PaletteRGB, 255);
dipoleMapProj.ShowGrid(longStep,latStep);
dipoleMapProj.Save("fullSkyDipole"+extension);
// Simulation of the events : no acceptance law
double thetaMax = 60.;
unsigned int nVal = 5000;
vector<double> thVal(nVal);
vector<double> pthVal(nVal);
for(unsigned int i=0; i<nVal; i++)
{
thVal[i] = i*180./(nVal-1);
pthVal[i] = sin(thVal[i]*M_PI/180)*cos(thVal[i]*M_PI/180);
if (thVal[i] > thetaMax) pthVal[i] = 0;
}
double latSite = kConstantsTK::AugerSouthLatitude;
double lonSite = kConstantsTK::AugerSouthLongitude;
unsigned int nb = 300000;
vector<TEvent> simData = SimulateEvents(dipoleMap, nb, thVal, pthVal, latSite, lonSite);
cout << "Number of events simulated : " << simData.size() << endl;
ShowLocalCoord(simData, thVal, pthVal); ShowEqCoord(simData), ShowArrivalTimesCoord(simData);
////////////////////////////////////////////////////////////////////////////
// //
// Compute the coverage map //
// //
////////////////////////////////////////////////////////////////////////////
THealpixMap covMap = GetAnalyticalCoverage(nSide, thetaMax, latSite);
covMap *= simData.size()*1./covMap.Total();
////////////////////////////////////////////////////////////////////////////
// //
// Compute the events map //
// //
////////////////////////////////////////////////////////////////////////////
DECLARE_VECTOR(double, lData, simData, fL);
DECLARE_VECTOR(double, bData, simData, fB);
THealpixMap evtMap = map_events(nSide, lData, bData);
TProjMap evtMapProj(evtMap, sizeX, sizeY, decLimit);
evtMapProj.SkyMap("Events Map");
evtMapProj.SetPalette(PaletteRGB, 255);
evtMapProj.ShowGrid(longStep,latStep);
evtMapProj.ShowFOV(kConstantsTK::AugerSouthLatitude+60.);
evtMapProj.Save("evtMap"+extension);
////////////////////////////////////////////////////////////////////////////
// //
// Plot the Power Spectrum //
// //
////////////////////////////////////////////////////////////////////////////
// Binning of the Power Spectrum in l.
const unsigned int lmax = 20;
vector<unsigned int> lbins;
for(unsigned int i = 0; i < lmax+2; i++) lbins.push_back(i);
vector<vector<double> > lvalue = lvalues(lbins);
vector<double> ErrorCl;
vector<double> Cl = compute_Cl(simData, covMap, evtMap, lmax, lbins, ErrorCl);
double* lgraph = new double[lvalue[0].size()];
double* Clgraph = new double[lvalue[0].size()];
double* lerrorgraph = new double[lvalue[0].size()];
double* Clerrorgraph = new double[lvalue[0].size()];
for(unsigned int i = 0; i < lvalue[0].size(); i++)
{
lgraph[i] = lvalue[0][i];
lerrorgraph[i] = lvalue[1][i];
Clgraph[i] = Cl[i];
Clerrorgraph[i] = ErrorCl[i];
if(lgraph[i] == 0) {lgraph[i] = 0.; lerrorgraph[i] = 0.; Clgraph[i] = 0.; Clerrorgraph[i] = 0.;}
cout.precision(4);
cout << " l = " << lgraph[i] << " and Cl = " << Clgraph[i] << " +/- " << Clerrorgraph[i] << endl;
}
// Plot the Power Spectrum
string name = "Power Spectrum";
string Xaxis = "l";
string Yaxis = "C_{l}";
string save = "Cl"+extension;
TCanvas* cPS = new TCanvas("cPS", name.c_str(), 700, 700);
TGraphErrors* PS = new TGraphErrors(lvalue[0].size(), lgraph, Clgraph, lerrorgraph, Clerrorgraph);
PlotXY(cPS, PS, 0., lmax+1, name, Xaxis, Yaxis);
PS->Draw("AP");
cPS->Update();
cPS->SaveAs(save.c_str());
delete [] lgraph;
delete [] Clgraph;
delete [] lerrorgraph;
delete [] Clerrorgraph;
////////////////////////////////////////////////////////////////////////////
// //
// Rayleigh Analysis //
// //
////////////////////////////////////////////////////////////////////////////
unsigned int nHarmonic = 1;
TRayleigh* rayleigh = new TRayleigh(simData, covMap, nHarmonic);
rayleigh->ComputeRAweight();
rayleigh->ComputeDist();
rayleigh->DrawEvtsDist();
rayleigh->DrawCovDist();
rayleigh->DrawTrue();
rayleigh->ComputeAmplitude();
rayleigh->ComputePhase();
rayleigh->ComputeSignificance();
rayleigh->ComputeChanceProbability();
double amplitude, phase, significance, probability;
amplitude = rayleigh->GetAmplitude();
phase = rayleigh->GetPhase();
significance = rayleigh->GetSignificance();
probability = rayleigh->GetChanceProbability();
cout << "Rayleigh" << endl;
cout << "--------" << endl;
cout << " amplitude = " << amplitude << endl;
cout << " phase = " << phase << endl;
cout << " probability = " << probability << endl;
cout << " significance = " << significance << endl << endl;
//////////////////////////////////////////////////////////////////
// //
// Fit my dipole on the sky //
// //
//////////////////////////////////////////////////////////////////
TFitDipole* fitDipole = new TFitDipole(evtMap, covMap, amplitude, phase);
fitDipole->FitProcedure();
vector<double> parameter = fitDipole->GetParameters();
vector<double> errorparameter = fitDipole->GetErrorParameters();
double ampFit = parameter[0];
double raFit = parameter[1];
double decFit = parameter[2];
double ampFitError = errorparameter[0];
double raFitError = errorparameter[1];
double decFitError = errorparameter[2];
cout << "Direct Fit" << endl;
cout << "----------" << endl;
cout << "RA : " << raFit << " +/- " << raFitError << " "
<< "dec : " << decFit << " +/- " << decFitError << " "
<< "A : " << ampFit << " +/- " << ampFitError << endl;
cout << "Program Finished Normally" << endl;
rint->Run(kTRUE);
}