-
Notifications
You must be signed in to change notification settings - Fork 131
/
wavelet.py
143 lines (134 loc) · 5.8 KB
/
wavelet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def wavelet(Y,dt,pad=0.,dj=0.25,s0=-1,J1=-1,mother="MORLET",param=-1):
"""
This function is the translation of wavelet.m by Torrence and Compo
import wave_bases from wave_bases.py
The following is the original comment in wavelet.m
#WAVELET 1D Wavelet transform with optional singificance testing
%
% [WAVE,PERIOD,SCALE,COI] = wavelet(Y,DT,PAD,DJ,S0,J1,MOTHER,PARAM)
%
% Computes the wavelet transform of the vector Y (length N),
% with sampling rate DT.
%
% By default, the Morlet wavelet (k0=6) is used.
% The wavelet basis is normalized to have total energy=1 at all scales.
%
%
% INPUTS:
%
% Y = the time series of length N.
% DT = amount of time between each Y value, i.e. the sampling time.
%
% OUTPUTS:
%
% WAVE is the WAVELET transform of Y. This is a complex array
% of dimensions (N,J1+1). FLOAT(WAVE) gives the WAVELET amplitude,
% ATAN(IMAGINARY(WAVE),FLOAT(WAVE) gives the WAVELET phase.
% The WAVELET power spectrum is ABS(WAVE)^2.
% Its units are sigma^2 (the time series variance).
%
%
% OPTIONAL INPUTS:
%
% *** Note *** setting any of the following to -1 will cause the default
% value to be used.
%
% PAD = if set to 1 (default is 0), pad time series with enough zeroes to get
% N up to the next higher power of 2. This prevents wraparound
% from the end of the time series to the beginning, and also
% speeds up the FFT's used to do the wavelet transform.
% This will not eliminate all edge effects (see COI below).
%
% DJ = the spacing between discrete scales. Default is 0.25.
% A smaller # will give better scale resolution, but be slower to plot.
%
% S0 = the smallest scale of the wavelet. Default is 2*DT.
%
% J1 = the # of scales minus one. Scales range from S0 up to S0*2^(J1*DJ),
% to give a total of (J1+1) scales. Default is J1 = (LOG2(N DT/S0))/DJ.
%
% MOTHER = the mother wavelet function.
% The choices are 'MORLET', 'PAUL', or 'DOG'
%
% PARAM = the mother wavelet parameter.
% For 'MORLET' this is k0 (wavenumber), default is 6.
% For 'PAUL' this is m (order), default is 4.
% For 'DOG' this is m (m-th derivative), default is 2.
%
%
% OPTIONAL OUTPUTS:
%
% PERIOD = the vector of "Fourier" periods (in time units) that corresponds
% to the SCALEs.
%
% SCALE = the vector of scale indices, given by S0*2^(j*DJ), j=0...J1
% where J1+1 is the total # of scales.
%
% COI = if specified, then return the Cone-of-Influence, which is a vector
% of N points that contains the maximum period of useful information
% at that particular time.
% Periods greater than this are subject to edge effects.
% This can be used to plot COI lines on a contour plot by doing:
%
% contour(time,log(period),log(power))
% plot(time,log(coi),'k')
%
%----------------------------------------------------------------------------
% Copyright (C) 1995-2004, Christopher Torrence and Gilbert P. Compo
%
% This software may be used, copied, or redistributed as long as it is not
% sold and this copyright notice is reproduced on each copy made. This
% routine is provided as is without any express or implied warranties
% whatsoever.
%
% Notice: Please acknowledge the use of the above software in any publications:
% ``Wavelet software was provided by C. Torrence and G. Compo,
% and is available at URL: http://paos.colorado.edu/research/wavelets/''.
%
% Reference: Torrence, C. and G. P. Compo, 1998: A Practical Guide to
% Wavelet Analysis. <I>Bull. Amer. Meteor. Soc.</I>, 79, 61-78.
%
% Please send a copy of such publications to either C. Torrence or G. Compo:
% Dr. Christopher Torrence Dr. Gilbert P. Compo
% Research Systems, Inc. Climate Diagnostics Center
% 4990 Pearl East Circle 325 Broadway R/CDC1
% Boulder, CO 80301, USA Boulder, CO 80305-3328, USA
% E-mail: chris[AT]rsinc[DOT]com E-mail: compo[AT]colorado[DOT]edu
%----------------------------------------------------------------------------"""
#modules
import numpy as np
from wave_bases import wave_bases
#set default
n1 = len(Y)
if (s0 == -1): s0=2.*dt
if (dj == -1): dj = 1./4.
if (J1 == -1): J1=np.fix((np.log(n1*dt/s0)/np.log(2))/dj)
if (mother == -1): mother = 'MORLET'
#print "s0=",s0
#print "J1=",J1
#....construct time series to analyze, pad if necessary
x = Y - np.mean(Y);
if (pad == 1):
base2 = np.fix(np.log(n1)/np.log(2) + 0.4999) # power of 2 nearest to N
temp=np.zeros((2**(int(base2)+1)-n1,))
x=np.concatenate((x,temp))
n = len(x)
#....construct wavenumber array used in transform [Eqn(5)]
k = np.arange(1,np.fix(n/2)+1)
k = k*(2.*np.pi)/(n*dt)
k = np.concatenate((np.zeros((1,)),k, -k[-2::-1]));
#....compute FFT of the (padded) time series
f = np.fft.fft(x) # [Eqn(3)]
#....construct SCALE array & empty PERIOD & WAVE arrays
scale=np.array([s0*2**(i*dj) for i in range(0,int(J1)+1)])
period = scale.copy()
wave = np.zeros((int(J1)+1,n),dtype=np.complex) # define the wavelet array # make it complex
# loop through all scales and compute transform
for a1 in range(0,int(J1)+1):
daughter,fourier_factor,coi,dofmin=wave_bases(mother,k,scale[a1],param)
wave[a1,:] = np.fft.ifft(f*daughter) # wavelet transform[Eqn(4)]
period = fourier_factor*scale
coi=coi*dt*np.concatenate(([1.E-5],np.arange(1.,(n1+1.)/2.-1),np.flipud(np.arange(1,n1/2.)),[1.E-5])) # COI [Sec.3g]
wave = wave[:,:n1] # get rid of padding before returning
return wave,period,scale,coi
# end of code