forked from ornlpmcp/ASCENDS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
529 lines (424 loc) · 26.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#!/usr/bin/env python3 -W ignore::RuntimeWarning
# coding: utf-8
import warnings
warnings.filterwarnings('ignore')
import argparse
import statistics
import sys
import pprint
import keras
import ascends as asc
import ast
import os
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from pathlib import PurePath
import numpy as np
import tensorflow as tf
import random as rn
from tensorflow.python.client import device_lib
from keras import backend as K
import ascends as asc
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
#sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
#config = tf.ConfigProto( device_count = {'GPU': 1 , 'CPU':1 } )
#sess = tf.Session(config=config)
#keras.backend.set_session(sess)
print(device_lib.list_local_devices())
print("GPUs for Keras:",K.tensorflow_backend._get_available_gpus())
# This is a tool for training machine learning models for a regression (value prediction) task
"""
Ensures neural net parameters are correct types.
"""
def clean_up_net_params(net_neuron_max, net_structure, net_l_2, net_learning_rate, net_epochs, net_dropout, net_layer_n, net_batch_size):
if net_neuron_max=='-1':
net_neuron_max = []
else:
try:
net_neuron_max = [int(x) for x in net_neuron_max]
except:
net_neuron_max = []
if net_structure=='Tune':
net_structure = None
else:
try:
net_structure = [int(x) for x in net_structure]
except:
net_structure = []
if net_l_2=='Tune':
net_l_2 = None
else:
try:
net_l_2 = float(net_l_2)
except:
net_l_2 = None
if net_learning_rate=='Tune':
net_learning_rate = None
else:
try:
net_learning_rate = float(net_learning_rate)
except:
net_learning_rate = None
if net_epochs=='Tune':
net_epochs = None
else:
try:
net_epochs = int(net_epochs)
except:
net_epochs = None
if net_dropout=='Tune':
net_dropout = True
else:
try:
net_dropout = float(net_dropout)
except:
net_dropout = True
if net_layer_n=='Tune':
net_layer_n = None
else:
try:
net_layer_n = int(net_layer_n)
except:
net_layer_n = None
if net_batch_size=='Tune':
net_batch_size = None
else:
try:
net_batch_size = int(net_batch_size)
except:
net_batch_size = None
return net_neuron_max, net_structure, net_l_2, net_learning_rate, net_epochs, net_dropout, net_layer_n, net_batch_size
def main(args):
"""
Load data
"""
try:
print("\n [ Data Loading ]")
save_metadata = asc.str2bool(args.save_metadata)
train_type = args.train_type
csv_file = PurePath(args.input_file)
cols_to_remove = args.ignore_col
target_col = args.target_col
input_col = args.input_col
model_type = args.model_type
hyperparameter_file = asc.fix_value(args.hyperparameter_file,'PurePath')
num_of_features = int(args.num_of_features)
num_of_folds = int(args.num_of_folds)
test = asc.str2bool(args.test)
mapping = args.mapping
project_file = PurePath(args.project_file)
save_test_chart = asc.str2bool(args.save_test_chart)
save_auto_tune = asc.str2bool(args.save_auto_tune)
save_test_csv = asc.str2bool(args.save_test_csv)
auto_tune = asc.str2bool(args.auto_tune)
auto_tune_iter = int(args.auto_tune_iter)
random_state = asc.fix_value(args.random_state,'int')
feature_selection = args.feature_selection
feature_selection_file = args.feature_selection_file
scaler_option = args.scaler
save_corr_chart = args.save_corr_chart
only_pcc = args.only_pcc
net_fast_tune = args.net_fast_tune
save_corr_report = args.save_corr_report
net_structure = args.net_structure
net_layer_n = args.net_layer_n
net_dropout = args.net_dropout
net_l_2 = args.net_l_2
net_learning_rate = args.net_learning_rate
net_epochs = args.net_epochs
net_batch_size = args.net_batch_size
net_neuron_max = args.net_neuron_max
net_batch_size_max = int(args.net_batch_size_max)
net_layer_min = int(args.net_layer_min)
net_layer_max = int(args.net_layer_max)
net_dropout_max = float(args.net_dropout_max)
net_default_neuron_max = int(args.net_default_neuron_max)
net_checkpoint = args.net_checkpoint
num_of_class = int(args.num_of_class)
#os.environ['PYTHONHASHSEED'] = str(random_state)
# Setting the seed for numpy-generated random numbers
#np.random.seed(random_state)
# Setting the seed for python random numbers
#rn.seed(random_state)
# Setting the graph-level random seed.
tf.set_random_seed(random_state)
print(" Loading data from :%s"%(csv_file))
print(" Columns to ignore :%s"%(cols_to_remove))
data_df, x_train, y_train, header_x, header_y = asc.data_load_shuffle(csv_file, input_col, cols_to_remove, target_col, map_all = ast.literal_eval(mapping), random_state = random_state)
print(" Input columns :%s"%(header_x))
print(" Target column :%s"%(target_col))
if not os.path.exists(project_file): os.makedirs(project_file)
for folder in ["predictions","correlations","tests","parameters","graphs","models"]:
if not os.path.exists(project_file / folder): os.makedirs(project_file / folder)
input_name=csv_file.stem
except Exception as e:
print("* An error occurred while loading data from ", args.input_file)
print(e)
sys.exit()
"""
Analyze correlation
"""
if feature_selection is not None:
session_number=asc.get_session(project_file)
if save_corr_report is not None:
if save_corr_report =='True':
save_corr_report = project_file / "correlations" / ("session"+str(session_number) + train_type+"_"+csv_file.name +"_target="+target_col+".csv")
else:
save_corr_report = None
if save_corr_chart is not None:
if save_corr_chart=='True':
save_corr_chart = project_file / "correlations" / ("session"+str(session_number) + train_type+"_"+csv_file.name +"_target="+target_col+".png")
else:
save_corr_chart = None
fs_dict, final_report = asc.correlation_analysis_all(data_df, target_col, num_of_features, file_to_save = save_corr_report, save_chart = save_corr_chart, only_pcc = only_pcc, feature_selection_file = feature_selection_file)
if (feature_selection!="PCC") and (feature_selection!="PCC_SQRT") and only_pcc=='True':
print("!! Error: you need to use PCC or PCC_SQRT for feature selection when only_pcc is set to True.")
sys.exit()
input_col = fs_dict[feature_selection]
print("\n [ Feature Selection ]")
print(" Reloading the data using the selected features : ", input_col," by criteron ", feature_selection, "top_k=", num_of_features)
data_df, x_train, y_train, header_x, header_y = asc.data_load_shuffle(csv_file, input_col, cols_to_remove, target_col, map_all = ast.literal_eval(mapping), random_state = random_state)
print(" Input columns :%s"%(header_x))
print(" Target column :%s"%(target_col))
print(" Saving correlation report to " + str(project_file / "correlations" / ("session"+str(session_number) + train_type+"_"+csv_file.name +"_target="+target_col+".csv")))
print(" Saving correlation chart to " + str(project_file / "correlations" / ("session"+str(session_number) + train_type+"_"+csv_file.name +"_target="+target_col+".png")))
"""
Tune model
"""
if auto_tune is True and model_type!='LR' and model_type!='LRC':
print("\n [ Hyperparameter Tuning ]")
print(" Training with %s ..."%asc.model_name(model_type))
if model_type=='NET':
if net_checkpoint=='True':
checkpoint = csv_file
else:
checkpoint = None
model_parameters = {}
net_neuron_max, net_structure, net_l_2, net_learning_rate, net_epochs, net_dropout, net_layer_n, net_batch_size = \
clean_up_net_params(net_neuron_max, net_structure, net_l_2, net_learning_rate, net_epochs, net_dropout, net_layer_n, net_batch_size)
if net_fast_tune == 'True':
fast_tune = True
else:
fast_tune = False
if train_type=='r':
model_parameters = asc.net_tuning(tries = auto_tune_iter, lr = net_learning_rate, x_train = x_train, y_train = y_train, layer = net_layer_n, \
params=net_structure, epochs=net_epochs, batch_size=net_batch_size, dropout=net_dropout, l_2 = net_l_2, neuron_max=net_neuron_max, batch_size_max=net_batch_size_max, \
layer_min = net_layer_min, layer_max=net_layer_max, dropout_max=net_dropout_max, default_neuron_max=net_default_neuron_max, checkpoint = checkpoint, num_of_folds=num_of_folds, fast_tune = fast_tune, random_state = random_state)
else:
model_parameters = asc.net_tuning_classifier(num_of_class = num_of_class, tries = auto_tune_iter, lr = net_learning_rate, x_train = x_train, y_train = y_train, layer = net_layer_n, \
params=net_structure, epochs=net_epochs, batch_size=net_batch_size, dropout=net_dropout, l_2 = net_l_2, neuron_max=net_neuron_max, batch_size_max=net_batch_size_max, \
layer_min = net_layer_min, layer_max=net_layer_max, dropout_max=net_dropout_max, default_neuron_max=net_default_neuron_max, checkpoint = checkpoint, num_of_folds=num_of_folds, fast_tune = fast_tune, random_state = random_state)
else:
print (" Auto hyperparameter tuning initiated. ")
if hyperparameter_file is not None:
print (" Warning: %s will be overrided and not be used."%(hyperparameter_file))
if train_type=='r':
model_parameters = asc.hyperparameter_tuning(model_type, x_train, y_train
, num_of_folds, scaler_option
, n_iter=auto_tune_iter, random_state=random_state, verbose=1)
else:
model_parameters = asc.hyperparameter_tuning_classifier(model_type, x_train, y_train
, num_of_folds, scaler_option
, n_iter=auto_tune_iter, random_state=random_state, verbose=1)
if model_parameters == {}:
print(" The tool couldn't find good parameters ")
print (" Using default scikit-learn hyperparameters ")
model_parameters = asc.default_model_parameters()
else:
if hyperparameter_file is not None and model_type!='LRC':
print (" Using hyperparameters from the file %s"%(hyperparameter_file))
model_parameters = asc.load_model_parameter_from_file(hyperparameter_file)
else:
print (" Using default scikit-learn hyperparameters ")
if train_type=='c': model_parameters = asc.default_model_parameters_classifier()
else: model_parameters = asc.default_model_parameters()
print (" Overriding parameters from command-line arguments ..")
if net_structure !='Tune':
print(" net_structure is set to ", net_structure)
model_parameters['net_structure'] = net_structure
if net_dropout !='Tune':
print(" net_dropout is set to ", net_dropout)
model_parameters['net_dropout'] = net_dropout
if net_l_2 !='Tune':
print(" net_l_2 is set to ", net_l_2)
model_parameters['net_l_2'] = net_l_2
if net_learning_rate !='Tune':
print(" net_learning_rate is set to ", net_learning_rate)
model_parameters['net_learning_rate'] = net_learning_rate
if net_epochs !='Tune':
print(" net_epochs is set to ", net_epochs)
model_parameters['net_epochs'] = net_epochs
if net_batch_size !='Tune':
print(" net_batch_size is set to ", net_batch_size)
model_parameters['net_batch_size'] = net_batch_size
if net_layer_n !='Tune':
print(" net_layer_n is set to ", net_layer_n)
model_parameters['net_layer_n'] = net_layer_n
if train_type=='r': model_parameters['scaler_option'] = scaler_option
MAE = None
R2 = None
accuracy = None
"""
Evaluate model
"""
if test is True:
try:
print("\n [ Model Evaluation ]")
if model_type!='NET':
if train_type=='r':
model = asc.define_model_regression(model_type, model_parameters, x_header_size = x_train.shape[1], random_state = random_state)
predictions, actual_values = asc.train_and_predict(model, x_train, y_train, scaler_option=scaler_option, num_of_folds=num_of_folds)
MAE, R2 = asc.evaluate(predictions, actual_values)
else:
model = asc.define_model_classifier(model_type, model_parameters, x_header_size = x_train.shape[1], random_state = random_state)
predictions, actual_values = asc.train_and_predict(model, x_train, y_train, scaler_option=scaler_option, num_of_folds=num_of_folds)
accuracy = asc.evaluate_classifier(predictions, actual_values)
print("")
print("* Classification Report")
print(classification_report(actual_values, predictions))
print("* Confusion Matrix (See here: http://bit.ly/2WxfXTy)")
print(confusion_matrix(actual_values, predictions))
print("")
else:
lr = float(model_parameters['net_learning_rate'])
layer = int(model_parameters['net_layer_n'])
dropout = float(model_parameters['net_dropout'])
l_2 = float(model_parameters['net_l_2'])
epochs = int(model_parameters['net_epochs'])
batch_size = int(model_parameters['net_batch_size'])
if ((type(net_structure)==list)==False):
net_structure = [int(x) for x in model_parameters['net_structure'].split(" ")]
else:
net_structure = [int(x) for x in net_structure]
optimizer = keras.optimizers.Adam(lr=lr)
if train_type=='r':
model = asc.net_define(params=net_structure, layer_n = layer, input_size = x_train.shape[1], dropout=dropout, l_2=l_2, optimizer=optimizer, random_state = random_state)
else:
model = asc.net_define_classifier(params=net_structure, layer_n = layer, input_size = x_train.shape[1], dropout=dropout, l_2=l_2, optimizer=optimizer, num_of_class = num_of_class, random_state=random_state)
if train_type=='r':
predictions, actual_values = asc.cross_val_predict_net(model, epochs=epochs, batch_size=batch_size, x_train = x_train, y_train = y_train, verbose = 0, scaler_option = scaler_option, num_of_folds = num_of_folds, fast_tune = net_fast_tune)
else:
predictions, actual_values = asc.cross_val_predict_net_classifier(model, epochs=epochs, batch_size=batch_size, x_train = x_train, y_train = y_train, verbose = 0, scaler_option = scaler_option, num_of_folds = num_of_folds, num_of_class = num_of_class, fast_tune = net_fast_tune)
if train_type=='r':
MAE, R2 = asc.evaluate(predictions, actual_values)
print("* (%s)\t MAE = %8.3f, R2 = %8.3f via %d-fold cross validation "%(model_type, MAE, R2, num_of_folds))
else:
accuracy = asc.evaluate_classifier(predictions, actual_values)
except Exception as e:
print("* An error occurred while performing ML evaluation")
print(e)
sys.exit()
project_name=project_file.stem
project_path=project_file.parent
if save_metadata is True:
print(" Saving metadata to "+ str(project_file / "metadata") + ".csv")
try:
session_number=asc.save_metadata(vars(args),{'MAE':MAE, 'R2':R2,'Accuracy':accuracy}, project_file / "metadata.csv")
except:
print(" * Warning: couldn't generate metadata - please make sure the model is properly trained .. ")
if save_test_chart is True and train_type=='r':
print(" Saving test charts to : ", str(project_file / "graphs" / ("session" +str(session_number)+ "r_"+input_name+"_"+model_type+".png")))
try:
asc.save_comparison_chart(predictions, actual_values, project_file / "graphs" / ("session" +str(session_number)+ "r_"+input_name+"_"+model_type+".png"))
except:
print(" * Warning: couldn't generate a chart - please make sure the model is properly trained .. ")
if save_test_csv is True and train_type=='r':
print(" Saving test csv to : ", str(project_file / "tests" / ("session"+str(session_number)+ "r_"+input_name+"_"+model_type+".csv")))
try:
asc.save_test_data(predictions, actual_values, project_file / "tests" / ("session"+str(session_number)+ "r_"+input_name+"_"+model_type+".csv"))
except:
print(" * Warning: couldn't generate a csv - please make sure the model is properly trained .. ")
if save_auto_tune is True:
print(" Saving hyperparameters to file: ", str(project_file / "parameters" / ("session"+str(session_number)+train_type+"_"+input_name+"_"+model_type+".tuned.prop")))
asc.save_parameters(model_parameters, project_file / "parameters" / ("session"+str(session_number)+train_type+"_"+input_name+"_"+model_type+".tuned.prop"))
"""
Save model
"""
try:
print("\n [ Model Save ]")
if model_type!='NET':
if train_type=='r':
model = asc.define_model_regression(model_type, model_parameters, x_header_size = x_train.shape[1], random_state = random_state)
asc.train_and_save(model, project_file / "models" / ("session"+str(session_number)+train_type+"_"+input_name+"_"+model_type+".pkl"), model_type
, input_cols=header_x, target_col=header_y
, x_train=x_train, y_train=y_train, scaler_option=scaler_option, path_to_save = '.', MAE=MAE, R2=R2)
else:
model = asc.define_model_classifier(model_type, model_parameters, x_header_size = x_train.shape[1], random_state = random_state)
asc.train_and_save_classifier(model, project_file / "models" / ("session"+str(session_number)+train_type+"_"+input_name+"_"+model_type+".pkl"), model_type
, input_cols=header_x, target_col=header_y
, x_train=x_train, y_train=y_train, scaler_option=scaler_option, path_to_save = '.', accuracy=accuracy)
else:
lr = float(model_parameters['net_learning_rate'])
layer = int(model_parameters['net_layer_n'])
dropout = float(model_parameters['net_dropout'])
l_2 = float(model_parameters['net_l_2'])
epochs = int(model_parameters['net_epochs'])
batch_size = int(model_parameters['net_batch_size'])
if ((type(net_structure)==list)==False):
net_structure = [int(x) for x in model_parameters['net_structure'].split(" ")]
else:
net_structure = [int(x) for x in net_structure]
optimizer = keras.optimizers.Adam(lr=lr)
if train_type=='c':
model = asc.net_define_classifier(params=net_structure, layer_n = layer, input_size = x_train.shape[1], dropout=dropout, l_2=l_2, optimizer=optimizer, num_of_class = num_of_class)
asc.train_and_save_net_classifier(model, project_file / "models" / ("session"+str(session_number)+train_type+"_"+input_name+"_"+model_type+".pkl"), input_cols=header_x, target_col=header_y, x_train=x_train, y_train=y_train, scaler_option=scaler_option, accuracy=accuracy, path_to_save = '.', num_of_folds=num_of_folds, epochs=epochs, batch_size=batch_size, num_of_class = num_of_class)
else:
model = asc.net_define(params=net_structure, layer_n = layer, input_size = x_train.shape[1], dropout=dropout, l_2=l_2, optimizer=optimizer)
asc.train_and_save_net(model, project_file / "models" / ("session"+str(session_number)+train_type+"_"+input_name+"_"+model_type+".pkl"), input_cols=header_x, target_col=header_y, x_train=x_train, y_train=y_train, scaler_option=scaler_option, MAE=MAE, R2=R2, path_to_save = '.', num_of_folds=num_of_folds, epochs=epochs, batch_size=batch_size)
except Exception as e:
print("* An error occurred while training and saving .. ")
print(e)
sys.exit()
if test==True:
if train_type=='r': print("\n MAE: %s R2: %s" % (MAE,R2))
else: print("\n Accuracy: %s"%accuracy)
if __name__=="__main__":
print("\n * ASCENDS: Advanced data SCiENce toolkit for Non-Data Scientists ")
print(" * ML model trainer \n")
print(" programmed by Matt Sangkeun Lee (lees4@ornl.gov) ")
parser = argparse.ArgumentParser()
parser.add_argument("train_type", help="Choose training type: 'c' for classification or 'r' for regression.",choices=['c','r'])
parser.add_argument( "input_file", help="A csv file to train ML model")
parser.add_argument( "project_file", help="project file to write")
parser.add_argument( "--scaler", help="Perform hyperparameter tuning", choices=['False','StandardScaler','MinMaxScaler','RobustScaler','Normalizer'], default='StandardScaler')
parser.add_argument( "--test", help="Perform cross validation and evaluate the expected performance of the model", choices=['True','False'], default='True')
parser.add_argument( "--auto_tune", help="Perform hyperparameter tuning", choices=['True','False'], default='False')
parser.add_argument( "--save_test_chart", choices=['True','False'], default='True')
parser.add_argument( "--save_test_csv", choices=['True','False'], default='False')
parser.add_argument( "--save_metadata", choices=['True','False'], default='True')
parser.add_argument( "--mapping", help="Mapping string value to numbers", default='{}')
parser.add_argument( "--save_auto_tune", choices=['True','False'], default='True')
parser.add_argument( "--auto_tune_iter", default='1000')
parser.add_argument( "--input_col", help="Input columns for training", nargs='+')
parser.add_argument( "--num_of_class", help="number of class for classification", default=2)
parser.add_argument( "--ignore_col", help="Columns to ignore for training", nargs='+')
parser.add_argument( "--random_state", help="Random seed to shuffle dataset for random values", default='None')
parser.add_argument( "target_col", help="A column to predict"),
parser.add_argument( "--model_type", choices=['NET','RF','SVM','NN','RG','LRC','BR','KR','LR'], default='RF', help="LRC (Logistic Regression), RF (Random Forest), SVM (Support Vector Machine), RG (Ridge), or NN (k-Nearest Neighbor), RF is selected by default")
parser.add_argument( "--num_of_features", help="Number of total features (automatic feature selection)", default=10)
parser.add_argument( "--num_of_folds", help="Number of folds for cross validation", default=5)
parser.add_argument( "--hyperparameter_file", help="Specify a hyperparameter file in case you want to \
use specific hyper parameters")
parser.add_argument("--feature_selection", default=None, choices=['PCC','PCC_SQRT','MIC','MAS','MEV','MCN','MCN_general','GMIC','TIC'])
parser.add_argument("--feature_selection_file", default=None)
parser.add_argument("--save_corr_report", default='False', choices=['True','False'])
parser.add_argument("--save_corr_chart", default='False', choices=['True','False'])
parser.add_argument("--only_pcc", default='False', choices=['True','False'])
parser.add_argument("--net_fast_tune", default='False', choices=['True','False'])
# neural net parameters
parser.add_argument("--net_layer_n", default='Tune', help='Number of layers for neural network for hyperparameter tuning')
parser.add_argument("--net_structure", default='Tune', nargs='+', help='If set to Tune, then the tool tries to tune when hyperparameter tuning is on . Specify specific structure of neural network if you want (e.g., 16 64 16)')
parser.add_argument("--net_dropout", default='Tune', help='If set to Tune, then the tool tries to tune when hyperparameter tuning is on ')
parser.add_argument("--net_l_2", default='Tune', help='If set to Tune, then the tool tries to tune when hyperparameter tuning is on ')
parser.add_argument("--net_learning_rate", default='Tune', help='then the tool tries to tune when hyperparameter tuning is on ')
parser.add_argument("--net_epochs", default='Tune', help='If set to Tune, then the tool tries to tune when hyperparameter tuning is on ')
parser.add_argument("--net_batch_size", default='Tune', help='If set to Tune, then the tool tries to tune when hyperparameter tuning is on ')
parser.add_argument("--net_neuron_max", default=-1, nargs='+', help='specify max neurons for each layer for tuning (e.g., 64 32 128), if -1, default_neuron_max value will be used for all layers')
parser.add_argument("--net_batch_size_max", default=5, type=int)
parser.add_argument("--net_layer_min", default=3, type=int)
parser.add_argument("--net_layer_max", default=5, type=int)
parser.add_argument("--net_dropout_max", default=0.2, type=float)
parser.add_argument("--net_default_neuron_max", default=32, type=int)
parser.add_argument("--net_checkpoint", default='True', choices=['True','False'])
args = parser.parse_args()
main(args)