-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcall_ims.py
executable file
·384 lines (318 loc) · 15.1 KB
/
call_ims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#!/usr/bin/env python
################ CHANGES #####################
# 0.3 (7-Nov-2014) --> option to generate wn3.0 synsets
# 0.4 (7-Dec-2014) --> tokens like <wf>they are</wf> are correctly matched (new function in align.py script)
##################
import sys
import os
import argparse
import pprint
from collections import defaultdict
from subprocess import Popen, PIPE
from KafNafParserPy import *
from tempfile import NamedTemporaryFile
from align import align_lists #def align_lists(l1,ids,l2):
from path_to_ims import PATH_TO_IMS
##Change these variables if you want to use your own trained models
ims_models = '/home/izquierdo/ruben_github/it_makes_sense_WSD/ims/semcor30_wngloss_models'
#ims_models = '/home/izquierdo/ruben_github/it_makes_sense_WSD/ims/model_semcor30_lexkey'
wordnet_dict_folder = '/home/izquierdo/wordnets/wordnet-3.0/dict/index.sense'
os.environ['LC_ALL'] = 'en_US.UTF-8'
DEBUG = 0
__encoding__ = 'utf-8'
__this_name__ = 'It_Makes_Sense_WSD'
__this_version__ = '0.4'
__this_dir__ = os.path.dirname(os.path.realpath(__file__))
__wordnet171_path__ = __this_dir__+'/resources/WordNet-1.7.1'
__wordnet171_index_sense = __wordnet171_path__+'/dict/index.sense'
__mappings_path__ = __this_dir__+'/resources/mappings-upc'
ADJ = 'adj'
ADV = 'adv'
NOUN = 'noun'
VERB = 'verb'
def load_skeys_for_words():
skeys_for_word = defaultdict(set)
skey_to_synset = defaultdict(set)
my_index = wordnet_dict_folder #__wordnet171_index_sense
if os.path.exists(my_index):
fd = open(my_index,'r')
for line in fd:
fields = line.strip().split()
skey = fields[0]
synset = fields[1]
skey_to_synset[skey] = synset
word_pos = skey[:skey.find('%')+2]
skeys_for_word[word_pos].add(skey)
fd.close()
else:
print>>sys.stderr,'Wordnet index.sense file not found at',__wordnet171_index_sense
return skeys_for_word, skey_to_synset
def parse_ims_annotation(this_annotation):
# this annotation is like: <x length="1 interest%2:37:00::|0.3614994335108463 interest%2:42:00::|0.3229031978804859 interest%2:42:01::|0.3155973686086678">interested</x>'
senses = []
my_fields = this_annotation.split('"')
list_senses = my_fields[1]
individual_senses = list_senses.split(' ')
for individual_sense in individual_senses[1:]:
sensekey, confidence = individual_sense.split('|')
senses.append((sensekey,confidence))
p1 = this_annotation.find('">')+2
p2 = this_annotation.find("</x>",p1)
lemma = this_annotation[p1:p2]
return lemma, senses
def parse_ims_annotated_sentence(this_line, list_tokens, list_token_ids):
senses_for_token_id = {}
current = 0
# This contains just tokens split by whitespace
raw_fields = this_line.split(' ')
new_fields = []
inside_annotation = False
for raw_field in raw_fields:
if raw_field == '<x':
inside_annotation = True
new_fields.append(raw_field)
elif raw_field[-4:] == '</x>':
inside_annotation = False
new_fields[-1] = new_fields[-1]+' '+raw_field
else:
if inside_annotation:
new_fields[-1] = new_fields[-1]+' '+raw_field
else:
new_fields.append(raw_field)
# New tokens generated by IMS (lemmas) and an aligned list of word senses
new_tokens = []
senses_for_token = []
for num_token, this_field in enumerate(new_fields):
if this_field[:2] == '<x':
#token_id = list_token_ids[num_token]
lemma, senses = parse_ims_annotation(this_field)
new_tokens.append(lemma)
senses_for_token.append(senses)
#senses_for_token_id[token_id] = parse_ims_annotation(this_field)
else:
new_tokens.append(this_field)
senses_for_token.append(None)
#We obtain for each new token what is the identifier in the original tokens (all lists are aligned)
mapped_token_ids = align_lists(list_tokens,list_token_ids,new_tokens)
if mapped_token_ids is None:
print>>sys.stderr,'ERROR!!! Matching tokens', list_tokens, list_token_ids,' SKIP!'
return {}
#Finally we create the object for each token id the list of possible senses
for n in range(len(new_tokens)):
senses = senses_for_token[n]
if senses is not None:
token_id = mapped_token_ids[n]
if token_id in senses_for_token_id:
senses_for_token_id[token_id].extend(senses)
else:
senses_for_token_id[token_id] = senses
return senses_for_token_id
def call_as_subprocess(input_filename,is_there_pos):
this_out = NamedTemporaryFile('w', delete = False)
this_out.close()
cmd = ['./testPlain.bash']
#cmd.append('models') ##models folder must be inside the ims folder
#cmd.append('/home/izquierdo/ruben_github/it_makes_sense_WSD/ims/model_semcor30_lexkey')
cmd.append(ims_models)
cmd.append(input_filename)
cmd.append(this_out.name)
cmd.append(wordnet_dict_folder)
cmd.append('1 1') #is sentence splitted and tokenised
if is_there_pos:
cmd.append('1')
else:
cmd.append('0')
this_ims = Popen(' '.join(cmd), stdin=None, stdout=None, stderr = PIPE, shell = True, cwd = PATH_TO_IMS)
return_code = this_ims.wait()
sentences_tagged = []
if return_code != 0:
print>>sys.stderr,'Error with IMS at',PATH_TO_IMS
print>>sys.stderr,this_ims.stderr.read()
else:
f_in = open(this_out.name,'r')
for line in f_in:
sentences_tagged.append(line.decode(__encoding__).strip())
f_in.close()
os.remove(this_out.name)
return sentences_tagged
def load_mapping(from_version, to_version):
map_from_to = {}
for pos in [ADJ,ADV,NOUN,VERB]:
map_from_to[pos] = {}
map_file = __mappings_path__+'/mapping-'+from_version+'-'+to_version+'/wn'+from_version+'-'+to_version+'.'+pos
fd = open(map_file,'r')
for line in fd:
fields = line.strip().split()
# In some cases there is more than one possible target synset: 00005388 00525453 0.421 01863970 0.579
# So we need to load all of them and select the one with highest probabily
possible_synsets_conf = []
#This is just to parse 00005388 00525453 0.421 01863970 0.579
for n in range((len(fields)-1)/2):
possible_synsets_conf.append((fields[2*n+1],float(fields[2*n+2])))
synset_from = fields[0]
synset_to = sorted(possible_synsets_conf,key = lambda t: -t[1])[0][0]
map_from_to[pos][synset_from] = synset_to
fd.close()
return map_from_to
def map_skey171_to_synset30(skey171, map_skey171_syn171, map_wn171_wn30):
syn30 = None
syn171 = map_skey171_syn171.get(skey171)
if syn171 is not None:
position = skey171.find('%')
if position != -1:
num_pos = skey171[position+1]
pos = None
short_pos = None
if num_pos == '5' or num_pos == '3': pos,short_pos = ADJ, 'a'
elif num_pos == '2': pos,short_pos = VERB, 'v'
elif num_pos == '1': pos,short_pos = NOUN, 'n'
elif num_pos == '4': pos,short_pos = ADV, 'r'
if pos is not None:
mapping_pos = map_wn171_wn30.get(pos)
if mapping_pos is not None:
this_wn30 = mapping_pos.get(syn171)
if this_wn30 is not None:
syn30 = 'ili-30-'+this_wn30+'-'+short_pos
return syn30
def call_ims(this_input, this_output, use_pos,use_morphofeat,map_to_wn30):
knaf_obj = KafNafParser(this_input)
print>>sys.stderr,'Reading the input ...'
###########################
#Mapping from token id ==> (term_id, lemma, pos)
###########################
tid_term_pos_for_token_id = {}
for term in knaf_obj.get_terms():
span = term.get_span()
if span is not None:
for token_id in span.get_span_ids():
#tid_term_pos_for_token_id[token_id] = (term.get_id(),term.get_lemma(),term.get_pos())
if use_morphofeat:
pos = term.get_morphofeat()
else:
pos = term.get_pos()
tid_term_pos_for_token_id[token_id] = (term.get_id(),term.get_lemma(),pos)
###########################
###########################
## Load the sentences
# This is a list of lists, where each sublist is a list of pairs (token_id, text)
###########################
sentences = []
this_sent = None
current_sent = []
for token in knaf_obj.get_tokens():
if token.get_sent() != this_sent and this_sent is not None:
sentences.append(current_sent)
current_sent = [(token.get_id(),token.get_text())]
else:
current_sent.append((token.get_id(),token.get_text()))
this_sent = token.get_sent()
sentences.append(current_sent)
###########################
###########################
# Create temporary input file for the IMS as it only read input from files
###########################
this_temp = NamedTemporaryFile('w', delete = False)
for sentence in sentences:
for token_id, token_text in sentence:
if use_pos or use_morphofeat:
term_id,lemma,pos = tid_term_pos_for_token_id[token_id]
this_temp.write(token_text.encode(__encoding__)+'/'+pos.encode(__encoding__)+' ')
else:
this_temp.write(token_text.encode(__encoding__)+' ')
this_temp.write('\n')
this_temp.close()
###########################
###Loading mapping from word to list of sensekeys
skeys_for_word, skey_to_synset = load_skeys_for_words()
###########################
# Calling to
###########################
print>>sys.stderr,'Calling to IMS at',PATH_TO_IMS,'...'
sentences_tagged = call_as_subprocess(this_temp.name,use_pos or use_morphofeat)
os.remove(this_temp.name)
###########################
map_wn171_wn30 = None
if map_to_wn30:
map_wn171_wn30 = load_mapping('171','30')
print>>sys.stderr,'Adding external references and writing the output ...'
for n, sentence in enumerate(sentences_tagged):
print>>sys.stderr,'Running sentence',n#,sentence
list_tokens = []
list_token_ids = []
for token_id, token_text in sentences[n]:
list_tokens.append(token_text)
list_token_ids.append(token_id)
senses_for_token_id = parse_ims_annotated_sentence(sentence,list_tokens, list_token_ids)
# Add the new information to the kaf/naf obj
for token_id, senses in senses_for_token_id.items():
answered_for_this_token = set()
if not token_id in tid_term_pos_for_token_id:
print>>sys.stderr,'WARNING!!! Token id:',token_id,' Senses:', senses, ' Not found in any term !!!'
continue
term_id,_,_ = tid_term_pos_for_token_id[token_id] # termid, lemma, pos
for sensekey, confidence in senses:
new_ext_ref = CexternalReference()
new_ext_ref.set_confidence(confidence)
reference = resource = None
if map_to_wn30:
synset30 = map_skey171_to_synset30(sensekey, skey_to_synset, map_wn171_wn30)
reference = synset30
resource = 'WordNet-3.0'
else:
reference = sensekey
#resource = 'ItMakesSense#WN-1.7.1'
resource = 'IMS_WN30+WN_Gloss30'
if reference is not None:
new_ext_ref.set_reference(reference)
new_ext_ref.set_resource(resource)
knaf_obj.add_external_reference_to_term(term_id, new_ext_ref)
answered_for_this_token.add(sensekey)
##Adding the rest of possible skeys with probability 0
possible_skeys = set()
for answered_sense in answered_for_this_token:
word_pos = answered_sense[:answered_sense.find('%')+2]
possible_skeys = possible_skeys | skeys_for_word.get(word_pos,set())
for possible_skey in possible_skeys:
if possible_skey not in answered_for_this_token:
new_ext_ref = CexternalReference()
new_ext_ref.set_confidence('0')
reference = resource = None
if map_to_wn30:
synset30 = map_skey171_to_synset30(possible_skey, skey_to_synset, map_wn171_wn30)
reference = synset30
resource = 'WordNet-3.0'
else:
reference = possible_skey
#resource = 'ItMakesSense#WN-1.7.1'
resource = 'IMS_WN30+WN_Gloss30'
if reference is not None:
new_ext_ref.set_reference(reference)
new_ext_ref.set_resource(resource)
knaf_obj.add_external_reference_to_term(term_id, new_ext_ref)
##################
if DEBUG:
pprint.pprint('Sentence:'+str(n),stream=sys.stderr)
pprint.pprint(sentences[n],stream=sys.stderr)
pprint.pprint(sentence,stream=sys.stderr)
pprint.pprint(senses_for_token_id, stream=sys.stderr)
pprint.pprint('============', stream=sys.stderr)
my_lp = Clp()
my_lp.set_name(__this_name__)
my_lp.set_version(__this_version__)
my_lp.set_timestamp()
knaf_obj.add_linguistic_processor('terms',my_lp)
knaf_obj.dump(this_output)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Wrapper for the ItMakesSense WSD system that allows KAF/NAF as input and output formats',
usage='cat myfile.naf | '+sys.argv[0]+' [-h] [-pos|-morphofeat]')
parser.add_argument('-ili30', dest='map_to_wn_30', action='store_true',help='Map skeys of WN171 provided by the system to ili synsets of WN30')
group = parser.add_mutually_exclusive_group()
group.add_argument('-pos', dest='use_knaf_pos', action='store_true', help='Use the POS tags of the pos attribute in the input KAf/NAF file')
group.add_argument('-morphofeat', dest='use_knaf_morpho', action='store_true', help='Use the POS tags of the morphofeat attribute in the input KAf/NAF file')
args = parser.parse_args()
if sys.stdin.isatty():
parser.print_help()
sys.exit(-1)
else:
# Reading from the standard input
call_ims(sys.stdin, sys.stdout, use_pos = args.use_knaf_pos, use_morphofeat = args.use_knaf_morpho, map_to_wn30 = args.map_to_wn_30)