-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbox_1_ceiling_effect.Rmd
135 lines (112 loc) · 4.3 KB
/
box_1_ceiling_effect.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Ceiling Effect Simulation
## Generate data
```{r}
set.seed(12345)
library(tidyverse)
n <- 500
ceiling <- tibble(
Moderator = c(rep(0, n/5*4), rep(1, n/5)),
pred = 1.4 * Moderator + 0.7 * rnorm(n),
out = 1.1 * Moderator + 0.6 * pred + 0.5 * rnorm(n)
) %>%
mutate(
Moderator = as.factor(Moderator)
)
sd(ceiling$out)
```
## Plot latent variable
```{r}
library(ggplot2)
theme_set(ggthemes::theme_clean())
p1 <- ggplot(data = ceiling, aes(x = pred, y = out, color = Moderator)) +
geom_point(alpha = .3) +
geom_smooth(method = "lm", formula = y~x) +
coord_cartesian(ylim = c(min(ceiling$out), max(ceiling$out))) +
xlab("Predictor") +
ylab("Outcome") +
scale_color_viridis_d(guide = F, begin = 0.3, end = 0.8) +
theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))
p1
qplot(residuals(lm(out ~ pred*Moderator, ceiling)))
qplot(ceiling$out)
```
## Plot censored variable
```{r}
ceiling$cens <- ceiling$out
ceiling$cens[ceiling$cens > 2] <- 2
p2 <- ggplot(data = ceiling, aes(x = pred, y = cens, color = Moderator)) +
geom_point(alpha = .3) +
geom_smooth(method = "lm", formula = y~x) +
coord_cartesian(ylim = c(min(ceiling$out), max(ceiling$out))) +
xlab("Predictor") +
ylab("Outcome with ceiling") +
scale_color_viridis_d(begin = 0.3, end = 0.8) +
theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))
p2
reg <- lm(cens ~ pred*Moderator, ceiling)
summary(reg)
qplot(residuals(reg))
qplot(ceiling$cens)
```
## Plot ordinal variable
```{r}
ceiling$ordinal <- ceiling$out
ceiling$ordinal[ceiling$ordinal > 2] <- 2
ceiling$ordinal[ceiling$ordinal < -2] <- -2
ceiling$ordinal <- round(ceiling$ordinal)
p3 <- ggplot(data = ceiling, aes(x = pred, y = ordinal, color = Moderator)) +
geom_point(alpha = .3) +
geom_smooth(method = "lm", formula = y~x) +
coord_cartesian(ylim = c(min(ceiling$out), max(ceiling$out))) +
scale_color_viridis_d(guide = F, begin = 0.3, end = 0.8) +
xlab("Predictor") +
ylab("Outcome measured on Likert scale") +
theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))
p3
reg <- lm(ordinal ~ pred*Moderator, ceiling)
summary(reg)
qplot(residuals(reg))
qplot(ceiling$ordinal)
```
## Multi-plot
```{r}
library(cowplot)
plot_grid(p1, p2 + theme(legend.title = element_text(size = 9), legend.background = element_blank(), legend.position = c(0.5,0.85), legend.justification = "right"), p3, labels = c("A", "B", "C"), nrow = 1, align = "hv", axis = "lb")
ggsave("plots/ceiling_multiplot.png", width = 7, height = 3)
ggsave("plots/ceiling_multiplot.pdf", width = 7, height = 3)
```
## Fit models with improper measurement models/distributional assumptions
```{r}
library(brms)
# original data: no interaction
summary(brm(out ~ pred*Moderator, data = ceiling, cores = 4, backend = "cmdstanr", file = "models/ceiling/original_no_interaction"))
# with ceiling effect: interaction
summary(uncensored <-brm(cens ~ pred*Moderator, data = ceiling, cores = 4, backend = "cmdstanr", file = "models/ceiling/ceiling_effect"))
# with ordinal variable: interaction
summary(brm(ordinal ~ pred*Moderator, data = ceiling, cores = 4, backend = "cmdstanr", file = "models/ceiling/ordinal_as_gaussian"))
qplot(ceiling$ordinal)
qplot(ceiling$cens)
```
## Fit proper models
Now let's set up a better model in brms.
First we set a variable that tells us which values are censored and in what way
```{r}
ceiling$censored <- "none"
ceiling$censored[ceiling$cens >= 2] <- "right"
table(ceiling$censored)
```
Run model
```{r}
censored <- brm(cens | cens(censored) ~ pred * Moderator, data = ceiling, cores = 4, backend = "cmdstanr", file = "models/ceiling/censored")
summary(censored)
loo(uncensored, censored)
```
Now we treat the ordinal variable as ordinal instead of Gaussian. We're assuming a cumulative distribution with equidistant thresholds (because that's what we simulated).
```{r}
ceiling$ordinal <- factor(ceiling$ordinal, ordered = TRUE)
ordinal <- brm(ordinal ~ pred*Moderator, data = ceiling, family = cumulative(), cores = 4, backend = "cmdstanr", file = "models/ceiling/cumulative")
summary(ordinal)
```