Note: This is a generated markdown export from the Jupyter notebook file regression_bagging.ipynb. You can also view the notebook with the nbviewer from Jupyter.
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from sklearn import tree, ensemble, datasets, metrics, model_selection
boston = datasets.load_boston()
print(boston.DESCR)
.. _boston_dataset:
Boston house prices dataset
---------------------------
**Data Set Characteristics:**
:Number of Instances: 506
:Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
:Attribute Information (in order):
- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's
:Missing Attribute Values: None
:Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980. N.B. Various transformations are used in the table on
pages 244-261 of the latter.
The Boston house-price data has been used in many machine learning papers that address regression
problems.
.. topic:: References
- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = boston.target
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, train_size=0.7)
print('train samples:', len(X_train))
print('test samples', len(X_test))
train samples: 354
test samples 152
df_train = pd.DataFrame(y_train, columns=['target'])
df_train['type'] = 'train'
df_test = pd.DataFrame(y_test, columns=['target'])
df_test['type'] = 'test'
df_set = df_train.append(df_test)
_ = sns.displot(df_set, x="target" ,hue="type", kind="kde", log_scale=False)
base_estimator = tree.DecisionTreeRegressor(max_depth=4, criterion='mse')
model = ensemble.BaggingRegressor(n_estimators=10)
model.fit(X_train, y_train)
BaggingRegressor()
predicted = model.predict(X_test)
fig, ax = plt.subplots()
ax.scatter(y_test, predicted)
ax.set_xlabel('True Values')
ax.set_ylabel('Predicted')
_ = ax.plot([0, y.max()], [0, y.max()], ls='-', color='red')
residual = y_test - predicted
fig, ax = plt.subplots()
ax.scatter(y_test, residual)
ax.set_xlabel('y')
ax.set_ylabel('residual')
_ = plt.axhline(0, color='red', ls='--')
_ = sns.displot(residual, kind="kde");
print("r2 score: {}".format(metrics.r2_score(y_test, predicted)))
print("mse: {}".format(metrics.mean_squared_error(y_test, predicted)))
print("rmse: {}".format(np.sqrt(metrics.mean_squared_error(y_test, predicted))))
print("mae: {}".format(metrics.mean_absolute_error(y_test, predicted)))
r2 score: 0.9147090955931128
mse: 7.62062236842105
rmse: 2.76054747621211
mae: 2.170921052631579