-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_bert.py
69 lines (58 loc) · 2.25 KB
/
example_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import torch
from transformers import BertForSequenceClassification, BertTokenizer
from torchinfo import summary # torchinfo
from deepspeed.profiling.flops_profiler import get_model_profile # deepspeed flops profiler
from profiler import TIDSProfiler # our own profiler
def bert_input_constructor(batch_size, seq_len, tokenizer):
fake_seq = ""
for _ in range(seq_len - 2): # ignore the two special tokens [CLS] and [SEP]
fake_seq += tokenizer.pad_token
inputs = tokenizer([fake_seq] * batch_size,
padding=True,
truncation=True,
return_tensors="pt")
labels = torch.tensor([1] * batch_size)
inputs = dict(inputs)
inputs.update({"labels": labels})
# inputs: dict with keys "input_ids", "token_type_ids", "attention_mask", "labels"
return inputs
def profile(args):
with torch.cuda.device(0):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
batch_size = 2
seq_len = 512
if args.profiler == "torchinfo":
# copied from https://stackoverflow.com/a/68577755/9601555
summary(model, input_size=(batch_size, seq_len), dtypes=['torch.cuda.IntTensor'])
elif args.profiler == "deepspeed":
inputs = bert_input_constructor(batch_size, seq_len, tokenizer)
flops, macs, params = get_model_profile(
model,
kwargs=inputs,
print_profile=True,
detailed=True,
module_depth=-1,
warm_up=10
)
elif args.profiler == "tids":
inputs = bert_input_constructor(batch_size, seq_len, tokenizer)
prof = TIDSProfiler(model)
prof.start_profile()
model(**inputs)
profile = prof.generate_profile()
print(profile)
prof.end_profile()
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--profiler",
type=str,
default="tids",
choices=["tids", "torchinfo", "deepspeed"]
)
args = parser.parse_args()
profile(args)
if __name__ == "__main__":
main()