-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgen_figure4a_framewisedisp.py
145 lines (103 loc) · 4.51 KB
/
gen_figure4a_framewisedisp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
'''
Framewise displacement in mm for each participant across all runs as shown in Fig. 4a.
---------------------------------------------------------------------------------
This code is adapted from:
https://github.com/mvdoc/budapest-fmri-data/tree/master/scripts/quality-assurance
Copyright 2020 Matteo Visconti di Oleggio Castello and Jiahui Guo
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
---------------------------------------------------------------------------------
'''
import os
import numpy as np
import pandas as pd
import seaborn as sns
from glob import glob
import argparse
import matplotlib.pyplot as plt
plt.rcParams['svg.fonttype'] = 'none'
def get_subjects(fmriprep_dir):
fns = sorted(glob(os.path.join(fmriprep_dir, 'sub-*/')))
fns = [fn.split('/')[-2] for fn in fns]
return fns
def load_add_idx(sub_fns, sub_idx):
dfs = []
for i, fn in enumerate(sub_fns):
df = pd.read_csv(fn, sep='\t', skiprows=[1])
df['subject'] = sub_idx
df['run'] = i+1
dfs.append(df)
return dfs
def extract_columns(dfs):
keep_columns = [
'framewise_displacement',
'rot_x', 'rot_y', 'rot_z',
'trans_x', 'trans_y', 'trans_z'
,'subject', 'run']
dfs = [df[keep_columns] for df in dfs]
return pd.concat(dfs)
def all_sub_cols(fns, subjects):
all_df = []
for s in subjects:
sub_files = [fn for fn in fns if s in fn]
dfs = load_add_idx(sub_files, s)
dfs_cols = extract_columns(dfs)
all_df.append(dfs_cols)
return all_df
def plot_all_sub_med(df, sids, col):
fig, ax = plt.subplots(1, 1, figsize=(6, 2.5))
pos = np.arange(len(sids))
parts = ax.violinplot(df, positions=pos, showmedians=True);
for pc in parts['bodies']:
pc.set_facecolor('C0')
pc.set_edgecolor('C0')
pc.set_alpha(0.3)
for p in ['cbars', 'cmins', 'cmaxes', 'cmedians']:
parts[p].set_edgecolor('C0')
ax.set_xticks(pos)
ax.set_xticklabels(sids, fontsize=8, rotation=45, ha='center')
ax.tick_params(axis='x', which='major', length=3, pad=0)
if col == 'framewise_displacement':
ylabel = 'Framewise displacement (mm)'
ax.axhline(0.5, color='gray', linestyle=':', zorder=100)
ax.set_yticks([0, 0.5, 1, 1.5, 2., 2.5, 3., 3.5])
else:
ylabel = col
ax.set_ylabel(ylabel, fontsize=8)
ax.tick_params(axis='y', which='major', labelsize=8, length=3, pad=1)
sns.despine()
plt.tight_layout()
outfile = 'group_median-{}.png'.format(col)
fig.savefig(outfile, dpi=300, bbox_inches='tight')
fig.savefig(outfile.replace('png', 'svg'), dpi=300, format='svg', bbox_inches='tight')
def main(fmriprep_dir):
fns = sorted(glob(os.path.join(fmriprep_dir,'*/ses-001/func/*tsv')))
subjects = get_subjects(fmriprep_dir)
dfs = all_sub_cols(fns, subjects)
for col in ['framewise_displacement']:
print("Working on {}".format(col))
df_plot = [df[col].values for df in dfs]
print("Plotting {} for the group".format(col))
plot_all_sub_med(df_plot, subjects, col)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Loads fMRIprep-processed data to compute framewise displacement for each participant.")
parser.add_argument('--fmriprep_dir', type=str, required=True, help='Directory containing fMRIprep-processed functional data.')
args = parser.parse_args()
main(args.fmriprep_dir)
'''
python gen_figure4a_framewisedisp.py --fmriprep_dir /path/to/fmriprep_directory/
'''