tsfresh uses Semantic Versioning
- increased scipy dependency to 1.2.0
- fixed bug in friedrich coefficient where the parameter were ignored and wrong features were returned
- change chunking in energy_ratio_by_chunks to use all data points
- fix warning for spkt_welch_density
- adapt default settings for "value_count" and "range_count"
- added
- maxlag parameter to agg_autocorrelation function
- now, the kind column of the input DataFrame is cast as str, old derived FC_Settings can become invalid
- only set default_fc_parameters to ComprehensiveFCParameters() if also kind_to_fc_parameters is set None in extract_features
- removed pyscaffold
- use asymptotic algorithm to derive kendal tau
- general performance improvements
- removed hard pinning of dependencies
- fixed
- the stock price forecasting notebook
- the multi classification notebook
- new feature calculators:
- fft_aggregated
- cid_ce
- renamed mean_second_derivate_central to mean_second_derivative_central
- add warning if no relevant features were found in feature selection
- add columns_to_ignore parameter to from_columns method
- add distribution module, contains support for distributed feature extraction on Dask
- split test suite into unit and integration tests
- fixed the following bugs
- use name of value column as time series kind
- prevent the spawning of subprocesses which lead to high memory consumption
- fix deployment from travis to pypi
- new feature calculators:
- partial autocorrelation
- added list of calculated features to documentation
- added two ipython notebooks to
- illustrate PCA on features
- illustrate the Benjamini Yekutieli procedure
- fixed the following bugs
- improperly quotation of dickey fuller settings
- new feature calculators:
- ratio_beyond_r_sigma
- energy_ratio_by_chunks
- number_crossing_m
- c3
- angle & abs for fft coefficients
- agg_autocorrelation
- p-Value and usedLag for augmented_dickey_fuller
- change_quantiles
- changed the calculation of the following features:
- fft_coefficients
- autocorrelation
- time_reversal_asymmetry_statistic
- removed the following feature calculators:
- large_number_of_peak
- mean_autocorrelation
- mean_abs_change_quantiles
- add support for multi classification in the feature selection
- improved description of the rolling mechanism
- added function make_forecasting_frame method for forecasting tasks
- internally ditched the pandas representation of the time series, yielding drastic speed improvements
- replaced feature calculator types from aggregate/aggregate with parameter/apply to simple/combiner
- add test for the ipython notebooks
- added notebook to inspect dft features
- make sure that RelevantFeatureAugmentor always imputes
- fixed the following bugs
- impute was replacing whole columns by mean
- fft coefficient were only calculated on truncated part
- allow to suppress warnings from impute function
- added missing lag in time_reversal_asymmetry_statistic
- new features:
- linear trend
- agg trend
- new sklearn compatible transformers
- PerColumnImputer
- fixed bugs
- make mannwhitneyu method compatible with scipy > v0.18.0
- added caching to travis
- internally, added serial calculation of features
- Breaking API changes:
- removing of feature extraction settings object, replaced by keyword arguments and a plain dictionary (fc_parameters)
- removing of feature selection settings object, replaced by keyword arguments
- added notebook with examples of new API
- added chapter in docs about the new API
- adjusted old notebooks and documentation to new API
- added a maximum shift parameter to the rolling utility
- added a FAQ entry about how to use tsfresh on windows
- drastically decreased the runtime of the following features
- cwt_coefficient
- index_mass_quantile
- number_peaks
- large_standard_deviation
- symmetry_looking
- removed baseline unit tests
- bugfixes:
- per sample parallel imputing was done on chunks which gave non deterministic results
- imputing on dtypes other that float32 did not work properly
- several improvements to documentation
- new rolling utility to use tsfresh for time series forecasting tasks
- bugfixes:
- index_mass_quantile was using global index of time series container
- an index with same name as id_column was breaking parallelization
- friedrich_coefficients and max_langevin_fixed_point were occasionally stalling
- progress bar for feature selection
- new feature: estimation of largest fixed point of deterministic dynamics
- new notebook: demonstration how to use tsfresh in a pipeline with train and test datasets
- remove no logging handler warning
- fixed bug in the RelevantFeatureAugmenter regarding the evaluate_only_added_features parameters
- new example: driftbif simulation
- further improvements of the parallelization
- language improvements in the documentation
- performance improvements for some features
- performance improvements for the impute function
- new feature and feature renaming: sum_of_recurring_values, sum_of_recurring_data_points
- fixed several bugs: checking of UCI dataset, out of index error for mean_abs_change_quantiles
- added a progress bar denoting the progress of the extraction process
- added parallelization per sample
- added unit tests for comparing results of feature extraction to older snapshots
- added "high_comp_cost" attribute
- added ReasonableFeatureExtraction settings only calculating features without "high_comp_cost" attribute
- fixed several bugs: closing multiprocessing pools / index out of range cwt calculator / division by 0 in index_mass_quantile
- now all warnings are disabled by default
- for a singular type time series data, the name of value column is used as feature prefix
- fixed bug with parsing of "NUMBER_OF_CPUS" environment variable
- now features are calculated in parallel for each type
- now p-values are calculated in parallel
- fixed bugs for constant features
- allow time series columns to be named 0
- moved uci repository datasets to github mirror
- added feature calculator sample_entropy
- added MinimalFeatureExtraction settings
- fixed bug in calculation of fourier coefficients
- added support for python 3.5.2
- fixed bug with the naming of the features that made the naming of features non-deterministic
- mainly fixes for the read-the-docs documentation, the pypi readme and so on
- Initial version :)