-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathyolosam_inference.py
119 lines (91 loc) · 5.01 KB
/
yolosam_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import cv2
import numpy as np
import torch
import argparse
from FastSAM.fastsam import FastSAM, FastSAMPrompt
from ultralytics import YOLO
import pyrealsense2 as rs
from utils import *
def parse_args():
parser = argparse.ArgumentParser(description='Object Detection with YOLO and FastSAM')
parser.add_argument('--yolo_weight', type=str, required=True, help='Path to YOLO weights file')
parser.add_argument('--fastsam_weight', type=str, required=True, help='Path to FastSAM weights file (e.g., FastSAM-x.pt)')
parser.add_argument('--confidence_threshold', type=float, default=0.7, help='Confidence threshold for YOLO detection (default: 0.7)')
parser.add_argument('--bbox_color', type=str, default="red", help='Bounding box color (default: "red")')
parser.add_argument('--font_scale', type=float, default=0.5, help='Font scale for displaying text (default: 0.5)')
parser.add_argument('--font_thickness', type=int, default=1, help='Font thickness for displaying text (default: 1)')
parser.add_argument('--conf', type=float, default=0.4, help='Confidence threshold for the FastSAM model (default: 0.4)')
parser.add_argument('--iou', type=float, default=0.9, help='IoU threshold for non-maximum suppression (default: 0.9)')
parser.add_argument('--show_mask', action='store_true', help='Show resulting binary mask')
return parser.parse_args()
def main():
args = parse_args()
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
pipeline.start(config)
# Load YOLOv8 and FastSAM model
yolo_model = YOLO(args.yolo_weight)
fastsam_model = FastSAM(args.fastsam_weight)
DEVICE = torch.device(
"cuda:0"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(DEVICE)
cv2.namedWindow('YOLO Inference', cv2.WINDOW_NORMAL)
cv2.namedWindow('FastSAM Inference', cv2.WINDOW_NORMAL)
if args.show_mask:
cv2.namedWindow('Annotation Mask', cv2.WINDOW_NORMAL)
try:
while True:
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
if not color_frame:
continue
color_image = np.asanyarray(color_frame.get_data())
# Perform YOLO inference using the defined function
detections, predicted_boxes = perform_yolo_inference(color_image, yolo_model, confidence_threshold=args.confidence_threshold)
if len(predicted_boxes) > 0:
# Extract all bounding boxes from YOLO predictions
bounding_boxes = [list(map(int, box[:4])) for box in predicted_boxes]
# Run FastSAM on the color image
fastsam_results = fastsam_model(color_image, device=DEVICE, retina_masks=True, imgsz=640, conf=args.conf, iou=args.iou)
# Check if there are FastSAM results
if fastsam_results:
prompt_process = FastSAMPrompt(color_image, fastsam_results, device=DEVICE) # FastSAMPrompt instance
ann = prompt_process.box_prompt(bboxes=bounding_boxes) # Use all bounding boxes for FastSAM prompt
img_with_annotations = prompt_process.plot_to_result(annotations=ann)
cv2.imshow('FastSAM Inference', img_with_annotations)
if args.show_mask: # Convert annotations to binary mask numpy array
ann_masks = np.array(ann).astype(np.uint8)
ann_mask_overlay = np.sum(ann_masks, axis=0)
# Normalizing the overlay in the range [0, 1] and convert to uint8
ann_mask_overlay_normalized = (ann_mask_overlay / np.max(ann_mask_overlay) * 255).astype(np.uint8)
cv2.imshow('Annotation Mask', ann_mask_overlay_normalized)
else:
# If no FastSAM results, show the original frame in the FastSAM window
cv2.imshow('FastSAM Inference', color_image)
# Draw bounding boxes and display detection information on the image
for detection in detections:
x1, y1, x2, y2 = detection['bounding_box']
confidence = detection['confidence']
class_name = detection['class_name']
cv2.rectangle(color_image, (x1, y1), (x2, y2), get_color(args.bbox_color), 3)
# Display confidence and class name
org = (x1, y1 - 10)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = args.font_scale
color = (255, 255, 255)
thickness = args.font_thickness
cv2.putText(color_image, f"{class_name}: {confidence}", org, font, font_scale, color, thickness)
cv2.imshow('YOLO Inference', color_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
pipeline.stop()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()