-
Notifications
You must be signed in to change notification settings - Fork 1
/
predict.py
260 lines (209 loc) · 11.5 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import argparse
from itertools import product
import pyhocon
from sklearn.cluster import AgglomerativeClustering
from transformers import AutoTokenizer, AutoModel
from conll import write_output_file
from model_utils import *
from models import SpanScorer, SimplePairWiseClassifier, SpanEmbedder, SimpleFusionLayer
from train_pairwise_scorer import get_all_candidate_spans
from utils import *
def init_models(config, device):
span_repr = SpanEmbedder(config, device).to(device)
span_repr.load_state_dict(torch.load(os.path.join(config['model_path'],
"span_repr_{}".format(config['model_num'])),
map_location=device))
span_repr.eval()
span_scorer = SpanScorer(config).to(device)
span_scorer.load_state_dict(torch.load(os.path.join(config['model_path'],
"span_scorer_{}".format(config['model_num'])),
map_location=device))
span_scorer.eval()
pairwise_scorer = SimplePairWiseClassifier(config).to(device)
pairwise_scorer.load_state_dict(torch.load(os.path.join(config['model_path'],
"pairwise_scorer_{}".format(config['model_num'])),
map_location=device))
pairwise_scorer.eval()
fusion_layer = SimpleFusionLayer(config).to(device)
if config.include_text:
fusion_layer.load_state_dict(torch.load(os.path.join(config['model_path'],
"fusion_model_{}".format(config['model_num'])),
map_location=device))
fusion_layer.eval()
return span_repr, span_scorer, pairwise_scorer, fusion_layer
def is_included(docs, starts, ends, i1, i2):
doc1, start1, end1 = docs[i1], starts[i1], ends[i1]
doc2, start2, end2 = docs[i2], starts[i2], ends[i2]
if doc1 == doc2 and (start1 >= start2 and end1 <= end2):
return True
return False
def remove_nested_mentions(cluster_ids, doc_ids, starts, ends):
# nested_mentions = collections.defaultdict(list)
# for i, x in range(len(cluster_ids)):
# nested_mentions[x].append(i)
doc_ids = np.asarray(doc_ids)
starts = np.asarray(starts)
ends = np.asarray(ends)
new_cluster_ids, new_docs_ids, new_starts, new_ends = [], [], [], []
for cluster, idx in cluster_ids.items():
docs = doc_ids[idx]
start = starts[idx]
end = ends[idx]
for i in range(len(idx)):
indicator = [is_included(docs, start, end, i, j) for j in range(len(idx))]
if sum(indicator) > 1:
continue
new_cluster_ids.append(cluster)
new_docs_ids.append(docs[i])
new_starts.append(start[i])
new_ends.append(end[i])
clusters = collections.defaultdict(list)
for i, cluster_id in enumerate(new_cluster_ids):
clusters[cluster_id].append(i)
return clusters, new_docs_ids, new_starts, new_ends
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/config_clustering.json')
parser.add_argument("--dev_best_name", type=str, default="")
args = parser.parse_args()
config = pyhocon.ConfigFactory.parse_file(args.config)
if args.dev_best_name:
mention_type = config["mention_type"]
# ('dev_events_model_9_average_0.75_topic_level.conll', 68.22460756651444)
conll_file = args.dev_best_name.split(".conll")[0]
# dev_events_model_9_average_0.75_topic_level
splits = conll_file.split("average")
model_num = int(splits[0].replace("_", "")[-1])
thresh = splits[1].replace("_", "") # 0.75topiclevel
thresh = float(thresh.replace("topiclevel", ""))
config["model_num"] = model_num
config["threshold"] = thresh
config["split"] = "test"
print(pyhocon.HOCONConverter.convert(config, "hocon"))
create_folder(config['save_path'])
device = 'cuda:{}'.format(config['gpu_num'][0]) if torch.cuda.is_available() else 'cpu'
# Load models and init clustering
bert_model = AutoModel.from_pretrained(config['bert_model']).to(device)
config['bert_hidden_size'] = bert_model.config.hidden_size
span_repr, span_scorer, pairwise_scorer, fusion_model = init_models(config, device)
clustering = AgglomerativeClustering(n_clusters=None, affinity='precomputed', linkage=config['linkage_type'],
distance_threshold=config['threshold'])
# Load data
bert_tokenizer = AutoTokenizer.from_pretrained(config['bert_model'])
data = create_corpus(config, bert_tokenizer, config.split, is_training=False)
# Additional embeddings for commonsense
graph_embeddings_train, graph_embeddings_dev = None, None
expansions_train, expansions_val = None, None
expansion_embeddings_train, expansion_embeddings_val = None, None
if config.include_graph:
# Graph embeddings for commonsense
graph_embeddings_dev = load_stored_embeddings(config, split=config.split)
if config.include_text:
# Text embeddings for commonsense
expansions_val, expansion_embeddings_val = load_text_embeddings(config, split=config.split)
# config = assign_sizes(config)
doc_ids, sentence_ids, starts, ends = [], [], [], []
all_topic_predicted_clusters = []
max_cluster_id = 0
# Go through each topic
for topic_num, topic in enumerate(data.topic_list):
print('Processing topic {}'.format(topic))
docs_embeddings, docs_length = pad_and_read_bert(data.topics_bert_tokens[topic_num], bert_model)
topic_spans = get_all_candidate_spans(
config, bert_model, span_repr, span_scorer, data, topic_num, expansions_val,
expansion_embeddings_val)
span_meta_data, span_embeddings, num_of_tokens = get_all_candidate_from_topic(
config, data, topic_num, docs_embeddings, docs_length)
doc_id, sentence_id, start, end = span_meta_data
start_end_embeddings, continuous_embeddings, width = span_embeddings
width = width.to(device)
labels = data.get_candidate_labels(doc_id, start, end)
if config['use_gold_mentions']:
span_indices = labels.nonzero().squeeze(1)
else:
with torch.no_grad():
span_emb = span_repr(start_end_embeddings, continuous_embeddings, width)
span_scores = span_scorer(span_emb)
if config.exact:
span_indices = torch.where(span_scores > 0)[0]
else:
k = int(config['top_k'] * num_of_tokens)
_, span_indices = torch.topk(span_scores.squeeze(1), k, sorted=False)
# span_indices, _ = torch.sort(span_indices)
number_of_mentions = len(span_indices)
start_end_embeddings = start_end_embeddings[span_indices]
continuous_embeddings = [continuous_embeddings[i] for i in span_indices]
width = width[span_indices]
torch.cuda.empty_cache()
# Prepare all the pairs for the distance matrix
first, second = zip(*list(product(range(len(span_indices)), repeat=2)))
first = torch.tensor(first)
second = torch.tensor(second)
torch.cuda.empty_cache()
all_scores = []
with torch.no_grad():
for i in range(0, len(first), 1000):
end_max = i + 1000
first_idx, second_idx = first[i:end_max], second[i:end_max]
g1 = span_repr(start_end_embeddings[first_idx],
[continuous_embeddings[k] for k in first_idx],
width[first_idx])
g2 = span_repr(start_end_embeddings[second_idx],
[continuous_embeddings[k] for k in second_idx],
width[second_idx])
# calculate the keys to look up graph embeddings for this batch
combined_ids1 = [topic_spans.combined_ids[k]
for k in first_idx]
combined_ids2 = [topic_spans.combined_ids[k]
for k in second_idx]
knowledge_embeddings = topic_spans.knowledge_start_end_embeddings, topic_spans.knowledge_continuous_embeddings, topic_spans.knowledge_width
e1, e2 = None, None # expansion embeddings
if config.include_text:
if True: # used to be attention based
# If knowledge embeddings need to be represented similar to spans i.e with attention
e1, e2 = get_expansion_with_attention(span_repr, knowledge_embeddings, first_idx,
second_idx, device, config)
else:
e1 = torch.stack([topic_spans.knowledge_start_end_embeddings[k] for k in first_idx]).to(device)
e2 = torch.stack([topic_spans.knowledge_start_end_embeddings[k] for k in second_idx]).to(device)
g1_final, g2_final, attn_weights = final_vectors(combined_ids1, combined_ids2, config, g1, g2,
graph_embeddings_dev, e1, e2, fusion_model)
scores = pairwise_scorer(g1_final, g2_final)
torch.cuda.empty_cache()
if config['training_method'] in ('continue', 'e2e') and not config['use_gold_mentions']:
g1_score = span_scorer(g1)
g2_score = span_scorer(g2)
scores += g1_score + g2_score
scores = torch.sigmoid(scores)
all_scores.extend(scores.detach().cpu().squeeze(1))
torch.cuda.empty_cache()
all_scores = torch.stack(all_scores)
# Affinity score to distance score
pairwise_distances = 1 - all_scores.view(number_of_mentions, number_of_mentions).numpy()
if len(pairwise_distances) > 1:
predicted = clustering.fit(pairwise_distances)
predicted_clusters = predicted.labels_ + max_cluster_id
else:
predicted_clusters = np.array([0] * len(pairwise_distances)) + max_cluster_id
max_cluster_id = max(predicted_clusters) + 1
doc_ids.extend(doc_id[span_indices.cpu()])
sentence_ids.extend(sentence_id[span_indices].tolist())
starts.extend(start[span_indices].tolist())
ends.extend(end[span_indices].tolist())
all_topic_predicted_clusters.extend(predicted_clusters)
torch.cuda.empty_cache()
all_clusters = {}
for i, cluster_id in enumerate(all_topic_predicted_clusters):
if cluster_id not in all_clusters:
all_clusters[cluster_id] = []
all_clusters[cluster_id].append(i)
if not config['use_gold_mentions']:
all_clusters, doc_ids, starts, ends = remove_nested_mentions(all_clusters, doc_ids, starts, ends)
if not config['keep_singletons']:
all_clusters = {cluster_id: mentions for cluster_id, mentions in all_clusters.items() if len(mentions) > 1}
print('Saving conll file...')
doc_name = '{}_{}_{}_{}_model_{}'.format(
config['split'], config['mention_type'], config['linkage_type'], config['threshold'], config['model_num'])
write_output_file(data.documents, all_clusters, doc_ids, starts, ends, config['save_path'], doc_name,
topic_level=config.topic_level, corpus_level=not config.topic_level)
print(doc_name + "_topic_level.conll")