Val Test
P R F1 P R F1
0.5872 0.9324 0.7206 0.1569 0.9195 0.2680
cd dan_glove
allennlp train --include-package=hinton dan_glove.jsonnet -s run_1
allennlp train --include-package=hinton dan_glove.jsonnet -s run_2 --overrides=" {" numpy_seed" : 453, " pytorch_seed" : 12, " random_seed" : 193 }"
allennlp train --include-package=hinton dan_glove.jsonnet -s run_3 --overrides=" {" numpy_seed" : 78, " pytorch_seed" : 32, " random_seed" : 54 }"
allennlp train --include-package=hinton dan_glove.jsonnet -s run_4 --overrides=" {" numpy_seed" : 893, " pytorch_seed" : 933, " random_seed" : 177 }"
allennlp train --include-package=hinton dan_glove.jsonnet -s run_5 --overrides=" {" numpy_seed" : 88, " pytorch_seed" : 938, " random_seed" : 1111 }"
python ../../predict_test_correct.py . ../../data/SubtaskA_EvaluationData_labeled.csv > test_set_correct.txt
python ../../evaluate_runs.py . ../../data/SubtaskA_Trial_Test_Labeled.csv ../../data/SubtaskA_EvaluationData_labeled.csv
Val Test
P R F1 P R F1
68.51±2.43 87.30±5.00 76.69±1.06 25.40±3.56 84.60±9.87 38.84±3.10
cd dan_bert
allennlp train --include-package=hinton dan_bert.jsonnet -s run_1
allennlp train --include-package=hinton dan_bert.jsonnet -s run_2 --overrides=" {" numpy_seed" : 88, " pytorch_seed" : 938, " random_seed" : 1111 }"
allennlp train --include-package=hinton dan_bert.jsonnet -s run_3 --overrides=" {" numpy_seed" : 8238, " pytorch_seed" : 43345, " random_seed" : 834 }"
allennlp train --include-package=hinton dan_bert.jsonnet -s run_4 --overrides=" {" numpy_seed" : 944, " pytorch_seed" : 1221, " random_seed" : 6 }"
allennlp train --include-package=hinton dan_bert.jsonnet -s run_5 --overrides=" {" numpy_seed" : 1114, " pytorch_seed" : 261, " random_seed" : 3336 }"
python ../../predict_test_correct.py . ../../data/SubtaskA_EvaluationData_labeled.csv > test_set_correct.txt
python ../../evaluate_runs.py . ../../data/SubtaskA_Trial_Test_Labeled.csv ../../data/SubtaskA_EvaluationData_labeled.csv
Val Test
P R F1 P R F1
76.06±1.31 90.27±1.71 82.55±0.50 45.80±4.49 90.80±1.75 60.82±3.99
cd dan_bert_no_upsampling
allennlp train --include-package=hinton dan_bert_no_upsampling.jsonnet -s run_1
allennlp train --include-package=hinton dan_bert_no_upsampling.jsonnet -s run_2 --overrides=" {" numpy_seed" : 88, " pytorch_seed" : 938, " random_seed" : 1111 }"
allennlp train --include-package=hinton dan_bert_no_upsampling.jsonnet -s run_3 --overrides=" {" numpy_seed" : 8238, " pytorch_seed" : 43345, " random_seed" : 834 }"
allennlp train --include-package=hinton dan_bert_no_upsampling.jsonnet -s run_4 --overrides=" {" numpy_seed" : 944, " pytorch_seed" : 1221, " random_seed" : 6 }"
allennlp train --include-package=hinton dan_bert_no_upsampling.jsonnet -s run_5 --overrides=" {" numpy_seed" : 1114, " pytorch_seed" : 261, " random_seed" : 3336 }"
python ../../predict_test_correct.py . ../../data/SubtaskA_EvaluationData_labeled.csv > test_set_correct.txt
python ../../evaluate_runs.py . ../../data/SubtaskA_Trial_Test_Labeled.csv ../../data/SubtaskA_EvaluationData_labeled.csv
Val Test
P R F1 P R F1
79.04±2.67 83.38±2.73 81.11±0.68 55.06±6.36 83.68±2.75 66.28±4.28
cd cnn_bert
allennlp train --include-package=hinton cnn_bert.jsonnet -s run_1
allennlp train --include-package=hinton cnn_bert.jsonnet -s run_2 --overrides=" {" numpy_seed" : 2124, " pytorch_seed" : 1621, " random_seed" : 882 }"
allennlp train --include-package=hinton cnn_bert.jsonnet -s run_3 --overrides=" {" numpy_seed" : 1324, " pytorch_seed" : 31, " random_seed" : 9277 }"
allennlp train --include-package=hinton cnn_bert.jsonnet -s run_4 --overrides=" {" numpy_seed" : 777, " pytorch_seed" : 666, " random_seed" : 15 }"
allennlp train --include-package=hinton cnn_bert.jsonnet -s run_5 --overrides=" {" numpy_seed" : 7277, " pytorch_seed" : 16, " random_seed" : 125 }"
python ../../predict_test_correct.py . ../../data/SubtaskA_EvaluationData_labeled.csv > test_set_correct.txt
python ../../evaluate_runs.py . ../../data/SubtaskA_Trial_Test_Labeled.csv ../../data/SubtaskA_EvaluationData_labeled.csv
Val Test
P R F1 P R F1
80.34±4.21 89.93±4.23 84.76±0.52 50.34±6.70 91.72±2.55 64.81±4.86
cd cnn_bert_no_upsampling
allennlp train --include-package=hinton cnn_bert_no_upsampling.jsonnet -s run_1
allennlp train --include-package=hinton cnn_bert_no_upsampling.jsonnet -s run_2 --overrides=" {" numpy_seed" : 2124, " pytorch_seed" : 1621, " random_seed" : 882 }"
allennlp train --include-package=hinton cnn_bert_no_upsampling.jsonnet -s run_3 --overrides=" {" numpy_seed" : 1324, " pytorch_seed" : 31, " random_seed" : 9277 }"
allennlp train --include-package=hinton cnn_bert_no_upsampling.jsonnet -s run_4 --overrides=" {" numpy_seed" : 777, " pytorch_seed" : 666, " random_seed" : 15 }"
allennlp train --include-package=hinton cnn_bert_no_upsampling.jsonnet -s run_5 --overrides=" {" numpy_seed" : 7277, " pytorch_seed" : 16, " random_seed" : 125 }"
python ../../predict_test_correct.py . ../../data/SubtaskA_EvaluationData_labeled.csv > test_set_correct.txt
python ../../evaluate_runs.py . ../../data/SubtaskA_Trial_Test_Labeled.csv ../../data/SubtaskA_EvaluationData_labeled.csv
Val Test
P R F1 P R F1
83.22±3.01 84.73±3.86 83.90±0.70 58.98±5.41 88.05±1.63 70.58±4.24
cnn + bert + tritrain on unlabelled test set data
cd cnn_bert_tritrain
python ../../tritrain.py cnn_bert_tri_train.jsonnet ./run_1 ../../data/SubtaskA_EvaluationData.csv 1337 2>&1 | tee run_1.log
python ../../tritrain.py cnn_bert_tri_train.jsonnet ./run_2 ../../data/SubtaskA_EvaluationData.csv 1331 2>&1 | tee run_2.log
python ../../tritrain.py cnn_bert_tri_train.jsonnet ./run_3 ../../data/SubtaskA_EvaluationData.csv 141 2>&1 | tee run_3.log
python ../../tritrain.py cnn_bert_tri_train.jsonnet ./run_4 ../../data/SubtaskA_EvaluationData.csv 17 2>&1 | tee run_4.log
python ../../tritrain.py cnn_bert_tri_train.jsonnet ./run_5 ../../data/SubtaskA_EvaluationData.csv 554 2>&1 | tee run_5.log
python ../../predict_test_correct.py . ../../data/SubtaskA_EvaluationData_labeled.csv semi > test_set_correct.txt
python ../../evaluate_runs.py . ../../data/SubtaskA_Trial_Test_Labeled.csv ../../data/SubtaskA_EvaluationData_labeled.csv semi
Val Test
P R F1 P R F1
83.06±1.96 89.19±1.88 86.00±0.35 52.89±2.69 90.80±2.02 66.81±1.90
python ../mcnemar_test.py .