-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
602 lines (484 loc) · 23.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import logging
import math
import random
from pathlib import Path
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from skimage import color
from skimage import io
from skimage.transform import rotate, resize
from torch.utils.data import Dataset
from torch.utils.data.dataloader import default_collate
from torchvision import transforms
from ace_network import Regressor
_logger = logging.getLogger(__name__)
class CamLocDataset(Dataset):
"""Camera localization dataset.
Access to image, calibration and ground truth data given a dataset directory.
"""
def __init__(self,
root_dir,
mode=0,
sparse=False,
augment=False,
aug_rotation=15,
aug_scale_min=2 / 3,
aug_scale_max=3 / 2,
aug_black_white=0.1,
aug_color=0.3,
image_height=480,
use_half=True,
num_clusters=None,
cluster_idx=None,
load_kpts=False,
):
"""Constructor.
Parameters:
root_dir: Folder of the data (training or test).
mode:
0 = RGB only, load no initialization targets. Default for the ACE paper.
1 = RGB + ground truth scene coordinates, load or generate ground truth scene coordinate targets
2 = RGB-D, load camera coordinates instead of scene coordinates
sparse: for mode = 1 (RGB+GT SC), load sparse initialization targets when True, load dense depth maps and
generate initialization targets when False
augment: Use random data augmentation, note: not supported for mode = 2 (RGB-D) since pre-generated eye
coordinates cannot be augmented
aug_rotation: Max 2D image rotation angle, sampled uniformly around 0, both directions, degrees.
aug_scale_min: Lower limit of image scale factor for uniform sampling
aug_scale_min: Upper limit of image scale factor for uniform sampling
aug_black_white: Max relative scale factor for image brightness/contrast sampling, e.g. 0.1 -> [0.9,1.1]
aug_color: Max relative scale factor for image saturation/hue sampling, e.g. 0.1 -> [0.9,1.1]
image_height: RGB images are rescaled to this maximum height (if augmentation is disabled, and in the range
[aug_scale_min * image_height, aug_scale_max * image_height] otherwise).
use_half: Enabled if training with half-precision floats.
num_clusters: split the input frames into disjoint clusters using hierarchical clustering in order to train
an ensemble model. Clustering is deterministic, so multiple training calls with the same number of
target clusters will result in the same split. See the paper for details of the approach. Disabled by
default.
cluster_idx: If num_clusters is not None, then use this parameter to choose the cluster used for training.
"""
self.use_half = use_half
self.init = (mode == 1)
self.sparse = sparse
self.eye = (mode == 2)
self.image_height = image_height
self.augment = augment
self.aug_rotation = aug_rotation
self.aug_scale_min = aug_scale_min
self.aug_scale_max = aug_scale_max
self.aug_black_white = aug_black_white
self.aug_color = aug_color
self.num_clusters = num_clusters
self.cluster_idx = cluster_idx
self.load_kpts = load_kpts
if self.num_clusters is not None:
if self.num_clusters < 1:
raise ValueError("num_clusters must be at least 1")
if self.cluster_idx is None:
raise ValueError("cluster_idx needs to be specified when num_clusters is set")
if self.cluster_idx < 0 or self.cluster_idx >= self.num_clusters:
raise ValueError(f"cluster_idx needs to be between 0 and {self.num_clusters - 1}")
if self.eye and self.augment and (self.aug_rotation > 0 or self.aug_scale_min != 1 or self.aug_scale_max != 1):
# pre-generated eye coordinates cannot be augmented
_logger.warning("WARNING: Check your augmentation settings. Camera coordinates will not be augmented.")
# Setup data paths.
root_dir = Path(root_dir)
# Main folders.
rgb_dir = root_dir / 'rgb'
pose_dir = root_dir / 'poses'
calibration_dir = root_dir / 'calibration'
keypoint_dir = root_dir / 'matching'
# Optional folders. Unused in ACE.
if self.eye:
coord_dir = root_dir / 'eye'
elif self.sparse:
coord_dir = root_dir / 'init'
else:
coord_dir = root_dir / 'depth'
# Find all images. The assumption is that it only contains image files.
self.rgb_files = sorted(rgb_dir.iterdir())
# Find all ground truth pose files. One per image.
self.pose_files = sorted(pose_dir.iterdir())
# Load camera calibrations. One focal length per image.
self.calibration_files = sorted(calibration_dir.iterdir())
# Load keypoits and matching results
if self.load_kpts:
self.keypoint_files = sorted(keypoint_dir.iterdir())
if self.init or self.eye:
# Load GT scene coordinates.
self.coord_files = sorted(coord_dir.iterdir())
else:
self.coord_files = None
if len(self.rgb_files) != len(self.pose_files):
raise RuntimeError('RGB file count does not match pose file count!')
if len(self.rgb_files) != len(self.calibration_files):
raise RuntimeError('RGB file count does not match calibration file count!')
if self.coord_files and len(self.rgb_files) != len(self.coord_files):
raise RuntimeError('RGB file count does not match coordinate file count!')
# Create grid of 2D pixel positions used when generating scene coordinates from depth.
if self.init and not self.sparse:
self.prediction_grid = self._create_prediction_grid()
else:
self.prediction_grid = None
# Image transformations. Excluding scale since that can vary batch-by-batch.
if self.augment:
self.image_transform = transforms.Compose([
# transforms.ToPILImage(),
# transforms.Resize(int(self.image_height * scale_factor)),
transforms.Grayscale(),
transforms.ColorJitter(brightness=self.aug_black_white, contrast=self.aug_black_white),
# saturation=self.aug_color, hue=self.aug_color), # Disable colour augmentation.
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4], # statistics calculated over 7scenes training set, should generalize fairly well
std=[0.25]
),
])
else:
self.image_transform = transforms.Compose([
# transforms.ToPILImage(),
# transforms.Resize(self.image_height),
transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4], # statistics calculated over 7scenes training set, should generalize fairly well
std=[0.25]
),
])
# We use this to iterate over all frames. If clustering is enabled this is used to filter them.
self.valid_file_indices = np.arange(len(self.rgb_files))
# If clustering is enabled.
if self.num_clusters is not None:
_logger.info(f"Clustering the {len(self.rgb_files)} into {num_clusters} clusters.")
_, _, cluster_labels = self._cluster(num_clusters)
self.valid_file_indices = np.flatnonzero(cluster_labels == cluster_idx)
_logger.info(f"After clustering, chosen cluster: {cluster_idx}, Using {len(self.valid_file_indices)} images.")
# Calculate mean camera center (using the valid frames only).
self.mean_cam_center = self._compute_mean_camera_center()
@staticmethod
def _create_prediction_grid():
# Assumes all input images have a resolution smaller than 5000x5000.
prediction_grid = np.zeros((2,
math.ceil(5000 / Regressor.OUTPUT_SUBSAMPLE),
math.ceil(5000 / Regressor.OUTPUT_SUBSAMPLE)))
for x in range(0, prediction_grid.shape[2]):
for y in range(0, prediction_grid.shape[1]):
prediction_grid[0, y, x] = x * Regressor.OUTPUT_SUBSAMPLE
prediction_grid[1, y, x] = y * Regressor.OUTPUT_SUBSAMPLE
return prediction_grid
@staticmethod
def _resize_image(image, image_height):
# Resize a numpy image as PIL. Works slightly better than resizing the tensor using torch's internal function.
image = TF.to_pil_image(image)
image = TF.resize(image, image_height)
return image
@staticmethod
def _rotate_image(image, angle, order, mode='constant'):
# Image is a torch tensor (CxHxW), convert it to numpy as HxWxC.
image = image.permute(1, 2, 0).numpy()
# Apply rotation.
image = rotate(image, angle, order=order, mode=mode)
# Back to torch tensor.
image = torch.from_numpy(image).permute(2, 0, 1).float()
return image
@staticmethod
def _to_opencv(image):
image_cv = np.array(image)[:, :, ::-1].astype(np.float32)
gray_image = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
return gray_image
@staticmethod
def _rotate_pil_image(image, angle, order, mode='constant'):
image = rotate(image, angle, order=order, mode=mode)
return image
def _cluster(self, num_clusters):
"""
Clusters the dataset using hierarchical kMeans.
Initialization:
Put all images in one cluster.
Interate:
Pick largest cluster.
Split with kMeans and k=2.
Input for kMeans is the 3D median scene coordiante per image.
Terminate:
When number of target clusters has been reached.
Returns:
cam_centers: For each cluster the mean (not median) scene coordinate
labels: For each image the cluster ID
"""
num_images = len(self.pose_files)
_logger.info(f'Clustering a dataset with {num_images} frames into {num_clusters} clusters.')
# A tensor holding all camera centers used for clustering.
cam_centers = np.zeros((num_images, 3), dtype=np.float32)
for i in range(num_images):
pose = self._load_pose(i)
cam_centers[i] = pose[:3, 3]
# Setup kMEans
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.1)
flags = cv2.KMEANS_PP_CENTERS
# Label of next cluster.
label_counter = 0
# Initialise list of clusters with all images.
clusters = []
clusters.append((cam_centers, label_counter, np.zeros(3)))
# All images belong to cluster 0.
labels = np.zeros(num_images)
# iterate kMeans with k=2
while len(clusters) < num_clusters:
# Select largest cluster (list is sorted).
cur_cluster = clusters.pop(0)
label_counter += 1
# Split cluster.
cur_error, cur_labels, cur_centroids = cv2.kmeans(cur_cluster[0], 2, None, criteria, 10, flags)
# Update cluster list.
cur_mask = (cur_labels == 0)[:, 0]
cur_cam_centers0 = cur_cluster[0][cur_mask, :]
clusters.append((cur_cam_centers0, cur_cluster[1], cur_centroids[0]))
cur_mask = (cur_labels == 1)[:, 0]
cur_cam_centers1 = cur_cluster[0][cur_mask, :]
clusters.append((cur_cam_centers1, label_counter, cur_centroids[1]))
cluster_labels = labels[labels == cur_cluster[1]]
cluster_labels[cur_mask] = label_counter
labels[labels == cur_cluster[1]] = cluster_labels
# Sort updated list.
clusters = sorted(clusters, key=lambda cluster: cluster[0].shape[0], reverse=True)
# clusters are sorted but cluster indices are random, remap cluster indices to sorted indices
remapped_labels = np.zeros(num_images)
remapped_clusters = []
for cluster_idx_new, cluster in enumerate(clusters):
cluster_idx_old = cluster[1]
remapped_labels[labels == cluster_idx_old] = cluster_idx_new
remapped_clusters.append((cluster[0], cluster_idx_new, cluster[2]))
labels = remapped_labels
clusters = remapped_clusters
cluster_centers = np.zeros((num_clusters, 3))
cluster_sizes = np.zeros((num_clusters, 1))
for cluster in clusters:
# Compute distance of each cam to the center of the cluster.
cam_num = cluster[0].shape[0]
cam_data = np.zeros((cam_num, 3))
cam_count = 0
# First compute the center of the cluster (mean).
for i, cam_center in enumerate(cam_centers):
if labels[i] == cluster[1]:
cam_data[cam_count] = cam_center
cam_count += 1
cluster_centers[cluster[1]] = cam_data.mean(0)
# Compute the distance of each cam from the cluster center. Then average and square.
cam_dists = np.broadcast_to(cluster_centers[cluster[1]][np.newaxis, :], (cam_num, 3))
cam_dists = cam_data - cam_dists
cam_dists = np.linalg.norm(cam_dists, axis=1)
cam_dists = cam_dists ** 2
cluster_sizes[cluster[1]] = cam_dists.mean()
_logger.info("Cluster %i: %.1fm, %.1fm, %.1fm, images: %i, mean squared dist: %f" % (
cluster[1], cluster_centers[cluster[1]][0], cluster_centers[cluster[1]][1], cluster_centers[cluster[1]][2],
cluster[0].shape[0], cluster_sizes[cluster[1]]))
_logger.info('Clustering done.')
return cluster_centers, cluster_sizes, labels
def _compute_mean_camera_center(self):
mean_cam_center = torch.zeros((3,))
for idx in self.valid_file_indices:
pose = self._load_pose(idx)
# Get the translation component.
mean_cam_center += pose[0:3, 3]
# Avg.
mean_cam_center /= len(self)
return mean_cam_center
def _load_image(self, idx):
image = io.imread(self.rgb_files[idx])
if len(image.shape) < 3:
# Convert to RGB if needed.
image = color.gray2rgb(image)
return image
def _load_pose(self, idx):
# Stored as a 4x4 matrix.
pose = np.loadtxt(self.pose_files[idx])
pose = torch.from_numpy(pose).float()
return pose
def _get_single_item(self, idx, image_height):
# Apply index indirection.
idx = self.valid_file_indices[idx]
# Load image.
image = self._load_image(idx)
# Load intrinsics.
k = np.loadtxt(self.calibration_files[idx])
if k.size == 1:
focal_length = float(k)
centre_point = None
elif k.shape == (3, 3):
k = k.tolist()
focal_length = [k[0][0], k[1][1]]
centre_point = [k[0][2], k[1][2]]
else:
raise Exception("Calibration file must contain either a 3x3 camera \
intrinsics matrix or a single float giving the focal length \
of the camera.")
# The image will be scaled to image_height, adjust focal length as well.
f_scale_factor = image_height / image.shape[0]
if centre_point:
centre_point = [c * f_scale_factor for c in centre_point]
focal_length = [f * f_scale_factor for f in focal_length]
else:
focal_length *= f_scale_factor
if self.load_kpts:
# Load and rescale keypoints
track_info = np.loadtxt(self.keypoint_files[idx])
track_info = torch.from_numpy(track_info)
keypoints = track_info[1:, 1:]
keypoints = f_scale_factor * keypoints
# Rescale image.
image = self._resize_image(image, image_height)
# original_image = np.array(image)
# Create mask of the same size as the resized image (it's a PIL image at this point).
image_mask = torch.ones((1, image.size[1], image.size[0]))
# Apply remaining transforms.
image = self.image_transform(image)
# Load pose.
pose = self._load_pose(idx)
# Load ground truth scene coordinates, if needed.
if self.init:
if self.sparse:
coords = torch.load(self.coord_files[idx])
else:
depth = io.imread(self.coord_files[idx])
depth = depth.astype(np.float64)
depth /= 1000 # from millimeters to meters
elif self.eye:
coords = torch.load(self.coord_files[idx])
else:
coords = 0 # Default for ACE, we don't need them.
# Apply data augmentation if necessary.
if self.augment:
# Generate a random rotation angle.
angle = random.uniform(-self.aug_rotation, self.aug_rotation)
# Rotate input image and mask.
image = self._rotate_image(image, angle, 1, 'reflect')
image_mask = self._rotate_image(image_mask, angle, order=1, mode='constant')
# original_image = self._rotate_pil_image(original_image, angle, 1, 'reflect')
# If we loaded the GT scene coordinates.
if self.init:
if self.sparse:
# rotate and scale initalization targets
coords_w = math.ceil(image.size(2) / Regressor.OUTPUT_SUBSAMPLE)
coords_h = math.ceil(image.size(1) / Regressor.OUTPUT_SUBSAMPLE)
coords = F.interpolate(coords.unsqueeze(0), size=(coords_h, coords_w))[0]
coords = self._rotate_image(coords, angle, 0)
else:
# rotate and scale depth maps
depth = resize(depth, image.shape[1:], order=0)
depth = rotate(depth, angle, order=0, mode='constant')
# Rotate ground truth camera pose as well.
angle = angle * math.pi / 180.
# Create a rotation matrix.
pose_rot = torch.eye(4)
pose_rot[0, 0] = math.cos(angle)
pose_rot[0, 1] = -math.sin(angle)
pose_rot[1, 0] = math.sin(angle)
pose_rot[1, 1] = math.cos(angle)
# Apply rotation matrix to the ground truth camera pose.
pose = torch.matmul(pose, pose_rot)
if self.load_kpts:
# rotate keypoints
rotation_matrix = torch.tensor([
[math.cos(angle), -math.sin(angle)],
[math.sin(angle), math.cos(angle)]
], dtype=keypoints.dtype)
center = torch.tensor([image.size(2), image.size(1)], dtype=torch.float32) / 2
translated_keypoints = keypoints - center
rotated_keypoints = torch.matmul(translated_keypoints, rotation_matrix)
keypoints = rotated_keypoints + center
if self.load_kpts:
# keypoint mask
track_info[1:, 1:] = keypoints
W, H, N = image.size(2), image.size(1), track_info.shape[0]
padded_keypoints = torch.full((1025, 3), -1, dtype=torch.float32)
padded_keypoints[:N, :] = track_info
keypoint_mask = (keypoints[:, 0] > 0) & (keypoints[:, 0] < W-1) & (keypoints[:, 1] > 0) & (keypoints[:, 1] < H-1)
keypoint_mask = torch.cat((torch.tensor([True]), keypoint_mask, torch.tensor([False]*(1025-N))))
# original_image = self._to_opencv(original_image)
# Not used for ACE.
if self.init and not self.sparse:
# generate initialization targets from depth map
offsetX = int(Regressor.OUTPUT_SUBSAMPLE / 2)
offsetY = int(Regressor.OUTPUT_SUBSAMPLE / 2)
coords = torch.zeros((
3,
math.ceil(image.shape[1] / Regressor.OUTPUT_SUBSAMPLE),
math.ceil(image.shape[2] / Regressor.OUTPUT_SUBSAMPLE)))
# subsample to network output size
depth = depth[offsetY::Regressor.OUTPUT_SUBSAMPLE, offsetX::Regressor.OUTPUT_SUBSAMPLE]
# construct x and y coordinates of camera coordinate
xy = self.prediction_grid[:, :depth.shape[0], :depth.shape[1]].copy()
# add random pixel shift
xy[0] += offsetX
xy[1] += offsetY
# substract principal point (assume image center)
xy[0] -= image.shape[2] / 2
xy[1] -= image.shape[1] / 2
# reproject
xy /= focal_length
xy[0] *= depth
xy[1] *= depth
# assemble camera coordinates tensor
eye = np.ndarray((4, depth.shape[0], depth.shape[1]))
eye[0:2] = xy
eye[2] = depth
eye[3] = 1
# eye to scene coordinates
sc = np.matmul(pose.numpy(), eye.reshape(4, -1))
sc = sc.reshape(4, depth.shape[0], depth.shape[1])
# mind pixels with invalid depth
sc[:, depth == 0] = 0
sc[:, depth > 1000] = 0
sc = torch.from_numpy(sc[0:3])
coords[:, :sc.shape[1], :sc.shape[2]] = sc
# Convert to half if needed.
if self.use_half and torch.cuda.is_available():
image = image.half()
# Binarize the mask.
image_mask = image_mask > 0
# Invert the pose.
pose_inv = pose.inverse()
# Create the intrinsics matrix.
intrinsics = torch.eye(3)
# Hardcode the principal point to the centre of the image unless otherwise specified.
if centre_point:
intrinsics[0, 0] = focal_length[0]
intrinsics[1, 1] = focal_length[1]
intrinsics[0, 2] = centre_point[0]
intrinsics[1, 2] = centre_point[1]
else:
intrinsics[0, 0] = focal_length
intrinsics[1, 1] = focal_length
intrinsics[0, 2] = image.shape[2] / 2
intrinsics[1, 2] = image.shape[1] / 2
# Also need the inverse.
intrinsics_inv = intrinsics.inverse()
original_image = cv2.imread(str(self.rgb_files[idx]), cv2.IMREAD_GRAYSCALE)
if original_image.shape[0] != image_height:
original_image = cv2.resize(original_image, None, fx=f_scale_factor, fy=f_scale_factor)
if self.load_kpts:
return image, image_mask, pose, pose_inv, intrinsics, intrinsics_inv, coords, str(self.rgb_files[idx]), original_image, padded_keypoints, keypoint_mask
else:
return image, image_mask, pose, pose_inv, intrinsics, intrinsics_inv, coords, str(self.rgb_files[idx]), original_image
def __len__(self):
return len(self.valid_file_indices)
def __getitem__(self, idx):
if self.augment:
scale_factor = random.uniform(self.aug_scale_min, self.aug_scale_max)
# scale_factor = 1 / scale_factor #inverse scale sampling, not used for ACE mapping
else:
scale_factor = 1
# Target image height. We compute it here in case we are asked for a full batch of tensors because we need
# to apply the same scale factor to all of them.
image_height = int(self.image_height * scale_factor)
if type(idx) == list:
# Whole batch.
tensors = [self._get_single_item(i, image_height) for i in idx]
return default_collate(tensors)
else:
# Single element.
return self._get_single_item(idx, image_height)