-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_exp_multi.py
225 lines (203 loc) · 9.27 KB
/
run_exp_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import logging
import os
import time
import traceback
from functools import partial
from pathlib import Path
import torch
import wandb
from torch import multiprocessing
from tqdm import tqdm
from config import dotdict, get_config, seed_all
from mppi_with_model import mppi_with_model_evaluate_single_step
from train_utils import train_model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MODELS = ["nl", "oracle", "random", "delta_t_rnn", "node", "latent_ode"]
ENVIRONMENTS = ["oderl-cartpole", "oderl-acrobot", "oderl-pendulum"]
DELAYS = list(range(4))
RETRAIN = False
FORCE_RETRAIN = False
START_FROM_CHECKPOINT = True
MODEL_TRAIN_SEED = 0
PRINT_SETTINGS = False
trainable_models = [model_name for model_name in MODELS if not ("random" in model_name or "oracle" in model_name)]
def train_model_wrapper(args, **kwargs):
try:
(env_name, delay, model_name) = args
config = kwargs["config"] # pylint: disable=redefined-outer-name
config = dotdict(config)
kwargs["config"] = config
# pylint: disable-next=logging-fstring-interpolation
logger = create_logger_in_process(config.log_path) # pylint: disable=redefined-outer-name
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Now training model] {model_name} \t {env_name} \t {delay}")
seed_all(config.seed_start)
kwargs["delay"] = delay
model, results = train_model(model_name, env_name, **kwargs) # pylint: disable=unused-variable
results["errored"] = False
except Exception as e: # pylint: disable=broad-exception-caught
# pylint: disable-next=logging-fstring-interpolation
logger.exception(f"[Error] {e}") # pyright: ignore
# pylint: disable-next=logging-fstring-interpolation
logger.info( # pyright: ignore
f"[Failed training model] {env_name} {model_name} delay={delay} \t " # pyright: ignore
f"model_seed={MODEL_TRAIN_SEED} \t | error={e}"
)
traceback.print_exc()
results = {"errored": True}
print("")
results.update({"delay": delay, "model_name": model_name, "env_name": env_name}) # pyright: ignore
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Training Result] {model_name} result={results}") # pyright: ignore
return results
def mppi_with_model_evaluate_single_step_wrapper(args, **kwargs):
try:
(env_name, delay, model_name, seed) = args
seed_all(seed)
config = kwargs["config"] # pylint: disable=redefined-outer-name
config = dotdict(config)
kwargs["config"] = config
logger = create_logger_in_process(config.log_path) # pylint: disable=redefined-outer-name
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Now evaluating mppi model] {model_name} \t {env_name} \t {delay}")
results = mppi_with_model_evaluate_single_step(
model_name=model_name,
action_delay=delay,
env_name=env_name,
seed=seed,
**kwargs,
)
results["errored"] = False
except Exception as e: # pylint: disable=broad-exception-caught
# pylint: disable-next=logging-fstring-interpolation
logger.exception(f"[Error] {e}") # pyright: ignore
# pylint: disable-next=logging-fstring-interpolation
logger.info( # pyright: ignore
f"[Failed evaluating mppi model] {env_name} {model_name} delay={delay} \t " # pyright: ignore
f"model_seed={MODEL_TRAIN_SEED} \t | error={e}"
)
traceback.print_exc()
results = {"errored": True}
print("")
results.update({"delay": delay, "model_name": model_name, "env_name": env_name, "seed": seed}) # pyright: ignore
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Evaluate Result] result={results}") # pyright: ignore
return results
def main(config, wandb=None): # pylint: disable=redefined-outer-name
model_training_results_l = []
model_eval_results_l = []
pool_outer = multiprocessing.Pool(config.collect_expert_cores_per_env_sampler)
if config.retrain:
train_all_model_inputs = [
(env_name, delay, model_name)
for env_name in ENVIRONMENTS
for delay in DELAYS
for model_name in trainable_models
]
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"Going to train for {len(train_all_model_inputs)} tasks")
with multiprocessing.Pool(1) as pool_outer: # 12
multi_wrapper_train_model = partial(
train_model_wrapper,
config=dict(config),
wandb=None,
model_seed=config.model_seed,
retrain=config.retrain,
start_from_checkpoint=config.start_from_checkpoint,
force_retrain=config.force_retrain,
print_settings=config.print_settings,
evaluate_model_when_trained=False,
)
for i, result in tqdm( # pylint: disable=unused-variable
enumerate(pool_outer.imap_unordered(multi_wrapper_train_model, train_all_model_inputs)),
total=len(train_all_model_inputs),
smoothing=0,
):
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Model Completed training] {result}")
model_training_results_l.append(result)
# Compute the results - in multiprocessing now
mppi_evaluate_all_model_inputs = [
(env_name, delay, model_name, seed)
for env_name in ENVIRONMENTS
for delay in DELAYS
for model_name in MODELS
for seed in range(config.seed_start, config.seed_runs + config.seed_start)
]
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"Evaluating mppi for seed input {len(mppi_evaluate_all_model_inputs)} tasks")
if config.multi_process_results:
pool_outer = multiprocessing.Pool(12) # 12, 8 , 18
multi_wrapper_mppi_evaluate = partial(
mppi_with_model_evaluate_single_step_wrapper,
config=dict(config),
roll_outs=config.mppi_roll_outs,
time_steps=config.mppi_time_steps,
lambda_=config.mppi_lambda,
sigma=config.mppi_sigma,
dt=config.dt,
encode_obs_time=config.encode_obs_time,
save_video=config.save_video,
)
if config.multi_process_results:
for i, result in tqdm(
enumerate(pool_outer.imap_unordered(multi_wrapper_mppi_evaluate, mppi_evaluate_all_model_inputs)),
total=len(mppi_evaluate_all_model_inputs),
smoothing=0,
):
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Model Completed evaluation mppi] {result}")
model_eval_results_l.append(result)
else:
for i, task_input in tqdm(
enumerate(mppi_evaluate_all_model_inputs),
total=len(mppi_evaluate_all_model_inputs),
smoothing=0,
):
result = multi_wrapper_mppi_evaluate(task_input)
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Model Completed evaluation mppi] {result}")
model_eval_results_l.append(result)
if config.multi_process_results:
pool_outer.close()
def generate_log_file_path(file, log_folder="logs"):
file_name = os.path.basename(os.path.realpath(file)).split(".py")[0]
Path(f"./{log_folder}").mkdir(parents=True, exist_ok=True)
path_run_name = "{}-{}".format(file_name, time.strftime("%Y%m%d-%H%M%S"))
return f"{log_folder}/{path_run_name}_log.txt"
def create_logger_in_process(log_file_path):
logger = multiprocessing.get_logger() # pylint: disable=redefined-outer-name
if not logger.hasHandlers():
formatter = logging.Formatter("%(processName)s| %(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s")
stream_handler = logging.StreamHandler()
file_handler = logging.FileHandler(log_file_path)
stream_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.INFO)
return logger
if __name__ == "__main__":
log_path = generate_log_file_path(__file__)
logger = create_logger_in_process(log_path)
defaults = get_config()
defaults["log_path"] = log_path
if defaults["multi_process_results"]:
torch.multiprocessing.set_start_method("spawn")
defaults["retrain"] = RETRAIN
defaults["force_retrain"] = FORCE_RETRAIN
defaults["start_from_checkpoint"] = START_FROM_CHECKPOINT
defaults["print_settings"] = PRINT_SETTINGS
defaults["model_train_seed"] = MODEL_TRAIN_SEED
defaults["sweep_mode"] = True # Real run settings
defaults["end_training_after_seconds"] = int(1350 * 6.0)
wandb.init(config=defaults, project=defaults["wandb_project"]) # pyright: ignore
config = wandb.config
seed_all(0)
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"Starting run \t | See log at : {log_path}")
main(config, wandb)
wandb.finish()
logger.info("Run over. Fin.")
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Log found at] {log_path}")