forked from naskitis/Cache-Conscious-Data-Structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnikolas_askitis_array_hash.c
executable file
·587 lines (477 loc) · 19 KB
/
nikolas_askitis_array_hash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*******************************************************************************
* // Begin statement *
* *
* Author: Dr. Nikolas Askitis *
* Email: askitisn@gmail.com *
* Github.com: https://github.com/naskitis *
* *
* Copyright @ 2016. All rights reserved. *
* *
* Permission to use my software is granted provided that this statement *
* is retained. *
* *
* My software is for non-commercial use only. *
* *
* If you want to share my software with others, please do so by *
* sharing a link to my repository on github.com. *
* *
* If you would like to use any part of my software in a commercial or public *
* environment/product/service, please contact me first so that I may *
* give you written permission. *
* *
* This program is distributed without any warranty; without even the *
* implied warranty of merchantability or fitness for a particular purpose. *
* *
* // End statement *
******************************************************************************/
#include "include/common.h"
uint32_t NUM_SLOTS=131071, inserted=0, searched =0, search_miss=0;
uint64_t hash_mem=0, mtf_threshold=0, mtf_counter=0, ignored=0, mtf_threshold_basevalue=0;
char **hash_table=NULL;
/*
* the bitwise hash function, modified to use a mask. Note,
* that if you decide to use a mask, make sure that you subtract 1
* from the total number of slots or NUM_SLOTS prior to calling this
* function, otherwise the mask wont work properly.
* The original bitwise hash function was developed by Prof. Justin Zobel.
* The bitwise hash function below is my edit of the original code to enable
* more efficient modulus calculations.
*/
uint32_t bitwise_hash(char *word)
{
char c;
uint32_t h= 220373;
for ( ; ( c=*word ) != '\0'; word++ ) h ^= ((h << 5) + c + (h >> 2));
#ifdef MASK
return ( (uint32_t) ((h&0x7fffffff) & NUM_SLOTS ) );
#else
return ( (uint32_t) ((h&0x7fffffff) % NUM_SLOTS ));
#endif
}
/* resize a slot entry in the hash table */
void resize_array(uint32_t idx, uint32_t array_offset, uint32_t required_increase)
{
/* if there is no slot, then create one with respect to the growth policy used */
if(array_offset == 0)
{
#ifdef EXACT_FIT
if ((*(hash_table + idx) = malloc(required_increase)) == NULL) fatal(MEMORY_EXHAUSTED);
/* keep track of the amount of memory allocated */
hash_mem += required_increase + 16;
#else
/* otherwise, grow the array with paging */
/* if the required space is less than 32 bytes, than allocate a 32 byte block */
if(required_increase <= _32_BYTES)
{
if ((*(hash_table + idx) = (char *) malloc(_32_BYTES)) == NULL) fatal(MEMORY_EXHAUSTED);
hash_mem += _32_BYTES + 16;
}
/* otherwise, allocate as many 64-byte blocks as required */
else
{
uint32_t number_of_blocks = ((int)( (required_increase-1) >> 6)+1);
if ((*(hash_table + idx) = (char *) malloc(number_of_blocks << 6)) == NULL) fatal(MEMORY_EXHAUSTED);
/* keep track of the amount of memory allocated */
hash_mem += (number_of_blocks << 6) + 16;
}
#endif
}
else
{
/* otherwise, a slot entry (an array) is found which must be resized */
#ifdef EXACT_FIT
char *tmp = malloc(array_offset+required_increase);
if(tmp == NULL) fatal (MEMORY_EXHAUSTED);
/* copy the existing array into the new one */
memcpy(tmp, *(hash_table + idx), array_offset+1);
/* free the old array and assign the slot pointer to the new array */
free( *(hash_table + idx) );
*(hash_table + idx) = tmp;
/* keep track of the amount of memory allocated */
hash_mem = hash_mem - 1 + required_increase;
/* else grow the array in blocks or pages */
#else
uint32_t old_array_size = array_offset + 1;
uint32_t new_array_size = (array_offset+required_increase);
/* if the new array size can fit within the previously allocated 32-byte block,
* then no memory needs to be allocated.
*/
if ( old_array_size <= _32_BYTES && new_array_size <= _32_BYTES )
{
return;
}
/* if the new array size can fit within a 64-byte block, then allocate only a
* single 64-byte block.
*/
else if ( old_array_size <= _32_BYTES && new_array_size <= _64_BYTES)
{
char *tmp = malloc(_64_BYTES);
if(tmp == NULL) fatal (MEMORY_EXHAUSTED);
/* copy the old array into the new */
memcpy( tmp, *(hash_table + idx), old_array_size);
/* delete the old array */
free( *(hash_table + idx) );
/* assign the slot pointer to the new array */
*(hash_table + idx) = tmp;
/* accumulate the amount of memory allocate */
hash_mem += _32_BYTES;
return;
}
/* if the new array size can fit within a 64-byte block, then return */
else if (old_array_size <= _64_BYTES && new_array_size <= _64_BYTES )
{
return;
}
/* resize the current array by as many 64-byte blocks as required */
else
{
uint32_t number_of_blocks = ((int)( (old_array_size-1) >> 6) + 1);
uint32_t number_of_new_blocks = ((int)( (new_array_size-1) >> 6) + 1);
if(number_of_new_blocks > number_of_blocks)
{
/* allocate as many blocks as required */
char *tmp = malloc(number_of_new_blocks << 6);
if (tmp==NULL) fatal(MEMORY_EXHAUSTED);
/* copy the old array, a word at a time, into a new array */
node_cpy( (uint32_t *) tmp, (uint32_t *) *(hash_table + idx), number_of_blocks<<6);
/* free the old array */
free( *(hash_table + idx) );
/* assign the slot pointer to the new array */
*(hash_table + idx) = tmp;
/* keep track of the number of bytes allocated */
hash_mem += ((number_of_new_blocks-number_of_blocks)<<6);
}
}
#endif
}
}
/* frees up all the memory allocated by the slots of the array hash */
void hash_destroy()
{
register uint32_t i=0;
for(i=0; i<NUM_SLOTS; i++)
{
if (*(hash_table+i) != NULL) free( *(hash_table+i) );
}
}
/*
* checks whether a string exists in the hash table. 1 is returned
* if the string is found, 0 otherwise.
*/
uint32_t search(char *query_start)
{
uint32_t register len=0;
char *array, *query=query_start;
char *word_start;
#ifdef MTF_ON
char *array_start;
char *word_start_with_len;
#endif
/* hash the query term using the bitwise hash function to acquire a slot */
if( (array = *(hash_table + bitwise_hash(query_start)) ) == NULL)
{
return false;
}
#ifdef MTF_ON
array_start=array;
#endif
/* the main search loop */
loop:
query=query_start;
#ifdef MTF_ON
word_start_with_len=array;
#endif
/*
* strings are length-encoded. The first byte of each string is its length. If however,
* the most significant bit is set, this means that the length of the string is greater than
* 127 characters, and so, the next byte also represents the string length. In which case, the
* first byte is moved into an integer, followed by the second byte, thus forming the string length.
*/
if( (len = (unsigned int) *array ) >= 128)
{
len = (unsigned int) ( ( *array & 0x7f ) << 8 ) | (unsigned int) ( *(++array) & 0xff );
}
/*
* once the length has been acquired, move to the next byte which represents the
* first character of the string or the end-of-bucket flag (a null character)
*/
array++;
word_start = array;
/*
* compare the query to the word in the array, a character a time until a mismatch
* occurs or a null character is encountered
*/
for (; *query != '\0' && *query == *array; query++, array++);
/*
* if every character of the query string was compared and the length of
* the query matches the length of the string compared, then its a match
*/
if ( *query == '\0' && (array-word_start) == len )
{
#ifdef MTF_ON
/* if the word found is the first word in the slot, then we don't need to move-to-front */
if( word_start_with_len != array_start )
{
/* otherwise move the word found to the start of the array, according to its length */
if( len < 128 )
{
/* slide the start of the array to the right by the length of the word and a byte (its length),
* then copy the query to the start of the array, along with its length to complete the move-to-front
* process
*/
memmove(array_start + len + 1, array_start, (word_start_with_len-array_start));
memcpy (array_start + 1, query_start, len);
*array_start = (char) len;
}
else
{
/* move the string to the start of the array, plus 2 bytes for its length */
memmove(array_start + len + 2, array_start, (word_start_with_len-array_start));
memcpy (array_start + 2, query_start, len);
/* store the length of the string, which is broken up into two byte */
*array_start = (char) ( len >> 8 ) | 0x80;
*(array_start+1) = (char) ( len ) & 0xff;
}
mtf_counter++;
}
#endif
return true;
}
/* a mismatch occurred during the string comparison phase. skip to the next word */
array = word_start + len;
/* if the next character is the end-of-bucket flag, then the search failed */
if (*array == '\0')
{
return false;
}
/* otherwise, jump back up to the main search loop */
goto loop;
}
/*
* This function checks whether the string exists in the hash table. If it does not exist,
* then it can be inserted. The function returns 0 on insertion failure, that is,
* when the string is found, and 1 on successful insertion.
*/
uint32_t insert(char *query_start)
{
uint32_t register len, idx;
uint32_t array_offset;
char *array, *array_start, *query=query_start;
char *word_start;
#ifdef MTF_ON
char *word_start_with_len;
#endif
/* hash the query term to get the required slot */
idx=bitwise_hash(query_start);
/* access the slot, if the slot is empty then proceed directly
* to insert the string
*/
if( (array = *(hash_table + idx)) == NULL)
{
array_start=array;
goto insert;
}
array_start=array;
/* main search loop */
loop:
query=query_start;
#ifdef MTF_ON
word_start_with_len=array;
#endif
/*
* strings are length-encoded. The first byte of each string is its length. If however,
* the most significant bit is set, this means that the length of the string is greater than
* 127 characters, and so, the next byte also represents the string length. In which case, the
* first byte is moved into an integer, followed by the second byte, thus forming the string length.
*/
if( ( len = (unsigned int) *array ) >= 128 )
{
len = (unsigned int) ( ( *array & 0x7f ) << 8 ) | (unsigned int) ( *(++array) & 0xff );
}
/*
* once the length has been acquired, move to the next byte which represents the
* first character of the string or the end-of-bucket flag (a null character)
*/
array++;
word_start = array;
/*
* compare the query to the word in the array, a character a time until a mismatch
* occurs or a null character is encountered
*/
for (; *query != '\0' && *query == *array; query++, array++);
/*
* if every character of the query string was compared and the length of
* the query matches the length of the string compared, then its a match
*/
if ( *query == '\0' && (array-word_start) == len )
{
#ifdef MTF_ON
/* if the word found is the first word in the slot, then we don't need to move-to-front */
if( word_start_with_len != array_start /* && ((word_start_with_len - array_start) > CACHE_LINE_SIZE) */ )
{
/* otherwise move the word found to the start of the array, according to its length */
if( len < 128 )
{
/* slide the start of the array to the right by the length of the word and a byte (its length),
* then copy the query to the start of the array, along with its length to complete the move-to-front
* process
*/
memmove(array_start + len + 1, array_start, (word_start_with_len-array_start));
memcpy (array_start + 1, query_start, len);
*array_start = (char) len;
}
else
{
/* move the string to the start of the array, plus 2 bytes for its length */
memmove(array_start + len + 2, array_start, (word_start_with_len-array_start));
memcpy (array_start + 2, query_start, len);
/* store the length of the string, which is broken up into two byte */
*array_start = (char) ( len >> 8 ) | 0x80;
*(array_start+1) = (char) ( len ) & 0xff;
}
mtf_counter++;
}
#endif
return false;
}
/* a mismatch occurred during the string comparison phase. skip to the next word */
array = word_start + len;
/* if the next character is the end-of-bucket flag, then the search failed */
if (*array == '\0')
{
goto insert;
}
goto loop;
insert:
/* get the length of the string to insert */
for(; *query != '\0'; query++);
len = query - query_start;
/* get the size of the array */
array_offset = array-array_start;
/* resize the array to fit the new string */
resize_array(idx, array_offset, ( len < 128 ) ? len+2 : len+3);
/* reinitialize the array pointers, the point to the end of the array */
array = *(hash_table+idx);
array_start = array;
array += array_offset;
/* if the length of the string is less than 128 characters, then only a single byte is
* needed to store its length
*/
if( len < 128 )
{
*array = (char) len;
}
/* if the length of the string is greater than 128 characters, then two bytes are required to
* store the string
*/
else
{
*array = (char) ( len >> 8) | 0x80;
*(++array) = (char) ( len ) & 0xff;
}
array++;
/* copy the string into the array */
while( *query_start != '\0' )
{
*array++ = *query_start++;
}
/* make sure the array is null terminated */
*array='\0';
return true;
}
int main(int argc, char **argv)
{
char *to_insert=NULL, *to_search=NULL;
int num_files=0,i=0,j=0;
double insert_real_time=0.0, search_real_time=0.0;
/* get the number of slots to allocate */
NUM_SLOTS=atoi(argv[1]);
/* get the number of files to insert */
num_files = atoi(argv[2]);
/* allocate the space for the slots, and keep track of the amount of memory allocated */
hash_mem += (sizeof(char *) * NUM_SLOTS) + 8;
hash_table=(char **) calloc(NUM_SLOTS, sizeof(char *));
if(hash_table == NULL) fatal(MEMORY_EXHAUSTED);
/* if a mask is used, then make sure you subtract one from the total number of slots allocated */
#ifdef MASK
NUM_SLOTS--;
#endif
/* insert the sequence of files and accumulate the amount of time required */
for(i=0, j=3; i<num_files; i++, j++)
{
to_insert=argv[j];
insert_real_time+=perform_insertion(to_insert);
}
uint64_t vsize=0;
{
pid_t mypid;
FILE * statf;
char fname[1024];
uint64_t ret;
uint64_t pid;
char commbuf[1024];
char state;
uint64_t ppid, pgrp, session, ttyd, tpgid;
uint64_t flags, minflt, cminflt, majflt, cmajflt;
uint64_t utime, stime, cutime, cstime, counter, priority;
uint64_t timeout, itrealvalue;
uint64_t starttime;
uint64_t rss, rlim, startcode, endcode, startstack, kstkesp, ksteip;
uint64_t signal, blocked, sigignore, sigcatch;
uint64_t wchan;
uint64_t size, resident, share, trs, drs, lrs, dt;
mypid = getpid();
snprintf(fname, 1024, "/proc/%u/stat", mypid);
statf = fopen(fname, "r");
ret = fscanf(statf, "%lu %s %c %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu "
"%lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
&pid, commbuf, &state, &ppid, &pgrp, &session, &ttyd, &tpgid,
&flags, &minflt, &cminflt, &majflt, &cmajflt, &utime, &stime,
&cutime, &cstime, &counter, &priority, &timeout, &itrealvalue,
&starttime, &vsize, &rss, &rlim, &startcode, &endcode, &startstack,
&kstkesp, &ksteip, &signal, &blocked, &sigignore, &sigcatch,
&wchan);
if (ret != 35) {
fprintf(stderr, "Failed to read all 35 fields, only %d decoded\n",
ret);
}
fclose(statf);
}
/* get the number of files to search */
num_files = atoi(argv[j++]);
/* search the sequence of files and accumulate the amount of time required */
for(i=0; i<num_files; i++, j++)
{
to_search=argv[j];
search_real_time+=perform_search(to_search);
}
/* Format of output:
* Array hash 104.43 94.91 3.94 2.61 6000000 6000000 16384 ...
* (1) (2) (3) (4) (5) (6) (7) (8)
* Legend:
* 1. the virtual memory size (MB)
* 2. the estimated memory size (MB)
* 3. elapsed time to insert (sec)
* 4. elapsed time to search (sec)
* 5. number of strings successfully inserted
* 6. number of strings successfully found
* 7. number of slots allocated
* 8. contact and copyright info.
*/
printf("Array-hash-table %.2f %.2f %.2f %.2f %d %d %d --- Dr. Nikolas Askitis, Copyright @ 2016, askitisn@gmail.com ", (double) vsize/TO_MB,
(double) hash_mem/TO_MB, insert_real_time, search_real_time, get_inserted(), get_found(), NUM_SLOTS);
#ifdef PAGING
printf("%s", "Paging ");
#endif
#ifdef EXACT_FIT
printf("%s", "Exact-fit ");
#endif
#ifdef MTF_ON
printf(" MTF");
#endif
puts("");
/* free the amount of memory allocated */
hash_destroy();
free(hash_table);
return 0;
}