forked from sfu-cosmo/MGCAMB_v4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.ini
executable file
·297 lines (245 loc) · 11.6 KB
/
params.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
##### MGCAMB model selection file #####
DEFAULT(params_MG.ini)
#Parameters for CAMB
#output_root is prefixed to output file names
#output_root = LCDM_ms_mnu_0p18_grt_0p01
output_root = pkpar
mugamma_par = 2
#What to do
get_scalar_cls = T
get_vector_cls = F
get_tensor_cls = F
get_transfer = T
#if do_lensing then lens_potential_output_file contains the unlensed CMB and lensing potential power spectra
#and lensed CMB Cls (without tensors) are in lensed_output_file, total in lensed_total_output_file.
do_lensing = T
# 0: linear, 1: non-linear matter power (HALOFIT), 2: non-linear CMB lensing (HALOFIT),
# 3: both non-linear matter power and CMB lensing (HALOFIT)
do_nonlinear = 0
#Maximum multipole and k*eta.
# Note that C_ls near l_max are inaccurate (about 5%), go to 50 more than you need
# Lensed power spectra are computed to l_max_scalar-100
# To get accurate lensed BB need to have l_max_scalar>2000, k_eta_max_scalar > 10000
# To get accurate lensing potential you also need k_eta_max_scalar > 10000
# Otherwise k_eta_max_scalar=2*l_max_scalar usually suffices, or don't set to use default
l_max_scalar = 2200
#k_eta_max_scalar = 4000
# Tensor settings should be less than or equal to the above
l_max_tensor = 1500
k_eta_max_tensor = 3000
#Main cosmological parameters, neutrino masses are assumed degenerate
# If use_phyical set physical densities in baryons, CDM and neutrinos + Omega_k
use_physical = T
ombh2 = 0.022445
omch2 = 0.12055785611
#omnuh2 = 0
omnuh2 = 0.000645146
#omnuh2 = 0.0064
#omnuh2 = 0.00128
#omnuh2 = 0.00192
omk = 0
hubble = 67
#effective equation of state parameter for dark energy
w = -1
#constant comoving sound speed of the dark energy (1=quintessence)
cs2_lam = 1
#varying w is not supported by default, compile with EQUATIONS=equations_ppf to use crossing PPF w-wa model:
#wa = 0
##if use_tabulated_w read (a,w) from the following user-supplied file instead of above
#use_tabulated_w = F
#wafile = wa.dat
#if use_physical = F set parameters as here
#omega_baryon = 0.0462
#omega_cdm = 0.2538
#omega_lambda = 0.7
#omega_neutrino = 0
temp_cmb = 2.7255
helium_fraction = 0.24
#for share_delta_neff = T, the fractional part of massless_neutrinos gives the change in the effective number
#(for QED + non-instantaneous decoupling) i.e. the increase in neutrino temperature,
#so Neff = massless_neutrinos + sum(massive_neutrinos)
#For full neutrino parameter details see http://cosmologist.info/notes/CAMB.pdf
massless_neutrinos = 2.046
#massless_neutrinos = 2.046
#number of distinct mass eigenstates
nu_mass_eigenstates = 1
#array of the integer number of physical neutrinos per eigenstate, e.g. massive_neutrinos = 2 1
massive_neutrinos = 1
#specify whether all neutrinos should have the same temperature, specified from fractional part of massless_neutrinos
share_delta_neff = T
#nu_mass_fractions specifies how Omeganu_h2 is shared between the eigenstates
#i.e. to indirectly specify the mass of each state; e.g. nu_mass_factions= 0.75 0.25
nu_mass_fractions = 1
#if share_delta_neff = F, specify explicitly the degeneracy for each state (e.g. for sterile with different temperature to active)
#(massless_neutrinos must be set to degeneracy for massless, i.e. massless_neutrinos does then not include Deleta_Neff from massive)
#if share_delta_neff=T then degeneracies is not given and set internally
#e.g. for massive_neutrinos = 2 1, this gives equal temperature to 4 neutrinos: nu_mass_degeneracies = 2.030 1.015, massless_neutrinos = 1.015
nu_mass_degeneracies =
#Initial power spectrum, amplitude, spectral index and running. Pivot k in Mpc^{-1}.
initial_power_num = 1
pivot_scalar = 0.05
pivot_tensor = 0.05
scalar_amp(1) = 2.12605e-9
scalar_spectral_index(1) = 0.96
scalar_nrun(1) = 0
scalar_nrunrun(1) = 0
tensor_spectral_index(1) = 0
tensor_nrun(1) = 0
#Three parameterizations (1,2,3) for tensors, see http://cosmologist.info/notes/CAMB.pdf
tensor_parameterization = 1
#ratio is that of the initial tens/scal power spectrum amplitudes, depending on parameterization
#for tensor_parameterization == 1, P_T = initial_ratio*scalar_amp*(k/pivot_tensor)^tensor_spectral_index
#for tensor_parameterization == 2, P_T = initial_ratio*P_s(pivot_tensor)*(k/pivot_tensor)^tensor_spectral_index
#Note that for general pivot scales and indices, tensor_parameterization==2 has P_T depending on n_s
initial_ratio(1) = 1
#tensor_amp is used instead if tensor_parameterization == 3, P_T = tensor_amp *(k/pivot_tensor)^tensor_spectral_index
#tensor_amp(1) = 4e-10
#note vector modes use the scalar settings above
#Reionization, ignored unless reionization = T, re_redshift measures where x_e=0.5
reionization = T
re_use_optical_depth = T
re_optical_depth = 0.09
#If re_use_optical_depth = F then use following, otherwise ignored
re_redshift = 11
#width of reionization transition. CMBFAST model was similar to re_delta_redshift~0.5.
re_delta_redshift = 1.5
#re_ionization_frac=-1 sets it to become fully ionized using Yhe to get helium contribution
#Otherwise x_e varies from 0 to re_ionization_frac
re_ionization_frac = -1
#Parameters for second reionization of helium
re_helium_redshift = 3.5
re_helium_delta_redshift = 0.5
#RECFAST 1.5.x recombination parameters;
RECFAST_fudge = 1.14
RECFAST_fudge_He = 0.86
RECFAST_Heswitch = 6
RECFAST_Hswitch = T
# CosmoMC parameters - compile with RECOMBINATION=cosmorec and link to CosmoMC to use these
#
# cosmorec_runmode== 0: CosmoMC run with diffusion
# 1: CosmoMC run without diffusion
# 2: RECFAST++ run (equivalent of the original RECFAST version)
# 3: RECFAST++ run with correction function of Calumba & Thomas, 2010
#
# For 'cosmorec_accuracy' and 'cosmorec_fdm' see CosmoMC for explanation
#---------------------------------------------------------------------------------------
#cosmorec_runmode = 0
#cosmorec_accuracy = 0
#cosmorec_fdm = 0
#Initial scalar perturbation mode (adiabatic=1, CDM iso=2, Baryon iso=3,
# neutrino density iso =4, neutrino velocity iso = 5)
initial_condition = 1
#If above is zero, use modes in the following (totally correlated) proportions
#Note: we assume all modes have the same initial power spectrum
initial_vector = -1 0 0 0 0
#For vector modes: 0 for regular (neutrino vorticity mode), 1 for magnetic
vector_mode = 0
#Normalization
COBE_normalize = F
##CMB_outputscale scales the output Culs
#To get MuK^2 set realistic initial amplitude (e.g. scalar_amp(1) = 2.3e-9 above) and
#otherwise for dimensionless transfer functions set scalar_amp(1)=1 and use
#CMB_outputscale = 1
CMB_outputscale = 7.42835025e12
#Transfer function settings, transfer_kmax=0.5 is enough for sigma_8
#transfer_k_per_logint=0 sets sensible non-even sampling;
#transfer_k_per_logint=5 samples fixed spacing in log-k
#transfer_interp_matterpower =T produces matter power in regular interpolated grid in log k;
# use transfer_interp_matterpower =F to output calculated values (e.g. for later interpolation)
transfer_high_precision = F
transfer_kmax = 2
transfer_k_per_logint = 50
transfer_num_redshifts = 1
transfer_interp_matterpower = T
transfer_redshift(1) = 0
transfer_filename(1) = transfer_out.dat
#Matter power spectrum output against k/h in units of h^{-3} Mpc^3
transfer_matterpower(1) = matterpower.dat
#which variable to use for defining the matter power spectrum and sigma8
#main choices are 2: CDM, 7: CDM+baryon+neutrino, 8: CDM+baryon, 9: CDM+baryon+neutrino+de perts
transfer_power_var = 7
#Output files not produced if blank. make camb_fits to use the FITS setting.
scalar_output_file = scalCls.dat
vector_output_file = vecCls.dat
tensor_output_file = tensCls.dat
total_output_file = totCls.dat
lensed_output_file = lensedCls.dat
lensed_total_output_file =lensedtotCls.dat
lens_potential_output_file = lenspotentialCls.dat
FITS_filename = scalCls.fits
#Bispectrum parameters if required; primordial is currently only local model (fnl=1)
#lensing is fairly quick, primordial takes several minutes on quad core
do_lensing_bispectrum = F
do_primordial_bispectrum = F
#1 for just temperature, 2 with E
bispectrum_nfields = 1
#set slice non-zero to output slice b_{bispectrum_slice_base_L L L+delta}
bispectrum_slice_base_L = 0
bispectrum_ndelta=3
bispectrum_delta(1)=0
bispectrum_delta(2)=2
bispectrum_delta(3)=4
#bispectrum_do_fisher estimates errors and correlations between bispectra
#note you need to compile with LAPACK and FISHER defined to use get the Fisher info
bispectrum_do_fisher= F
#Noise is in muK^2, e.g. 2e-4 roughly for Planck temperature
bispectrum_fisher_noise=0
bispectrum_fisher_noise_pol=0
bispectrum_fisher_fwhm_arcmin=7
#Filename if you want to write full reduced bispectrum (at sampled values of l_1)
bispectrum_full_output_file=
bispectrum_full_output_sparse=F
#Export alpha_l(r), beta_l(r) for local non-Gaussianity
bispectrum_export_alpha_beta=F
##Optional parameters to control the computation speed,accuracy and feedback
#If feedback_level > 0 print out useful information computed about the model
feedback_level = 1
#whether to start output files with comment describing columns
output_file_headers = T
#write out various derived parameters
derived_parameters = T
# 1: curved correlation function, 2: flat correlation function, 3: inaccurate harmonic method
lensing_method = 1
accurate_BB = F
#massive_nu_approx: 0 - integrate distribution function
# 1 - switch to series in velocity weight once non-relativistic
massive_nu_approx = 1
#Whether you are bothered about polarization.
accurate_polarization = T
#Whether you are bothered about percent accuracy on EE from reionization
accurate_reionization = T
#whether or not to include neutrinos in the tensor evolution equations
do_tensor_neutrinos = T
#whether you care about accuracy of the neutrino transfers themselves
accurate_massive_neutrino_transfers = F
#Whether to turn off small-scale late time radiation hierarchies (save time,v. accurate)
do_late_rad_truncation = T
#Which version of Halofit approximation to use (default currently Takahashi):
#1. Original Smith et al. (2003; arXiv:astro-ph/0207664) HALOFIT
#2. Bird et al. (arXiv:1109.4416) updated HALOFIT
#3. Original plus fudge from http://www.roe.ac.uk/~jap/haloes/,
#4. Takahashi (2012; arXiv:1208.2701) HALOFIT update
#5. HMcode (Mead et al. 2016; arXiv 1602.02154)
#6. A standard (inaccurate) halo model power spectrum calcultion
#7. PKequal (Casarini et al. arXiv:0810.0190, arXiv:1601.07230)
#8. HMcode (Mead et al. 2015; arXiv 1505.07833)
halofit_version=9
#Computation parameters
#if number_of_threads=0 assigned automatically
number_of_threads = 0
#Default scalar accuracy is about 0.3% (except lensed BB) if high_accuracy_default=F
#If high_accuracy_default=T the default target accuracy is 0.1% at L>600 (with boost parameter=1 below)
#Try accuracy_boost=2, l_accuracy_boost=2 if you want to check stability/even higher accuracy
#Note increasing accuracy_boost parameters is very inefficient if you want higher accuracy,
#but high_accuracy_default is efficient
high_accuracy_default=T
#Increase accuracy_boost to decrease time steps, use more k values, etc.
#Decrease to speed up at cost of worse accuracy. Suggest 0.8 to 3.
accuracy_boost = 1
#Larger to keep more terms in the hierarchy evolution.
l_accuracy_boost = 1
#Increase to use more C_l values for interpolation.
#Increasing a bit will improve the polarization accuracy at l up to 200 -
#interpolation errors may be up to 3%
#Decrease to speed up non-flat models a bit
l_sample_boost = 1