-
Notifications
You must be signed in to change notification settings - Fork 0
/
getDWIsubset.asv
152 lines (125 loc) · 5.54 KB
/
getDWIsubset.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function [adcTable, mean_adcTable, std_adcTable, mean_SvTable, dwiTable] = getDWIsubset(dwiData_file, parameters, b_keep, TE_keep, slice)
if ~exist('b_keep', 'var')
b_keep = [1,2,3,4];
end
if ~exist('TE_keep', 'var')
TE_keep = 1;
end
% Load full dwiData table
if ischar(dwiData_file)
load(dwiData_file, 'dwiData');
elseif isstruct(dwiData_file)
dwiData = dwiData_file;
end
% get subset of dwiData Table based on parameters
for p = 1:length(parameters)
field_name = parameters{p}{1};
if isstring(dwiData(1).(field_name)) || ischar(dwiData(1).(field_name))
idx = matches({dwiData.(field_name)}, parameters{p}{2});
else
idx = ismember([dwiData.(field_name)], parameters{p}{2});
end
data_sub = dwiData(idx);
dwiData = data_sub;
end
if size(dwiData,2) == 0
error('No sequences match the input parameters.')
end
% Reformat dwiData from struct to Table
dwiTable = struct2table(dwiData);
for row = 1:height(dwiTable)
dwiTable.Description(row) = strrep(dwiTable.Description(row), '_', ' ');
end
dwiTable.Date = str2double(dwiTable.Date);
days = unique(dwiTable.Date);
for d = 1:length(days)
dwiTable.DateTag(dwiTable.Date == days(d)) = {['Day' num2str(d)]};
end
display(dwiTable);
% Set-up empty tables
mean_adcTable = removevars(dwiTable, 'Signal');
std_adcTable = removevars(dwiTable, 'Signal');
mean_SvTable = removevars(dwiTable, 'Signal');
numcols = width(mean_adcTable);
vial_cols = string(compose('Vial %d', 1:13));
adcTable = table();
dwiTable = table();
% Calculate maximum length of output table
S = dwiData(1).Signal;
for v = 1:13
l(v) = length(S{v});
end
% Store ADC value for each voxel in all vial ROIs
for d = 1:length(dwiData) % for each image in the dwiData subset
% Set-up empty tables
param_table = repmat(mean_adcTable(d,1:numcols),[max(l),1]); % length is == largest ROI
adc_table_d = table();
dwi_table_d = table();
% Select b-values for ADC fit
if strcmp(dwiData(d).SequenceType, 'SOS')
b = [10, 50, 100, 840];
if any(matches(split(dwiData(d).Description,'_'), 'MELV4'))
b = [10, 1100];
b_keep = [1,2];
end
elseif strcmp(dwiData(d).Filename,'REP2_SOS_MELV2_d10_b400_rot270.mat')
b = [10, 50, 400, 800];
else
b = [0, 50, 100, 800];
end
b_vec = b(b_keep);
S = dwiData(d).Signal;
for v = 1:13 % for each vial ROI
% Get dwi Signal from all vial voxels and slices. Keep selected TE
Sv = S{v};
if size(Sv,4) > 1
Sv = squeeze(Sv(:,:,:,TE_keep));
end
if exist('slice', 'var')
Svb = Sv(:,slice,b_keep); % Svb: [nvox, 1, nbval]
% For ADC output table, set matrix length to maximum ROI size:
P = nan(max(l), 1); % P:[nvoxMAX]
% Svb_out = nan(max(l), length(b_keep)); % Sbv_out:[nvoxMAX, nbval];
else
Svb = Sv(:,:,b_keep); % Svb:[nvox, nslices, nbval]
% For ADC output table, set matrix length to maximum ROI size:
P = nan(max(l), size(Sv,2)); % P:[nvoxMAX, nslices]
Svb_out = nan(max(l), size(Sv,2), length(b_keep)); % Svb_out:[nvoxMAX, nslices, nbval];
end
% Reshape: Combine DIMS 1 (nvox) and 2 (nslices)
Svb_reshape = reshape(Svb, [size(Svb,1)*size(Svb,2), size(Svb,3)]); % Svb_reshape:[nvox*nslices, nbval]
% For dwi output table, set matrix length to maximum ROI size *
% number of slices:
Svb_out = nan(max(l)*size(Svb,2), length(b_keep));
Svb_out(1:length(Svb_reshape),:) = Svb_reshape;
% Perform ADC fit
Y = log(Svb_reshape./Svb_reshape(:,1));
X = b_vec;
for p = 1:length(Y)
P_reshape(p,:) = polyfit(X,Y(p,:),1);
end
P(1:size(Svb,1),:,:) = reshape(P_reshape(:,1),[size(Svb,1), size(Svb,2)]);
% Save mean, std of ADC into Tables
adc_mean(v) = -1*mean(P,1,'omitnan')*1E3;
adc_std = abs(std(P,[],1, 'omitnan'))*1E3;
Sv_mean = mean(Svb_reshape,1);
Sv_mean = mean(Svb_reshape(:,2)./Svb_reshape(:,1));
% adc_mean = -1*mean(P(~isnan(P(:,1)),1))*1E3;
% adc_std = abs(std(P(~isnan(P(:,1)),1),[],1))*1E3;
mean_adcTable.(vial_cols(v))(d) = {adc_mean(v)};
std_adcTable.(vial_cols(v))(d) = {adc_std};
mean_SvTable.(vial_cols(v))(d) = {Sv_mean};
% Save all vial voxel ADCs into Table
adc_table_d.(vial_cols(v)) = -1*P*1E3;
dwi_table_d.(vial_cols(v)) = Svb_reshape;
clear P_reshape P
end
adc_table_d = fillmissing(adc_table_d,'constant', adc_mean);
%dwi_table_d = fillmissing(dwi_table_d,'constant', Sv_mean);
adc_table_d = [param_table, adc_table_d]; % HORZ cat of sequence parameters and ADC values
adcTable = [adcTable; adc_table_d]; % VERT cat of data from each sequence
dwi_table_d = [param_table, adc_table_d];
dwiTable = [dwiTable; dwi_table_d];
clear adc_table_d adc_mean
end
end