- visualizing Correlation matrix is out of the scope of built-in way of doing it in plain vanilla javaScript.
- we can make the visualization from scratch but takes some time.
- I have represented the data in-terms of table format as one of the way of visualising correlation matrix is through tables.
- we can still do different visualization for different types of data using -d3.js
- d3.js is a open source javaScript library for visualizing data.
-
Steps to follow
-
We need to create a csv data for the input.
-
Load the d3.js library or download the library.
<script src="https://d3js.org/d3.v5.min.js"></script>
-
Create a simple html file
<!DOCTYPE html> <meta charset="utf-8"> <!-- Load d3.js --> <script src="https://d3js.org/d3.v4.js"></script> <!-- Create a div where the graph will take place --> <div id="my_dataviz"></div>
-
Code for creating the histogram
<script> // set the dimensions and margins for the graph var margin = {top: 10, right: 30, bottom: 30, left: 40}, width = 460 - margin.left - margin.right, height = 400 - margin.top - margin.bottom; // append the svg object to the body of the page var svg = d3.select("#my_dataviz") .append("svg") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); // get the data - load your custom data here instead of the sample data d3.csv("https://raw.githubusercontent.com/holtzy/D3-graph-gallery/master/DATA/data_doubleHist.csv", function(data) { // X axis: scale and draw: var x = d3.scaleLinear() .domain([-4,9]) // can use this instead of 1000 to have the max of data: d3.max(data, function(d) { return +d.price }) .range([0, width]); svg.append("g") .attr("transform", "translate(0," + height + ")") .call(d3.axisBottom(x)); // set the parameters for the histogram var histogram = d3.histogram() .value(function(d) { return +d.value; }) // I need to give the vector of value .domain(x.domain()) // then the domain of the graphic .thresholds(x.ticks(40)); // then the numbers of bins // And apply twice this function to data to get the bins. var bins1 = histogram(data.filter( function(d){return d.type === "variable 1"} )); var bins2 = histogram(data.filter( function(d){return d.type === "variable 2"} )); // Y axis: scale and draw: var y = d3.scaleLinear() .range([height, 0]); y.domain([0, d3.max(bins1, function(d) { return d.length; })]); // d3.hist has to be called before the Y axis obviously svg.append("g") .call(d3.axisLeft(y)); // append the bars for series 1 svg.selectAll("rect") .data(bins1) .enter() .append("rect") .attr("x", 1) .attr("transform", function(d) { return "translate(" + x(d.x0) + "," + y(d.length) + ")"; }) .attr("width", function(d) { return x(d.x1) - x(d.x0) -1 ; }) .attr("height", function(d) { return height - y(d.length); }) .style("fill", "#69b3a2") .style("opacity", 0.6) // append the bars for series 2 svg.selectAll("rect2") .data(bins2) .enter() .append("rect") .attr("x", 1) .attr("transform", function(d) { return "translate(" + x(d.x0) + "," + y(d.length) + ")"; }) .attr("width", function(d) { return x(d.x1) - x(d.x0) -1 ; }) .attr("height", function(d) { return height - y(d.length); }) .style("fill", "#404080") .style("opacity", 0.6) // Handmade legend svg.append("circle").attr("cx",300).attr("cy",30).attr("r", 6).style("fill", "#69b3a2") svg.append("circle").attr("cx",300).attr("cy",60).attr("r", 6).style("fill", "#404080") svg.append("text").attr("x", 320).attr("y", 30).text("variable A") .style("font-size", "15px").attr("alignment-baseline","middle") svg.append("text").attr("x", 320).attr("y", 60).text("variable B") .style("font-size", "15px").attr("alignment-baseline","middle") }); </script>