-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix.c
91 lines (77 loc) · 2.25 KB
/
matrix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include<stdio.h>
#include<limits.h>
int n=0;
void print_optimal(int s[][n] , int i,int j){
if(i==j)
printf("a%d",i);
else
{
printf("(");
print_optimal(s,i,s[i][j]);
print_optimal(s,s[i][j] +1 , j);
printf(")");
}
}
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
int MatrixChainOrder(int p[])
{
/* For simplicity of the program, one extra row and one extra column are
allocated in m[][]. 0th row and 0th column of m[][] are not used */
int m[n][n],s[n][n];
int i, j, k, L, q,x,y;
/* m[i,j] = Minimum number of scalar multiplications needed to compute
the matrix A[i]A[i+1]...A[j] = A[i..j] where dimention of A[i] is
p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for (i = 1; i < n; i++)
m[i][i] = 0;
for (i = 1; i < n; i++)
s[i][i] = 0;
// L is chain length.
for (L=2; L<=n; L++)
{
for (i=1; i<=n-L+1; i++)
{
j = i+L-1;
m[i][j] = INT_MAX;
for (k=i; k<=j-1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if (q < m[i][j]){
m[i][j] = q;
s[i][j] = k;
}
}
}
}
for( x =1;x<=n;x++){
printf("\n");
for ( y = x; y < n; ++y)
{
printf("%d ", s[x][y]);
}
}
print_optimal(s,1,n-1);
return m[1][n-1];
}
int main()
{
//int arr[] = {30,35,15,5,10,20,25};
int arr[] = {20,50,30,10,10};
n = sizeof(arr)/sizeof(arr[0]);
printf("Minimum number of multiplications is %d ",MatrixChainOrder(arr));
getchar();
return 0;
}
int final_result[n],inter_result[n];
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
int temp_i =i;
while(temp_i != 0){
printf("a\n");
temp_i++;
}
printf("(" );
}
}