-
Notifications
You must be signed in to change notification settings - Fork 0
/
dope.py
executable file
·133 lines (103 loc) · 4.07 KB
/
dope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -------------------------------------------------------------------------------
# Name: main
# Purpose: Testing the package pySaliencyMap
#
# Author: Akisato Kimura <akisato@ieee.org>
#
# Created: May 4, 2014
# Copyright: (c) Akisato Kimura 2014-
# Licence: All rights reserved
# -------------------------------------------------------------------------------
import cv2
import matplotlib.pyplot as plt
import matplotlib
# matplotlib.use('TkAgg')
# matplotlib.use('Agg')
import pySaliencyMap
import time
import numpy as np
from generateChannels import generateChannels
from makeBorderOwnership import makeBorderOwnership
# from salienpy.salienpy.commons import minmaxnormalization
# from ittiNorm import ittiNorm
# from numba import vectorize, cuda
from multiprocessing import Process
from makeColors import makeColors
from makeDefaultParams import makeDefaultParams
from computeTemporalFiltering import computeTemporalFiltering
from normalizeImage import normalizeImage
# main
# @vectorize(['float32(float32)'],target='cuda')
# def static(img):
# # read
# # img = cv2.imread('test3.jpg')
# # initialize
# img = np.transpose(img,[1,2,0])
# imgsize = img.shape
# img_width = imgsize[1]
# img_height = imgsize[0]
# sm = pySaliencyMap.pySaliencyMap(img_width, img_height)
# sm = sm.SMGetSM(img)
# # computation
# # start = time.time()
# # for i in range(100):
# # sal_map = []
# # for i in range(3):
# # sal_map.append()
#
#
#
# return sm
import h5py
from ComputeTemporalFilter_jam import ComputeTemporalFilter_jam
import tensorflow as tf
from makeTemporalFilter import makeTemporalFilter
#tf.enable_eager_execution()
import cv2
import matplotlib.pyplot as plt
if __name__ == '__main__':
params = makeDefaultParams(1e5)
cap = cv2.VideoCapture(1)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 300)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 300)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# cap= cv2.VideoCapture("nvcamerasrc ! video/x-raw(memory:NVMM), width=(int)308, height=(int)308,format=(string)I420, framerate=(fraction)30/1 ! nvvidconv flip-method=0 ! video/x-raw, format=(string)BGRx ! videoconvert ! video/x-raw, format=(string)BGR ! appsink")
sm = pySaliencyMap.pySaliencyMap(height, width)
r_s = np.reshape(makeTemporalFilter('strong_t3'), (3, 1, 1, 1))
r_w = np.reshape(makeTemporalFilter('weak_t6'), (6, 1, 1, 1))
imgs = np.zeros((height, width, 3, 3))
print(r_s.shape)
video = np.zeros((6, height, width, 3))
start = time.time()
for i in range(6):
ret, frame = cap.read()
print(np.asarray(frame).shape)
video[i, :, :, :] = frame
#imgs = np.ones((144,176,3,3))
imgs = np.asarray(np.zeros((video[0].shape[0], video[0].shape[1], video[0].shape[2], len(params['channels']))))
print(imgs.shape)
#imgs = np.reshape(imgs,(114,176,3,3))
# plt.ion()
salmap = np.zeros((height, width))
# plt.title("Histogram")
# cv2.namedWindow('frame')
while (True):
start = time.time()
video = np.roll(video, -1, axis=0)
ret, frame = cap.read()
video[5, :, :, :] = frame
temp_out_strong, temp_out_weak = ComputeTemporalFilter_jam(video, r_s, r_w)
#print("temp:",temp_out_strong.shape,temp_out_strong,"imgs:",imgs.shape,imgs[:,:,:,0])
#print("we:",np.asarray(normalizeImage(wea).shape))
imgs[:, :, :, 0] = normalizeImage(temp_out_strong)
imgs[:, :, :, 1] = normalizeImage(temp_out_weak)
imgs[:, :, :, 2] = normalizeImage(video[2])
[inp, in_orient, R, G, B, Y] = makeColors(imgs)
salmap = sm.sal_map(R, G, B, inp)
cv2.imshow('orig',frame)
cv2.imshow('frame', cv2.applyColorMap((((-1 * cv2.resize(salmap, (0,0), fx=3, fy=3)) / 32) * 255).astype(np.uint8), cv2.COLORMAP_JET))
print("time", 1 / (time.time() - start))
if cv2.waitKey(1) == 27:
break
cv2.destroyAllWindows()