diff --git a/Chapter_8/statistical-physics.ipynb b/Chapter_8/statistical-physics.ipynb index 42609d9..41ef520 100644 --- a/Chapter_8/statistical-physics.ipynb +++ b/Chapter_8/statistical-physics.ipynb @@ -265,7 +265,7 @@ "Similarly, there is an average energy associated with the other two velocity components, which produces a net average energy per molecule of $\\frac{3}{2}kT$. In a monatomic gas (e.g., $\\rm He$ or $\\rm Ar$), virtually all of the energy is in the translational kinetic energy.\n", "\n", "```{margin}\n", - "Rigid rotator model\n", + "**Rigid rotator model**\n", "```\n", "\n", "**Consider a diatomic gas (e.g., $\\rm O_2$) as two atoms connected by a massless rod (i.e., a rigid rotator).** Then the molecule can have *rotational* kinetic energy in addtion to translational kinetic energy. The crucial questions are:\n", @@ -289,7 +289,7 @@ "Each of these rotational energies $(K_x\\ \\text{or}\\ K_y)$ is quadratic in angular velocity, so the equipartition theorem instructs us to add $2\\left(\\frac{1}{2}kT\\right) = kT$ per molecule to the translational kinetic energy for a total of $\\frac{5}{2}kT$.\n", "\n", "```{margin}\n", - "Spring model\n", + "**Spring model**\n", "```\n", "\n", "Sometimes it is a better approximation to think of atoms connected by a massless spring rather than a rigid rod. In this model, we use the potential energy of a spring but in radial coordinates:\n", @@ -377,7 +377,321 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Maxwell Speed Distribution" + "## Maxwell Speed Distribution\n", + "\n", + "The general form of the Maxwell velocity distribution is given as\n", + "\n", + "\\begin{align*}\n", + "f(\\vec{v})\\ d^3\\vec{v} = C e^{-\\frac{1}{2}\\beta m v^2}\\ d^3\\vec{v},\n", + "\\end{align*}\n", + "\n", + "where $C = {C^\\prime}^3 = \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2}$.\n", + "\n", + "The distribution $f(\\vec{v})$ is a function of the speed $v$ in the exponent and not the velocity $\\vec{v}$, but it is still a velocity distribution due to the phase space volume element $d^3\\vec{v}$. We can turn this velocity distribution into a speed distribution $F(v)$ using the definition\n", + "\n", + "\\begin{align*} \n", + "F(v)\\ dv =& \\text{ probability of finding a particle } \\\\ \n", + "& \\text{ with speed between } v\\ \\text{and}\\ v + dv.\n", + "\\end{align*}\n", + "\n", + "**Consider the analogous problem in 3-D position space $(x,\\ y,\\ z)$.** Some distribution of particles exist, where a particle can be located with $(x,\\ y,\\ z)$ with a distance $r = \\sqrt{x^2+ y^2 + z^2}$ from the origin and has a position vector $\\vec{r}$ measured relative to the origin. Then\n", + "\n", + "\\begin{align*}\n", + "f(x,\\ y,\\ z)\\ d^3\\vec{r} = & \\text{ probability of finding a particle} \\\\\n", + "& \\text{ between }\\vec{r}\\ \\text{and}\\ \\vec{r} + d^3\\vec{r},\n", + "\\end{align*}\n", + "\n", + "with $d^3\\vec{r} = dx\\ dy\\ dz$. To shift to the scalar *radial* distribution we introduce the definition \n", + "\n", + "\\begin{align*}\n", + "F(r)dr = & \\text{ probability of finding a particle} \\\\\n", + "& \\text{ between }r\\ \\text{and}\\ r + dr.\n", + "\\end{align*}\n", + "\n", + "The space between $r$ and $r+dr$ is a *spherical shell*, and thus, we must integrate over that volume to transform to the radial distribution. These two distributions are related by the volume of spherical shell, or $4\\pi r^2$. We may write\n", + "\n", + "\\begin{align}\n", + "F(r)dr = f(x,\\ y,\\ z) 4\\pi r^2\\ dr.\n", + "\\end{align}\n", + "\n", + "Returning to the problem of the speed distribution $F(v)$ from the velocity distribution $f(\\vec{v})$. We need to integrate over a spherical shell in the velocity phase space, where we replace $r\\rightarrow v$ from the previous example. The desired speed distribution is\n", + "\n", + "```{margin}\n", + "**Maxwell speed distribution**\n", + "```\n", + "\n", + "\\begin{align}\n", + "F(v)\\ dv = 4\\pi Ce^{-\\frac{1}{2}\\beta m v^2}v^2\\ dv.\n", + "\\end{align}\n", + "\n", + "The Maxwell speed distribution as derived from purely classical considerations, where it gives a nonzero probability of finding a particle with a speed greater than $c$. Therefore, it is only valid in the classical limit.\n", + "\n", + "The assymetry of the distribution curve leads to an interesting result:\n", + "\n", + "> the most probable speed $v_{\\rm mp}$, the mean speed $\\bar{v}$, and the root-mean-square speed $v_{\\rm rms}$ are all slightly different from each other.\n", + "\n", + "To find the most probable speed, we simply find *maximum* speed in the probabilty curve, or\n", + "\n", + "\\begin{align}\n", + "\\frac{dF}{dv} &= 4\\pi C \\frac{d}{dv}\\left[e^{-\\frac{1}{2}\\beta m v^2}v^2 \\right], \\\\\n", + "&= 2ve^{-\\frac{1}{2}\\beta m v^2} - \\left(\\beta m v\\right)v^2 e^{-\\frac{1}{2}\\beta m v^2}.\n", + "\\end{align}\n", + "\n", + "Replacing $v\\rightarrow v_{\\rm mp}$ to denote the *most probable* speed and setting the above result equal to zero, we can solve for $v_{\\rm mp}$:\n", + "\n", + "```{margin}\n", + "**Most probable speed $v_{\\rm mp}$**\n", + "```\n", + "\n", + "\\begin{align}\n", + "2v_{\\rm mp}e^{-\\frac{1}{2}\\beta m v_{\\rm mp}^2} &= \\left(\\beta m v_{\\rm mp}\\right)v_{\\rm mp}^2 e^{-\\frac{1}{2}\\beta m v_{\\rm mp}^2}, \\\\\n", + "v_{\\rm mp} &= \\sqrt{\\frac{2}{\\beta m}} = \\sqrt{\\frac{2kT}{m}}.\n", + "\\end{align}\n", + "\n", + "A particle moving at the most probable speed has a kinetic energy $K_{\\rm mp} = \\frac{1}{2}mv_{\\rm mp}^2 = kT$.\n", + "\n", + "The *mean speed* is found by integrating (summing up) the probabilities for individual speeds, or\n", + "\n", + "\\begin{align*}\n", + "\\bar{v} = \\int_0^\\infty vF(v)\\ dv = 4\\pi C \\int_0^\\infty v^3e^{-\\frac{1}{2}\\beta m v^2}dv.\n", + "\\end{align*}\n", + "\n", + "See a list of [integrals containing exponential functions](https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions) and using $(k=1,\\ n=3,\\ a=\\beta m/2)$ to find\n", + "\n", + "```{margin}\n", + "**Mean speed $\\bar{v}$**\n", + "```\n", + "\n", + "\\begin{align*}\n", + "\\bar{v} &= 4\\pi C \\left(\\frac{1}{2(\\beta m/2)^2}\\right) = 8\\pi \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2} \\left(\\frac{1}{(\\beta m)^2}\\right), \\\\\n", + " &= \\frac{4}{\\sqrt{2\\pi}} \\left(\\frac{1}{\\sqrt{\\beta m}}\\right), \\\\ &= \\frac{2}{\\sqrt{\\pi}} \\sqrt{\\frac{2kT}{m}}, \\\\\n", + " &= \\frac{2}{\\sqrt{\\pi}} v_{\\rm mp}.\n", + "\\end{align*}\n", + "\n", + "We define the **root-mean-square** $v_{\\rm rms}$ to be $ v_{\\rm rms} \\equiv \\left(\\overline{v^2}\\right)^{1/2}$. We cannot simply use the result for the mean speed $\\bar{v}$ directly. Instead, we need to find the mean using the probability function $F(v)$, or\n", + "\n", + "\\begin{align*}\n", + "\\overline{v^2} = \\int_0^\\infty v^2F(v)\\ dv = 4\\pi C \\int_0^\\infty v^4e^{-\\frac{1}{2}\\beta m v^2}dv.\n", + "\\end{align*}\n", + "\n", + "See a list of [integrals containing exponential functions](https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions) and using $(k=2,\\ n=4,\\ a=\\beta m/2)$ to find\n", + "\n", + "\\begin{align}\n", + "\\overline{v^2} &= 4\\pi C \\int_0^\\infty v^4e^{-\\frac{1}{2}\\beta m v^2}dv = 4\\pi C \\left(\\frac{3!!}{8a^2}\\sqrt{\\frac{\\pi}{a}}\\right), \\\\\n", + "&= 4\\pi \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2} \\frac{3}{2(\\beta m)^2} \\sqrt{\\frac{2\\pi}{\\beta m}}, \\\\\n", + "&= \\frac{3(\\beta m)^{3/2}}{(\\beta m)^{5/2} } = \\frac{3}{\\beta m}, \\\\\n", + "&= \\frac{3kT}{m}.\n", + "\\end{align}\n", + "\n", + "Then\n", + "\n", + "```{margin}\n", + "**Root-mean-square speed $v_{\\rm rms}$**\n", + "```\n", + "\n", + "\\begin{align}\n", + "v_{\\rm rms} = \\left(\\overline{v^2}\\right)^{1/2} = \\sqrt{\\frac{3kT}{m}} = \\sqrt{\\frac{3}{2}}v_{\\rm mp}.\n", + "\\end{align}\n", + "\n", + "A particle moving with the mean squared speed has a kinetic energy \n", + "\n", + "$$ \\overline{K} = \\frac{1}{2}m\\overline{v^2} = \\frac{1}{2}m \\left(\\frac{3kT}{m}\\right) = \\frac{3}{2}kT $$\n", + "\n", + "in keeping with our basic law of kinetic theory.\n", + "\n", + "The **standard deviation** of the molecular speeds $\\sigma_v$ is \n", + "\n", + "\\begin{align}\n", + "\\sigma_v &= \\left(\\overline{v^2} - \\bar{v}^2\\right)^{1/2} = \\left(\\frac{3kT}{m} - \\frac{8kT}{m\\pi}\\right)^{1/2}, \\\\\n", + "&= \\left[\\frac{(3\\pi-8)kT}{m\\pi}\\right]^{1/2},\\\\\n", + "&= \\left[3-\\left(\\frac{8}{\\pi}\\right)\\right]^{1/2} \\sqrt{\\frac{kT}{m}}, \\\\\n", + "&= \\left[\\frac{3}{2}-\\left(\\frac{8}{2\\pi}\\right)\\right]^{1/2} v_{\\rm mp}.\n", + "\\end{align}\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{exercise}\n", + ":class: orange\n", + "\n", + "**Computre the mean molecular speed $\\bar{v}$ in hydrogen $({\\rm H_2})$ and radon $({\\rm Rn})$ gas, both at room temperature $293\\ {\\rm K}$. Use the longest-lived radon isotope, which has a molar mass of $222\\ {\\rm u}$. Compare the results.**\n", + "\n", + "The mean molecular speed is given by \n", + "\n", + "$$ \\bar{v} = \\frac{2}{\\sqrt{\\pi}} \\sqrt{\\frac{2kT}{m}}, $$\n", + "\n", + "which can be applied to each type of gas. The only difference between results will be due to the molar mass $m$. The molar mass of $\\rm H_2$ is $2.01568\\ {\\rm u}$, which is found by multiplying the mass of hydrogen by two. The conversion from atomic mass units ${\\rm u}$ to $\\rm kg$ is $1.660539 \\times 10^{-27}\\ {\\rm kg/u}$. Let's re-write the mean molecular speed so that all the physical constants are combined and so that we can use atomic mass units directly. This gives\n", + "\n", + "\\begin{align}\n", + "\\bar{v} = \\left(2\\sqrt{\\frac{2k}{\\pi u}}\\right)\\sqrt{\\frac{T\\ \\text{(in K)}}{m\\ \\text{(in u)}}} = 145.5081\\sqrt{\\frac{T}{m}}.\n", + "\\end{align}\n", + "\n", + "Then, we compute the mean molecular speed for molecular hydrogen $\\rm H_2$ as\n", + "\n", + "$$ \\bar{v}_{\\rm H_2} = 145.5081\\sqrt{\\frac{293}{2.01568}} = 1750\\ {\\rm m/s}.$$\n", + "\n", + "The mean molecular speed for radon ${\\rm Rn}$ can be calculated a mass ratio because the temperature is the same in both cases. From this method we find that the mean speed is:\n", + "\n", + "$$ \\bar{v}_{\\rm Rn} = \\sqrt{\\frac{2.01568}{222}}\\bar{v}_{\\rm H_2} = 166\\ {\\rm m/s}.$$\n", + "\n", + "The hydrogen molecule is ${\\sim}10\\times$ faster on average. That's to be expected because the mass ratio $(m_{\\rm Rn}/m_{\\rm H_2}) \\sim \\sqrt{100} = 10.$\n", + "\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----For hydrogen-----\n", + "The mean molecular speed of molecular hydrogen (H_2) is 1750 m/s.\n", + "The mean molecular speed using our simplified equation is 1750 m/s.\n", + "----For radon-----\n", + "The mean molecular speed of radon gas (Rn) is 166 m/s.\n", + "The mass ratio (m_Rn/m_H2) is 110 and the ratio of speeds (v_H2/v_Rn) is 10.5.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from scipy.constants import physical_constants \n", + "\n", + "def mean_molecular_speed(T,m):\n", + " #T = absolute temperature in K\n", + " #m = molar mass in u\n", + " return (2/np.sqrt(np.pi))*np.sqrt((2*k*T)/(m*u))\n", + "\n", + "k = physical_constants['Boltzmann constant'][0]\n", + "u = physical_constants['atomic mass constant'][0]\n", + "mean_speed_constant = 2/np.sqrt(np.pi)*np.sqrt(2*k/u)\n", + "\n", + "T = 293 #room temperature in K\n", + "m_H2 = 2.01568 #molar mass in u\n", + "m_Rn = 222 #molar mass in u\n", + "mass_ratio = m_Rn/m_H2\n", + "\n", + "v_H2 = np.round(mean_molecular_speed(T,m_H2),-1)\n", + "v_H2_constant = np.round(mean_speed_constant*np.sqrt(T/m_H2),-1)\n", + "\n", + "print(\"----For hydrogen-----\")\n", + "print(\"The mean molecular speed of molecular hydrogen (H_2) is %i m/s.\" % v_H2)\n", + "print(\"The mean molecular speed using our simplified equation is %i m/s.\" % v_H2_constant)\n", + "\n", + "print(\"----For radon-----\")\n", + "v_Rn = v_H2/np.sqrt(mass_ratio)\n", + "print(\"The mean molecular speed of radon gas (Rn) is %i m/s.\" % v_Rn)\n", + "print(\"The mass ratio (m_Rn/m_H2) is %i and the ratio of speeds (v_H2/v_Rn) is %1.1f.\" % (mass_ratio, np.sqrt(mass_ratio)))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{exercise}\n", + ":class: orange\n", + "\n", + "**What fraction of the molecules in an ideal gas in equilibrium has speeds with $\\pm1\\%$ of the most probable speed $v_{\\rm mp}$?**\n", + "\n", + "The Maxwell speed distribution function provides the probability of finding a particle within an interval of speeds. The fraction of molecules within the a given speed interval is equal to the integrated probability over the interval. Mathematically, this is expressed by the number of molecules at a particular speed $N(v)$: \n", + "\n", + "\\begin{align}\n", + "P(\\pm1\\%) = \\frac{N(1.01v_{\\rm mp})-N(0.99v_{\\rm mp})}{N} = \\int_{0.99v_{\\rm mp}}^{1.01v_{\\rm mp}} F(v)dv.\n", + "\\end{align}\n", + "\n", + "The indefinite integral introduces the [error function](https://en.wikipedia.org/wiki/Error_function), which is beyond the scope of this course. However, we can obtain an approximate solution by calculating $F(v_{\\rm mp})$ and multiplying by $dv \\approx \\Delta v = 0.02v_{\\rm mp}$. This solution works for a small window, where wider intervals are easily evaluated using numerical methods (e.g., [Simpson's rule](https://saturnaxis.github.io/CompPhysics/Chapter_4/Integration.html#simpson-s-rule)).\n", + "\n", + "Recall the most probable speed $v_{\\rm mp} = \\sqrt{\\frac{2}{\\beta m}}$ and substitute to get\n", + "\n", + "\\begin{align*}\n", + "F(v_{\\rm mp}) &= 4\\pi \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2} v_{\\rm mp}^2 e^{-\\frac{1}{2}\\beta m v_{\\rm mp}^2}, \\\\\n", + "&= 4\\pi \\sqrt{\\frac{\\beta m}{2\\pi}}\\left(\\frac{\\beta m}{2\\pi}\\right) \\left(\\frac{2}{\\beta m}\\right) e^{-\\frac{1}{2}\\beta m \\frac{2}{\\beta m}}, \\\\\n", + "&= \\frac{4}{e} \\sqrt{\\frac{\\beta m}{2\\pi}}.\n", + "\\end{align*}\n", + "\n", + "Then applying our approximation\n", + "\n", + "\\begin{align*}\n", + "P(\\pm1\\%) &= F(v_{\\rm mp})(0.02v_{\\rm mp}),\\\\\n", + "&= \\frac{4}{e} \\sqrt{\\frac{\\beta m}{2\\pi}} (0.02) \\sqrt{\\frac{2}{\\beta m}}, \\\\\n", + "&= \\frac{4}{\\sqrt{\\pi}}(0.02 e^{-1}) \\approx 0.017.\n", + "\\end{align*}\n", + "\n", + "The python code plots the Maxwell speed distribution for an ideal gas using $g=v/v_{\\rm mp}$ for the $x$-axis coordinate, where the vertical lines denote the mean, root-mean-squared, and most probable speeds. It also numerically calculates (via Simpson's rule) the proability and finds good agreement with our approximation ($0.0166$).\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The fraction of molecules with speeds within 1 percent of v_mp is 0.0166.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBIAAAJVCAYAAABj1dYoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAACxA0lEQVR4nOzdd3gU5drH8d+mhwCh996ld+lFETj0piiWUCyIIHaKBY6KeFBRRI4eFWmCSq8qvXek904IvSSEkp55/+DNmJUEUnYzm833c117Mc+0vXeYZJ7c+xSbYRiGAAAAAAAAUsDD6gAAAAAAAEDmQSIBAAAAAACkGIkEAAAAAACQYiQSAAAAAABAipFIAAAAAAAAKUYiAQAAAAAApBiJBAAAAAAAkGIkEgAAAAAAQIqRSAAAAAAAAClGIgEAAAAAAKQYiQQAAAAAAJBiJBIAAAAAAECKkUgAAAAAAAApRiIBAAAAAACkGIkEAAAAAFlW7969ZbPZ1Lt3b6tDATINEgkAAACARRL+iE3tq0WLFlaHDiAL87I6AAAAACCrCgwMVMGCBVO0b0REhMLDwyVJfn5+zgwLAO6LRAIAAABgkXHjxmncuHEP3C8qKkpNmzbV9u3bFRAQoM8++ywDogOApNG1AQAAAHBx/fv31/bt2yVJkyZNUrVq1SyOCEBWRiIBAAAAcGFff/21Jk+eLEkaPny4Hn/88WT3XbNmjR5//HEVLVpUvr6+ypcvnx599FFNmjRJcXFx932ftBzbokUL2Ww2jRw5UnFxcfryyy9Vq1YtZc+eXQUKFFCXLl20Z88ec/87d+7o448/VtWqVRUQEKC8efOqZ8+eOnHixAOvw8WLFzV06FDVqFFDgYGB8vPzU5kyZfT888/r4MGD9z12+vTpaty4sXLkyKHAwEA9/PDD+v7772UYxgPf9342btxojlsxa9asJPfZunWrsmfPLpvNpnfeeSdd7we4DAMAAACAS1qzZo3h5eVlSDLatWtnxMXFJbvv66+/bkgyJBk2m83IlSuX4enpaa575JFHjPDwcIce27x5c0OSMXz4cKNVq1aGJMPHx8cICAgwj82ePbuxfft24+rVq0atWrUMSYafn5/h7+9v7lOgQAHjzJkzyX62RYsWGdmzZzf39/b2tnsPHx8fY8qUKfccFx8fb/Tp08fus+XOndvw8PAwJBlPPvmkERQUZEgygoKCHvwfkoROnToZkoxKlSoZsbGxdtsOHz5s5MuXzzx/fHx8mt4DcDUkEgAAAAAXdObMGSN//vyGJKNChQpGWFhYsvuOHz/e/GP5xRdfNC5cuGAYhmHcunXL+PLLL81kRM+ePR16bEIiIVeuXEbevHmNWbNmGdHR0UZ8fLyxbds2o0yZMoYko1GjRkbXrl2NUqVKGUuXLjXi4uKMuLg4Y8WKFeZnfPrpp5P8bFu3bjV8fHwMScZLL71kHDp0yPyD/cyZM8aAAQMMSYaXl5exfft2u2PHjRtnfraBAwcaV65cMQzDMMLCwoyRI0eaSZP0JBIOHjxoJl0mT55srj937pxRsmRJQ5LRoUMHIyYmJk3nB1wRiQQAAADAxURERBi1a9c2JBk5cuQwDh48mOy+d+7cMfLkyWNIMp566qkk9/n666/NP6gT/7GdnmMN4+9EgiRj/fr19xy7cuVKc7u/v79x7Nixe/aZOHGiuT06Ovqe7fXq1TMkGe+//36y1+DVV181JBmdO3c210VERJif7dlnn03yuKFDh5rxpTWRYBiG0a9fP0OSUbp0aSM6OtoIDQ01qlWrZkgymjRpYty5cyfN5wZcEWMkAAAAAC7mhRde0M6dO2Wz2TRt2jQ99NBDye67fPlyXb9+XZI0cuTIJPcZMGCAChcuLEn65ZdfHHJsYk2aNFGTJk3uWd+8eXP5+vpKknr06KFy5crds0+bNm0k3Z3e8tixY3bb9uzZo+3bt8vb21tvvvlmku8tSc8995wkacWKFeZ4DsuWLTM/2wcffJDkcUOHDnXIVJr//ve/5e/vr1OnTmnChAnq3Lmz9u3bp2rVqmnRokXy9/dP93sAroREAgAAAOBCvvzyS/3888+SpBEjRqhz58733X/Hjh2SpOLFi6tChQpJ7uPp6alHHnnEbv/0HptY/fr1kz02X758kqR69eoluU/BggXN5dDQULttGzZskCTFx8erYsWKKlSoUJKvtm3bSpJu376ta9eu3fPZkkpgSFJgYKDq1KmT5LbUKFq0qF599VVJ0uuvv65169apVKlS+vPPP5UrV650nx9wNV5WBwAAAADgrlWrVuntt9+WJHXp0iXZb9ITu3z5sqS7f8zeT7Fixez2T++xieXIkSPZY728vO67T8J2SYqJibHbdv78eUlSXFycLl26dN8YE9y5c8cu1pR+tvQaPHiwPvvsM8XHxytPnjxatmyZihQp4pBzA66GRAIAAADgAk6fPq0nnnhCcXFxqly5sqZOnSqbzZbi41O6b1L7pedYZ0roplCpUiUdOnQoTefIiJhjY2P14osvKj4+XtLdZAbdGeDO6NoAAAAAWOzOnTvq2rWrrl27ply5cmnBggX3/ZY/sQIFCkiSzp49e9/9QkJCJEn58+d3yLEZoVChQpKkkydP6vbt26k6NuGzJcSenHPnzqUtuP9nGIaef/55LV68WPnz51fp0qUVGRmpESNGpOu8gCsjkQAAAABY7Pnnn9fu3bvl4eGhX375Jdk+/UmpW7eupLt/MB89ejTJfeLi4rR69WpJ9mMVpOfYjNC4cWNJUnR0tObNm5eqYxM+29mzZ3XixIkk9wkPD9dff/2VrhjfeecdTZkyRdmzZ9eSJUs0atQoSdKUKVN08ODBdJ0bcFUkEgAAAAALffbZZ+ZsCKNGjTIHDkypxx57THnz5pWU/MwL//vf/8zxBp566imHHJsR6tatq1q1akmS3n33XV25cuW++yfM0iDd/Wy5c+eWJH300UdJ7j9mzBhFRESkOb7PP/9cn3/+uby9vTVnzhzVq1dPTz75pKpXr664uDgNGzYszecGXBmJBAAAAMAiy5cvN//YfOKJJzR06NBUn8Pf399MAvzyyy/q37+/OTDhnTt3NH78eL322muSpJ49e9rNUpCeYzOCzWbTd999J19fXwUHB+vhhx/W7NmzzQEVpbtdE37++Wc99thjGjJkiLne399f77//vqS7rQNee+01c0aH8PBwffTRR/rkk0/SPKvC1KlT9c4778hms2ny5Mlq3bq1GXNC4mLhwoXauHFjms4PuDQDAAAAgCUqVqxoSDIkGXny5DEKFiyY4tc/vf766+a5bDabkTt3bsPLy8tc17JlSyM8PDzJONJ6bPPmzQ1JxogRI5L9jCVLljQkGZMmTUp2n4T3Wb16dZLbly1bZuTNm9fcz9PT08ibN6+RLVs2c50k4/nnn7c7Li4uznj22WfN7R4eHkbu3LkNT09PQ5Lx5JNPGkFBQYYkIygoKNn4/mnJkiXm9fnyyy+T3Ofhhx82JBmNGzdO8XmBzIIWCQAAAIBFIiMjzeXr16/r0qVLKX7909ixY7Vq1Sp1795dBQsW1K1bt5QjRw61bNlSP/30k5YvX57sAI7pOTYjPPbYYzp+/LhGjx6tJk2aKDAwUGFhYfLw8FDlypXVr18/LVy4UOPHj7c7zsPDQ1OnTtXUqVPVoEED+fv7KzY2VrVr19Z3332nGTNmpDqWzZs36/HHH1dsbKyGDBlittj4p4SxEjZu3KgFCxak+n0AV2YzDMOwOggAAAAAAJA50CIBAAAAAACkGIkEAAAAAACQYiQSAAAAAABAipFIAAAAAAAAKeZ2iYS//vpLn376qbp166aiRYvKZrPJz88vzecLCwvTa6+9ppIlS8rX11clS5bU4MGDFRYW5rigAQAAAADIJNxu1oYuXbrcM72Kr6+v3dQ6KXXt2jU1bNhQx44dU5kyZVS3bl0dOHBABw4cULly5bRlyxblzZvXUaEDAAAAAODy3K5FQsOGDfXBBx9o0aJFunjxYrrO9frrr+vYsWPq1q2bjhw5ot9++0379+/XoEGDdPz4cb3xxhsOihoAAAAAgMzB7Vok/JPNZktTi4SLFy+qaNGi8vT01NmzZ1WwYEFzW1RUlIoXL67r16/r3LlzdtsAAAAAAHBnbtciwVH++OMPxcfHq1mzZvckCnx9fdWxY0fFxcXpjz/+sChCAAAAAAAyHomEZOzZs0eSVLt27SS3J6xP2A8AAAAAgKzAy+oAXFVwcLAkqVixYkluT1ifsF9KVKlSJcn1R44ckb+/v0qUKJHKKAEAcD/BwcEKCAhI81hHPG8BAHiw9DxvaZGQjFu3bkmSsmXLluT2gIAAu/3SwzAMxcTEpPs8AAC4g5iYGN2+fdvh5+V5CwDA39LzvKVFQjISxqC02Wz33Z4aBw4cSHJ9wjcnyW0HACArSa5FQUrxvAUA4MHS87ylRUIycuTIIUnJZmju3LkjScqePXuGxQQAAAAAgNVIJCQjof9kSEhIktsT1tPPEgAAAACQlZBISEaNGjUkSTt37kxye8L66tWrZ1hMAAAAAABYjURCMtq2bSsPDw+tX79ely9fttsWFRWlRYsWycPDQ//6178sihAAAAAAgIyX5RMJ33zzjSpVqqRhw4bZrS9cuLCeeuopRUdHa8CAAYqNjTW3vfPOO7py5Yp69eqlQoUKZXTIAAAAAABYxu1mbViyZIk++ugju3XR0dFq0KCBWX7//ffVvn17SdLVq1d15MgRXbhw4Z5zffXVV9qyZYvmzJmjSpUqqW7dujpw4ID279+vsmXL6ssvv3TuhwEAAAAAwMW4XSLhypUr2rp1q906wzDs1l25ciVF58qXL5+2b9+uESNGaP78+Zo3b54KFiyogQMH6t///rfy5Mnj0NgBAAAAAHB1NsMwDKuDyOqY1xoAgL8567nI8xYAgL+l57mY5cdIAAAAAAAAKed2XRvciWEYosEIACAzsdlsstlsVoeRKjxvAQCZjdXPWxIJLiYiIkI3btzQzZs37WaKAAAgs/Dy8lKOHDkUGBgof39/q8NJEs9bAEBmZ+XzlkSCCwkPD9e5c+esDgMAgHSJjY1VaGioQkNDVbRoUeXMmdPqkOzwvAUAuAMrn7ckElxE0aJFzUpN9uzZlTt3bvn5+cnDg2EsAACZR3x8vCIjIxUaGqpbt27p3Llz8vb2dpmWCTxvAQDuwOrnLYkEF1GzZk1Jdys1xYoVy3T9SwEAkCQPDw9lz55dAQEBCgkJ0a1bt3Tjxg2XSSTwvAUAuAOrn7ek311EpUqVJEm5c+emUgMAyPRsNpty584tSbp586bF0fyN5y0AwJ1Y9bwlkeACPDw8zP4sfn5+FkcDAIBjJDzTYmNjXWJWBJ63AAB3ZMXzlkSCC/D09DSX6aMJAHAXiZ9prpBI4HkLAHBHVjxveYoCAAAAAIAUI5EAAAAAAABSjEQCAAAAAABIMRIJAAAAAAAgxbysDgBwpPRO5eUKg4EBAODqeN4CQNZGIgFuhYoJAADOx/MWALI2ujYAAAAAAIAUI5EAAAAAAABSjEQCAAAAAABIMRIJcDvBwcGy2Wyy2WxavXr1ffd9/fXXZbPZVLt2bfp7ZiHcI3B13KPIDLhP8SDcI3B13KNpRyIBbqdEiRLKlSuXJOnAgQPJ7nfq1Cn997//lSR9/vnn6R6BGpkH9whcHfcoMgPuUzwI9whcHfdo2pFIgFuqVq2apPv/Qhg2bJiio6PVvn17PfLIIxkVGlwE9whcHfcoMgPuUzwI9whcHfdo2pBIgFuqXr26pOR/IWzbtk0zZ86Up6enxowZk5GhwUVwj8DVcY8iM+A+xYNwj8DVcY+mjZfVASD1IiPvvlIqMFD6Z+ubGzeklHbt8fGRsmWzXxcdLd25k/IYcuSQPD3t18XESN7eKT9Hajwos/j222/LMAw9//zzqly5snOCsBI3yQNl+XvEanGRd18p5Z3EPRp9Q1IK71EPH8nrH/doXLQUl4p71CuH5PGPezQ+RvLgHnVX/Cp9sCx/n3KTPFCWv0esxvP2gbhH04ZEQib06afSv/+d8v1DQ6X/7/pjKlny7nMrJYKCpMmT7dfNmCH16ZPyGHbtkmrWtF+3ZInUpUvKz5EaCZnF69ev6+LFiypUqJC5beHChVq3bp2yZ8+uf6fmQmYm3CQPlOXvEasd+FTan4pr2yNU8sllv25BSSkmhfdo6SCp4WT7dWdmSFtScY/+a5eUu6b9unNLpOJdUn6OVOAetR6/Sh8sy9+n3CQPlOXvEavxvH0g7tG0oWsD3FK1atXMQVASZxfj4uI0ZMgQSdKQIUNUsGBBS+KD9bhH4Oq4R5EZcJ/iQbhH4Oq4R9OGRALcUvbs2VWqVClJ9r8QfvjhBx0+fFhFixbVG2+8YVF0cAWOukdiYmIUExPjrDCRhfF7DJkB9ykehOctXB2/x9LIgOVq1KhhzJo1yzh48KARFxf3wP0jIgwjNDTlr/j4e88RFpby42/fvvf4qKjUxRAbe+85oqMf+FHTpXPnzoYk48UXXzQMwzBu3rxpFCxY0JBkTJo0yblvbjVukhRJ7T0yadIkQ5KxdOlSY/jw4UaxYsUMDw8PY9euXea25cuXG++++65RpEgRIyAgwGjXrp1x7tw5wzAM44svvjBKly5t+Pr6Go0aNTIOHjx4z3vcvn3bGDZsmFGuXDnDz8/PyJMnj1GnTh3j22+/deq1yHCxEYYRFZryV1L3aFRYyo+PSeIejY1KXQxxSdyjca55j6bnPkw4x7Jly4whQ4YYhQsXNvz8/IwmTZoY27ZtS1X8cXFxxsGDB1P8fEtQuXJlo3Llyql6r5TgeescPG9DuUkegOethXjepgjP29RjjIRMyM/v7is9AgPTd7yPz91Xejhr4KcE1atX14IFC8zM4meffaZLly6pRo0aeu6555z75lbjJkmRtN4jb731lnx9ffX6669LkvLkyWNuGzJkiPz9/TV06FCFhIRo7Nixevzxx9W6dWvNnTtXgwYN0o0bNzRmzBg9/vjj2rdvn91cxAMGDNCMGTPUv39/Va9eXbdv39aBAwe0fv169e/f30lXwgKefndf6eGTznvU0+fuKz2cNPBTgrTeo+m9DyXpnXfeUXx8vN566y2Fh4frm2++0SOPPKKtW7dmmcGm+FWaMjxvuUkehOethXjepgjP29QjkQC3lXgqlwsXLuiLL76QJH3++efy8KBXD9J+j9hsNm3cuFE+SVTcfHx8tHbtWnn+/4jY0dHR+uqrr3Tx4kXt379f/v7+kiQ/Pz8NGzZMmzdvVqNGjczjFyxYoOeff15ff/21wz4nMq+03qPpvQ8lKTw8XHv27FH27NklST169FCNGjU0bNgwLViwwOGfFZkXz1s8CM9buDqet6nHb3e4rYSpXMLCwvTCCy/o9u3b+te//qVWrVpZHBlcRVrvkRdeeCHJSk3CNs9E02o9/PDDkqRnnnnGfJhIUoMGDSRJJ06csDs+V65c2r59u86ePZv6DwS3k557ND33oSS99NJLZqVGkqpWrao2bdpo6dKl9FOGHZ63eBCet3B1PG9Tj0QC3Fb58uXNH+AlS5bI09NTn332mcVRwZWk9R4pW7ZssttKlixpV871/9N8lShRIsn1169ft1v/xRdf6NChQypZsqRq1qypN998Uxs3bnxgTHBPab1H03sfSlKlSpXuWVexYkVFRUXp/PnzKQkfWQTPWzwIz1u4Op63qUciAW7Lw8NDVapUMct9+/a1KwNpvUcSZ5j/KXFWOiXrDcOwK3fr1k2nT5/WTz/9pBo1amjGjBlq0qSJXnnllQfGBfeT1ns0vfchkBo8b/EgPG/h6njeph5jJMCtbd++3eoQ4OJc8R7Jly+fevfurd69eys2NlY9e/bUf//7X7311lsqXbq01eEhg1l1jx4+fFidOnWyW3fkyBH5+vqqcOHClsQE1+WKv0vhWlzxHuF5i8R43qYOLRIAwEXExcUpLCzMbp2Xl5fZb+/atWsWRIWs6n//+59u375tlvfv36+lS5eqdevWyfZZBoDMgOctXElmfd7SIgEAXMTNmzdVpEgRdenSRTVr1lTevHl16NAhTZgwQVWqVFGtWrWsDhFZSM6cOdWoUSP17t1b4eHhGj9+vPz8/PTJJ59YHRoApAvPW7iSzPq8JZEAAC4iW7ZsevXVV7VixQr9+eefunPnjooVK6aXX35Zw4YNS7a/HeAM//nPf7Ry5UqNGTNGoaGhqlOnjsaOHauqVataHRoApAvPW7iSzPq8tRnuNOJDJlWzZk299957qlKliipWrMicywAAy0yePFl9+vTR6tWr1aJFi3SdKz4+XkeOHJGkVD3fEga4OnDgQLre/5943gIAXEVmf97yBAUAAAAAAClGIgEAAAAAAKQYiQQAAAAAAJBiJBIAAICpd+/eMgwj3f01AQBA8jL785ZEAgAAAAAASDESCQAAAAAAIMVIJAAAAAAAgBQjkQAAAAAAAFKMRAIAAAAAAEgxEgkAAAAAACDFSCQAAAAAAIAUI5HgAuLi4szl+Ph4CyMBAMBxEj/TbDabhZHcxfMWAOCOrHjekkhwAfHx8QoPD5ckRUZGWhwNAACOkfBM8/LycolEAs9bAIA7suJ5SyLBRRw+fFiSFBoaKsMwLI4GAID0MQxDoaGhkqQcOXJYHM3feN4CANyJVc9brwx7J9zX7t27JUm3bt1SSEiIcufOLT8/P3l4kOsBAGQe8fHxioyMVGhoqG7duiVJCgwMtDiqv/G8BQC4A6uftyQSXMS5c+dUtGhRnTt3Trdu3TJvBgAAMrOiRYvK39/f6jBMPG8BAO4oo5+3JBJcSM6cOeXt7a0bN27o5s2bio2NtTokAABSzcvLSzly5FBgYKBLJRES8LwFALgDK5+3JBJcjL+/v/z9/VWoUCEZhkH/TQBApmKz2VxiYMUH4XkLAMjMrH7ekkhwYVbfHAAAZAU8bwEASB1GFgIAAAAAAClGIgEAAAAAAKQYiQQAAAAAAJBiJBIAAAAAAECKkUgAAAAAAAApRiIBAAAAAACkGIkEAAAAAACQYiQSAAAAAABAipFIAAAAAAAAKUYiAQAAAAAApBiJBAAAAAAAkGJeVgcAwHEuXbqkNWvWaO/evTpx4oTCwsJkGIZy5sypUqVKqUqVKmrevLlKlSolm81mdbgAAMBFREVF6ebNm7p9+3ayrzt37igyMlJRUVGKjo5O9t/Y2FjFx8ebr7i4OLtyfHy8DMOQp6enPDw87F6J13l5ecnHx0e+vr7y8fFJctnX11cBAQEKCAhQtmzZklxOeFH3ARyHRAKQyd25c0fTpk3TlClTtHnz5hQd89BDD6lXr1564YUXVLBgQSdHCAAAMkJ0dLSuXbumq1evmq+EclhYmMLCwnTjxg3z38TLUVFRVofvVJ6ensqZM6dy5sypwMDAJF958+ZN8pU7d255enpa/REAl0IiAcikoqKi9PXXX2vMmDG6evXqPdt9vaWhHf8uf7pIioq5u3zo0CG9//77+uijj9S3b1998MEHKly4cAZFDgAAUioyMlKXLl3ShQsXdPHiRV28eNFu+eLFi2bSIDw83OpwH+h+9RNniouLU2hoqEJDQ1N9rM1mU65cuZQvXz4VKFBABQsWTPJVqFAhFSxYUAEBAU74BIBrIZEAZEKrVq3SCy+8oJMnT96zrXjx4mrSpInCrwVrZPeN5vqVIVV1KTRKx44dM9dFR0fru+++09SpUzVixAi9/vrr8vb2zpDPAABAVhcREaGQkBCdPXs2yVdISIjCwsIyPK7E3QUSv7JlyyZ/f3+ze0FS/544cUKXLl2SzWZL8pXdJ1Yjuy813+tQfGvdivaSYRj3vOLj45U/f36VLl062a4UkZGRZreLxP8mLDuCYRhmEiJxPSo5OXPmVNGiRe1exYoVsysXKFBAHh4MV4fMi0QCkIlER0dryJAh+uqrr+zWZ8uWTf369VOfPn1Us2ZN2Ww2jfrwPW0JjTX3adu+lQYOflvXrl3T9OnT9e233+rChQuS7naPGDJkiGbOnKmZM2eqTJkyGfmxAABwS9HR0QoODtapU6d08uRJnTp1ylw+ffp0ki0KHcHf31/58uUzX3nz5lWePHnMJvy5cuVKcjlHjhzKli2bvLzS/ifCokWLtHPnzmS3e9litCU0zCxXr1VPsUbyX2LUqFFDXbp0SVMshmEoIiJCt27dMrtyJPUKDw9XaGiorl+/rmvXrtm94uLiUv2+4eHhCg8P16FDh5Ldx8fHRyVKlFDJkiWTfBUrVowvd+DSSCQAmcSlS5fUvXt3bdz4dysDT09PvfLKK3r//feVL18+u/1jDW8tvfqve85TpkwZvf/++xoyZIh+/PFHjRw5UleuXJEk/fXXX6pTp46mTZumDh06OPcDAQDgBqKionTy5EkdPXrUfB0/flwnT55USEiI4uPjHfI+efPmVaFChVSoUCEVLlzYXC5UqJAKFChglzTIli2bQ97TGZKrnziDzWZTtmzZlC1bNhUoUCDVxxuGofDwcDOpcPXqVV26dCnZ19WrV2UYRorOHR0drePHj+v48eNJbvfw8FDx4sVVpkwZlS1b9p5XYGBgqj8P4EgkEoBM4OjRo2rbtq1OnTplrqtataqmTJmi2rVrp+mcPj4+GjBggJ566im9/fbbmjhxoiQpLCxMHTt21HvvvacPP/yQEY4BAFmeYRi6dOmSDhw4oMOHD9slDU6fPp2uZIGHh4cKFy6s4sWL272KFSum4sWLq0iRIipQoIB8fX0d+ImQEjabzWytkZLWmrGxsbp8+bLOnz+vkJAQnTt3LsnXzZs3H3iu+Ph4nTlzRmfOnNHq1avv2Z4nTx6VLVtWFSpUUIUKFVSxYkVzmTEakBFIJAAu7sCBA3rkkUd0+fJlc13v3r313//+V/7+/uk+f+7cufXjjz+qVatWev7553X79m1J0scff6xLly7p22+/ZaRiAECWYBiGLl68qAMHDujgwYN2/6ZlkD7p7h+jxYoVU+nSpVWmTBm7f0uUKKHChQunqysBXIeXl5eKFCmiIkWKqG7dusnuFx4ebiYJzpw5o+DgYLtyQtfT+7l+/bquX7+u7du337OtWLFidsmFhx56SFWqVFHRokX5gggO47a/tSIjIzV69Gj98ssvCg4OVp48edS2bVt9+OGHKlasWKrO9eeff2rcuHHavn27bty4ody5c6t+/fp6/fXX9eijjzrpEwB3Z1do2bKl2fVAkj777DO9+eabDn8QPPnkk6pevbq6d++uw4cPS5J++OEH3b59W5MnT6afHgDArURERGj//v3as2eP+dq/f3+aEgaenp4qU6aM+Y1w+fLlVbZsWTNZQGsCJJYzZ05Vq1ZN1apVS3J7VFSUgoODdfLkSZ04ceKeV0RExH3PHxISopCQEK1atcpufY4cOVS5cmVVqVLF7t/ixYuTYECquWUiITIyUo8++qg2bdqkwoULq3Pnzjp9+rQmTZqkxYsXa/PmzSpbtmyKzjV27Fjzj7bGjRuraNGiOnnypJYsWaIlS5bo22+/Vf/+/Z38iZAVXbx4Uf/617/MJIKHh4cmTZqk5557LkXHe9piVTfw7yz1jhv1HnhM5cqVtWXLFrVr106bNm2SJM2YMUN37tzRzJkzSSYAADKlixcvaufOnXZJg6NHj6a6S0LBggX10EMPqVKlSmbSoEKFCipVqhTPyBRKqn4SZ7jlnyRp5uvrq/Lly6t8+fL3bEtoNXPixAkdP35cx44d05EjR3TkyBEdO3ZMUVFRyZ735s2b2rp1q7Zu3Wq3Pnv27KpataqqV69uvqpVq6ZcuXI5+qPBjbjlT+0nn3yiTZs2qWHDhlq2bJmyZ88u6e+kQN++fbV27doHnufKlSsaNmyYfHx8tHLlSjVp0sTcNmfOHD3++ON688039cwzz5jvATjC7du31bFjR505c0bS3WaRU6dO1dNPP53ic3jZYtQ2/9/TK+0Or5mi4wIDA7Vs2TJ17txZK1eulCTNnz9fL774on766Scy1gAAl3bp0iX99ddf2rFjh3bs2KG//vpL58+fT9U5ChYsaPetbcJy3rx5nRR11pFU/YREQsrZbDYVLlxYhQsXtvvbRJLi4uJ09uxZHTlyREePHtWRI0d0+PBhHTp06L4/A7du3dKWLVu0ZcsWu/UlSpQwkwrVq1dXjRo1VKFCBbq8QpIbJhJiYmI0fvx4SdKECRPs/sB/4403NGXKFK1bt84cnf5+tm7dqujoaLVt2/aeH9Tu3burevXq2rNnjw4ePKj69es7/sMgS4qLi9PTTz+tHTt2mOvGjh2bqiRCegUEBGjx4sV64okntGjRIknS5MmTVbRoUX388ccZFgcAAPcTGhqqbdu2afv27WbSICQkJMXH+/n5qVq1aqpRo4Zq1Kih6tWrq0qVKiQMkCl5enqqVKlSKlWqlNq0aWO3LSwsTAcPHjRfCeN/3O/nJTg4WMHBwVq8eLG5Llu2bKpZs6Zq1aql2rVrq1atWqpSpYp8fHyc9rngmtwukbBhwwaFhYWpbNmyqlWr1j3be/Toob1792rRokUPTCSktD9bnjx50hQrkJQPPvhACxYsMMsDBw7U4MGDMzwOPz8/zZw5U23atNG6deskSaNGjVLRokX18ssvZ3g8AICsLTY2VgcOHDC/Od2yZYs5pk9KFClSRDVr1jSTBjVq1FD58uX5dhVZQq5cudSoUSM1atTIbn14eLgOHjyoffv2ae/evdq7d6/27NmjGzduJHmeO3fuaNOmTWYXWEny9vZWtWrVzORC/fr1Vb16dZILbs7tEgl79uyRpGSnxEtYn7Df/dSrV0+BgYFatWqVNmzYYNcqYe7cudq7d68aNWqkcuXKOSByQFq5cqVGjx5tljt27KivvvrKsu4Efn5+mj9/vpo2baoDBw5IupvYKF++vFq1amVJTACArOHatWvmHyxbtmzR9u3bzZmFHqRw4cKqW7eu6tSpY/5bqFAhJ0cMZD45c+ZUgwYN1KBBA3OdYRg6e/asmVhISC4kN65ITEyMdu7cqZ07d5rTifv4+KhGjRqqV6+e+apUqRKJOzfidomE4OBgSUp2ZoaE9Qn73U+uXLn0448/6umnn1azZs3MwRZPnTql7du3q23btpo8ebLDYkfWdvnyZT3zzDMyDEOSVLFiRc2YMcPyX7i5c+fWvHl/qE6dWbp5M1zx8dKTT/bWrl2bVbx4cUtjAwC4j+DgYK1fv958HTx4MEXH5c2bVw8//LDq1q1rJg2KFCni5GgB92Wz2VSiRAmVKFFCHTp0MNffvn1be/fu1a5du8zEwb59xxQb+2aioz+VFKXo6Ght377dbnrK7Nmzmy0WGjRooIYNG/Kzmom5XSLh1q1bku7230lKQECA3X4P0qNHD+XJk0c9e/bUhg0bzPUFCxbUI488kqo+dFWqVEly/YkTJ1I8iwTcU3x8vIKCgnTx4kVJd7O4v/76q8sM4pk/f3HdvPmGWb527Sv16NFD69atY0orAC6H563rMwxDBw8etEscnD179oHHeXp6qmbNmuY3qA0aNFDZsmUZCBjIAAEBAWrYsKEaNmxorrt8OVoFC/7dhaF27fXav3+DoqOj7zn+1q1bWrdundllVpKKFy+uhg0bmomFWrVqUbfMJNwukZDwbW5yD5SE7Sn1xRdf6J133lGXLl00cuRIlSlTRidPntQHH3ygt99+W1u2bNHs2bPTHTeytvHjx+vPP/80y59//rlq1qxpXUApsG3bNr322mv69ttvrQ4FAODiDMPQ0aNHtXr1aq1evVpr1qzR5cuXH3hcgQIF1KRJE/MPjdq1ayf7ZRGAjPfPcRBWrlypbNmitW/fPrNFwvbt23XgwIEku0WcPXtWZ8+e1cyZM83z1apVSw0bNlSTJk3UuHFjuiW5KLdLJOTIkUOSku1Dd+fOHUlK0Te9a9eu1VtvvaXatWtr1qxZ8vDwkCRVq1ZNs2fPVr169TRnzhwtW7ZMrVu3fuD5EvqY/1Ny35wgazh9+rSGDx9uljt16qSBAwdaGFHKfffdd3rkkUf0+OOPWx0KAJh43lrPMAydOnVKq1ev1qpVq7RmzZoUTcFYtmxZNW3aVE2bNlWTJk1Uvnx5WhsAmYyPj4/q1KmjOnXqqH///pLu/m22a9cubd++XVu3btXmzZuT7GoeHR2trVu3auvWrfrqq68kSeXKlVPjxo3VpEkTNWnSRBUrVuT3ggtwu0RCiRIlJCnZqUwS1ifsdz9Tp06VJHXr1s1MIiTw9PRUt27dtGvXLq1ZsyZFiQTgnwzD0IABA8wEV758+fTjjz+6/C/HmjVraffuNZKk/v37q0mTJipcuLC1QQEALHX9+nWtXLlSy5Yt0/Lly3XmzJn77m+z2VSjRg27xAHPEsA9BQQEmImABOfPn9eWLVu0efNmbdmyRTt27FBkZOQ9xx4/flzHjx/XlClTJN0dFyXhXC1atFCtWrUsH1MsK3K7REKNGjUkSTt37kxye8L66tWrP/BcCUmHnDlzJrk9Yf3169dTHScgSTNnztQff/xhlr/88kvlz5/fwohSZuLEiWrWrLpu376t69evq2/fvvr9999dPgECAHCc6Ohobd682Uwc7Nix44FdSKtVq6aWLVuqZcuWatasGVNoA1lYkSJF1K1bN3Xr1k3S3d8pe/fu1ebNm7Vx40Zt2LBB586du+e4a9euacGCBeZ06Tlz5lSzZs3UokULtWzZUjVq1CCxkAHcLpHQuHFjBQYG6sSJE9q1a5dq1apltz1hPIPEI5AmJ6E/zo4dO5LcnjAKaalSpdIRMbKq0NBQvfrqq2b5scce09NPP21hRClXpkwZjR07Vi+99JIk6c8//9R3332nl19+2eLIAADOdOzYMf3xxx9atmyZ1qxZ88DpGCtVqqRHHnlELVu2VPPmzTNFshyANXx8fMzZVwYNGiTDMBQcHKwNGzaYrwMHDtyTsAwPD9fixYu1ePFiSXdn3mvWrJlatmypFi1aqHr16ve0Lkf6uV0iwcfHRwMHDtSoUaM0cOBALVu2zJypYezYsdq7d6+aNGmievXqmcd88803+uabb9S1a1eNHj3aXN+lSxdNnTpV06dPV48ePdSxY0dz24IFCzRjxgx5eHioa9euGfcB4TaGDx9uDjTl7++v7777zqHf6EfF++qrU4PtymmVM6d06pR9+YUXXtDChQu1ZMkSSdKbb76pxx57TOXKlUvz+wAAXEtkZKTWrVun33//XUuWLNHx48fvu3+hQoX02GOPqXXr1nr00UfpqoB7OLJ+AuslVUd0FJvNppIlS6pkyZLml22hoaHavHmz1q9fr3Xr1mnbtm2KjY21Oy4sLEwLFy7UwoULJd2dyrx58+Zma6gqVaqQWHAAt0skSNJ7772nFStWaNOmTSpfvryaNm2qM2fOaOvWrcqbN68mTZpkt//Vq1d15MgRXbhwwW59ly5d9Pjjj2vWrFnq1KmT6tatq9KlS+vUqVNmK4VRo0apYsWKGfbZ4B4OHDig77//3iwnzAjiWB66EZvbMWfykO5teGPTjz/+qGrVqunq1auKiIjQyy+/rGXLltHFAQAyseDgYP3+++/6/ffftXLlSnMcn6T4+fmpefPmZvKgatWqPAPwAI6rn8B6SdcRnSd37txq166d2rVrJ+nulJKbNm0yZ4TZsWOH4uLi7I4JDQ3V/PnzNX/+fEl3xyRr3ry52RWicuXK/N5KA7dMJPj5+Wn16tUaPXq0ZsyYofnz5yt37twKCgrSRx99pOLFi6foPDabTb/99pvatm2rKVOmaO/evdq9e7dy5cqldu3aadCgQWrbtq2TPw3c0dtvv21OgVO+fHm99tpr1gaURoUKFdKECRPUs2dPSdKKFSv0888/69lnn7U4MgBASsXHx2vbtm3mN3jJzXqRoFq1amrbtq1at26tJk2ayM/PL4MiBQB72bNnV+vWrc2B72/evKkNGzZozZo1Wr16tf766697pp28evWq5syZozlz5ki6O81sq1atzPPQkiplbMaDRsWB0yVMR/WgBzfcw7Jly9SmTRuzPG/ePHXp0sXh7/Pvf//7nnWvvfaaAgMDHfo+hmGoY8eOZheHfPny6dChQ8qXL59D3wdA1uGs5yLP279FRERo5cqVWrBggRYtWqRLly4lu2+2bNnUqlUrtW/fXv/6179S/IUMsqZFixYlO+h5WtSoUcMp9SRkDTdu3NCGDRu0evVqrVmzRjt37nzgoLDVq1dX69at1aZNG7dPlqbnueiWLRIAVxUXF6e33nrLLDdr1kydO3e2MKL0s9lsmjBhgjno1tWrV/XWW29p8uTJVocGAEjkypUrWrx4sRYuXKhly5bdt8tChQoVzObDzZo1k68v/dgBZD6BgYFq37692rdvL+nu+Anr1683u0Ls2bPnnsTC3r17tXfvXn3++efy9/dXixYtzMRCpUqV6Abx/0gkABlo8uTJ2rdvn1n+4osvnPbLyMcjUi+X+NYsfxuc9hkVwsOlxDOm7t1rP5hOyZIl9dFHH+mNN96QJE2ZMkV9+vRR8+bN0/yeAID0CwkJ0dy5czVnzhxt2LDhnia+CTw9PdW0aVN16tRJHTt2ZOBcOE1S9ZPoePf9xtfdPaiO6Gpy5cqljh07moPoX79+XatXr9bSpUu1dOlSBQcH2+0fERGhP/74w5yuvXjx4mrTpo1at26tVq1aKXfurDveB4kEIINERUXZdTd45plnVLduXae9n02GcnnfsCunVXy8dOaMffmfBg0apOnTp+uvv/6SJA0ePFh//fUX8/gCQAY7ceKEmTzYunVrsvtlz55dbdu2VefOndWuXTvlyZMnA6NEVuXI+gmsl5I6oivLkyePunfvru7du8swDB09etRMKqxZs+aelltnz57Vjz/+qB9//FEeHh6qX7++2Vqhfv368vLKOn9eZ51PCljsp59+0tmzZyVJ3t7e+vjjjy2OyLG8vLw0YcIENWjQQJK0Z88e/fjjj3rppZcsjgwA3N/BgwfNwcP27NmT7H5FixZVp06d1LlzZ7Vo0YIuCwDw/2w2mypWrKiKFSvq1VdfVVRUlDZu3KilS5dq2bJl2r17t93+8fHx2rJli7Zs2aIPP/xQgYGBatOmjTp06KB27dopb9681nyQDEIiAcgAUVFR+uSTT8xyv379VLJkSQsjco6HH35Yzz33nKZOnSpJevfdd/XEE09k6WZfAOAsR48e1W+//abffvvtvgNllS1b1vzGrV69evTvBYAU8PX11SOPPKJHHnlE//nPf3Tx4kUtX75cy5Yt07Jly3T58mW7/W/cuKGZM2dq5syZ8vDwUMOGDdWxY0d16NDBLaeYJJEAZICJEycqJCRE0t3WCMOHD7c4Iuf59NNPNXfuXN26dUvXrl3Tv//9b3311VdWhwUAbuHUqVOaOXOmfv3113u+HUusSpUq6t69u7p166bq1au7XQUWADJaoUKF9Oyzz+rZZ59VfHy89uzZo2XLlmnp0qXasGGDYmJizH3j4+O1ceNGbdy4UUOHDlXp0qXVoUMHdejQQc2bN3eL1mAkEgAn+2drhOeff96tp84qXLiw3n33XQ0bNkyS9M033+ill17SQw89ZHFkAJA5hYSEaObMmfrtt9+0bdu2ZPerXbu22fKgYsWKGRghAGQtHh4eqlWrlmrVqqUhQ4bo1q1bWrVqlRYvXqzFixfrwoULdvufOnVK48eP1/jx45U9e3a1bt1aHTp0UPv27VWgQAGLPkX6kEgAnGzixIk6d+6cJMnHx8f8A9udvfbaa/rhhx908uRJxcXFafjw4Zo3b57VYQFAphEaGqrZs2fr559/1rp165Ldr3r16nryySf1xBNPqGzZshkYIQAgQfbs2dWpUyd16tRJ8fHx2rVrlxYvXqxFixaZA5EnuHXrlubOnau5c+fKZrOpfv36ZheIzNSCjEQC4ESxsbEaM2aMWXb31ggJ/Pz8NGbMGPXo0UOSNH/+fG3atEmNGjWyODIAcF2RkZFasmSJfv75Z/3++++Kjo5Ocr+HHnpIPXv2VM+ePVWpUqUMjhIAcD8eHh6qU6eO6tSpoxEjRuj8+fNasmSJFi9erOXLlysiIsLc1zAMbd26VVu3btV7772n4sWLq0OHDurcubNatmwpHx8fCz/J/ZFIAJxo9uzZOvP/c+J4eXlp6NChFkeUcbp166b69eubzXDfeecdrV+/PtNkWQEgI8THx2vt2rWaPn26Zs+erRs3biS5X9myZfXkk0+qZ8+eqlq1Kr9LASCTKFKkiF544QW98MILioiI0OrVq80uEAkzuiU4e/asvv32W3377bcKDAxUhw4d1K1bN7Vp00YBAQEWfYKkeVgdAOCuDMPQZ599ZpaffPLJLNEaIYHNZrNrjbFx40YtWrTIwogAwHUcOnRIQ4cOVcmSJfXII49o4sSJ9yQRChQooFdffVXbtm3TsWPH9PHHH6tatWokEQAgk/L391e7du303//+V2fOnNHu3bv18ccf6+GHH77nd/uNGzc0ffp0de/eXfnz51fXrl01bdo0hYaGWhS9PVokAE6yevVq7dy50yy/9dZbFkZjjebNm6tzmzaquXSpJOlsv36KPXVKXtmzWxwZAGS80NBQ/frrr5o8eXKygyYGBASoa9euevrpp9WqVSt5eVFVAwB3ZLPZVKNGDdWoUUPvvvuuLl26pD/++EMLFizQ0qVLFRERIV9JQyUpIkKaP18vzJ+vOC8vtWzZUt26dVPnzp1VuHBhS+Ln6QQ4SeLWCI899phq1KiRoe8fb3jq8K2KduW08vaWOne2L6fURyNH6sT/JxJ09ap+nT5dz7z0UppjAYDMJDY2VsuWLdPkyZO1YMGCJMc98PT0VJs2bfT000+rc+fOLtd8FXAkR9ZPYL301BFhr2DBgurdu7d69+6t27dva+nSpVoyc6bqzZmjmNhYSZKnpKjYWC1fvlzLly/XgAED1LBhQ3Xr1k1du3ZVmTJlMixeEgmAE+zbt09//vmnWX777bczPIYYw0e/XXjKIecKCJDmz0/bsdUaNNBnzz6radOmSZLKjBmjnn37ypsnDQA3dvDgQU2ePFnTpk3TxYsXk9ynVq1aCgoK0lNPPZVpp/8CUsuR9RNYLz11RCQvICBA3bp1U7du3RQdHa3Vq1dr7ty5yj5/vu5cvmzuZxiGNm3apE2bNumtt95SzZo11bVrV3Xr1k1VqlRxalc4xkgAnGDs2LHmco0aNdSqVSsLo7HeiBEj5Ol59xuHkydPaurUqRZHBACOd+vWLf30009q1KiRqlSpos8+++yeJEKBAgX0xhtvaM+ePdq5c6cGDx5MEgEAkCwfHx+1adNG//vf/3T+/HmtX79er7/+ukqWLHnPvrt379aIESNUrVo1VahQQUOHDtWuXbtkGIbD4yKRADjY1atX9csvv5jlN998M8sPjFW2bFkFBQWZ5Y8//jjZac0AIDMxDEPbtm3Tiy++qMKFC6tfv37avHmz3T7e3t7q1q2bFi5cqJCQEH3xxReqXr26RREDADIrT09PNWnSRGPHjtWpU6e0c+dOvffee6pcufI9+x4/flz/+c9/VLt2bVWsWFHvvfee9u3b57CkAokEwMEmTpyoqKgoSXf7OvXs2dPiiFzDe++9Zw4advr0aU2ePNnagAAgHa5du6Zx48apRo0aevjhh/XDDz/o1q1bdvvUrFlT48eP14ULFzRnzhx17NiRbl0AAIew2WyqVauWPvroIx04cECHDh3SJ598onr16t2z77FjxzRq1ChVr15dVapU0b///W8dOnQoXe/PGAmAA8XFxenbb781yy+88IJ8fHwsicVDcSofcNQsH7tdIc3niomRliz5u9y+fSoG0/n/g0tLGteypQYvX65Y3W2VEBQUJF9f3zTHBQAZyTAMbdiwQd99951mz56dZMuqwMBAPf300+rXr59q165tQZSAa0uqfhIvBlzMrNJVR8SDpeICV6pUScOGDdOwYcMUHBysuXPnaubMmfe0kjt06JBGjhypkSNHytfXV2XLlk1TaCQSAAf6/fffdebMGUl3mx69ZOHsBN4e0XqyyG9m+dMTQ9J8rtu3pa5d/y6Hhkq5cqX+4AGSRnh56WpsrM6ePavJkydbeo0AICXCwsI0bdo0fffddzp48GCS+zRr1kzPP/+8unfvrmzZsmVwhEDmkVT9JCre38KIkB7pqiPiwdJ4gUuUKKHXXntNr732moKDgzVr1iz99ttv2r59u91+Ca2o04KuDYADTZgwwVzu3LmzihUrZmE0runZZ581l8eMGaPY/5/OBgBciWEY2r59u/r166ciRYro1VdfvSeJUKBAAb3zzjs6fPiw1q5dq2effZYkAgDApZQoUUJvvvmmtm3bphMnTujTTz9VrVq10n1eEgmAgxw7dkxLly41ywMHDrQwGtc1ePBguxkcZs2aZXFEAPC3W7du6YcfflDdunVVv359/fTTT4qIiLDbp1WrVpo1a5ZCQkL0n//8RxUrVrQoWgAAUq5MmTIaMmSIdu7cqSNHjih//vxpPheJBMBBEo+NULlyZbVo0cK6YFxYyZIl9eSTT5rl0aNHO2VKGgBIjaNHj+q1115T0aJF9eKLL2rnzp122/Pmzau3335bx44d0/Lly9WjRw8GTgQAZFoVKlQgkQBYLSoqSlOmTDHLAwYMyPJTPt7P0KFDzeV9+/ZpSeJBZAAgg8TFxWnx4sVq27atKlasqHHjxik8PNxun6ZNm2r69OkKCQnRmDFjVK5cOYuiBQDAdZBIABxg/vz5un79uiTJ399fzzzzjMURubaqVauqU6dOZplWCQAy0vXr1/X555+rfPny6tixo123NEnKmTOnBg0apP3792vdunXq1auX/Pz8LIoWAADXw6wNgANMnDjRXH788ccVGBhoYTSZw7Bhw7Rw4UJJ0qZNm7R+/Xo1a9bM4qgAuLvz58+raNGiioyMvGdblSpVNHDgQD3zzDPKnj27BdEBAJA50CIBSKfTp09r+fLlZvn555+3MJrMo0GDBnbjSIwePdq6YABkGWFhYXZJBE9PT3Xv3l2rV6/Wvn371L9/f5IIAAA8AIkEIJ0mTZpkLleoUEFNmjSxMJrMZdiwYebyn3/+ec/gZgDgLPnz59e7776rU6dOafbs2WrRogVj2wAAkEIkEoB0iIuLs0sk9O3bl4poKjz22GOqXbu2Wf70008tjAZAVuDn56dp06bp7Nmz+vjjj1W8eHGrQwIAINMhkQCkw/Lly3X27FlJd5vHBgUFWRxR5mKz2exaJcyZM0enTp2yMCIA7q5MmTJ65pln5Ovra3UoAABkWgy2CKTDTz/9ZC536NBBhQoVsjAae9HxPpocEmRXTqvs2aXVq+3Ljjq4a9euKleunI4fP674+Hh9/fXX+vLLL9McKwAAcF2OrJ/AeumqI+LBXPgCk0gA0ig0NFQLFiwwy/369bMwmnsZ8tSZiNIOOZeXl5RoXESHHuzp6anBgwdr0KBBku7OgDFy5EhmvgAAwA05sn4C66WrjogHc+ELTNcGII1mz56t6OhoSXcH7Wrbtq3FEWVevXv3Vq5cuSRJN2/etJtOEwAAAIBrIZEApNG0adPM5aeeekre3t4WRpO5Zc+eXS+++KJZ/vrrrxUbG2thRAAAAACSQyIBSIPTp09r/fr1ZvmZZ56xMBr3MHDgQHl6ekqSzpw5o/nz51sbEAAAAIAkMUYCkAY///yzuVyxYkXVrVvXwmiS5m2LUq8iM8zyjPO90nyuW7ekDh3+Li9enIqxXlJ4cPHixfXEE0/ol19+kSSNHTtWPXr0SHPMAADA9SRVP4kxmEUls0pXHREP5sIXmEQCkEqGYdglEp599lnZbDYLI0qahy1epbKdsSunVWystHatfdkZB7/++utmImHz5s3aunWrHn744VRGCwAAXFWS9RPDwoCQLumqI+LBXPgC07UBSKUdO3boyJEjZvnpp5+2MBr3Uq9ePTVu3NgsMw0kAAAA4HpIJACplHiQxaZNm6pUqVLWBeOG3njjDXN59uzZCg4OtjAaAAAAAP9EIgFIhdjYWP32229m+dlnn7UwGvfUuXNnlS59d37puLg4TZgwweKIAAAAACRGIgFIhbVr1+ry5cuSJG9vbwYDdAJPT08NGjTILE+cOFGRkZEWRgQAAAAgMRIJQCr8+uuv5nKbNm2UO3duC6NxX3369FG2bNkkSdeuXbNrBQIAAADAWiQSgBSKjo7W3LlzzXLPnj0tjMa95cqVy24Qy2+++cbCaAAAAAAkRiIBSKEVK1bo+vXrkiRfX1916tTJ4ojc2yuvvGIu79ixQ9u2bbMwGgAAAAAJSCQAKZS4eX379u2VM2dOC6NxfzVq1FCTJk3MMoMuAgAAAK6BRAKQApGRkZo/f75ZpltDxhg4cKC5/Ouvv+rKlSsWRgMAAABAkrysDgDIDP7880+Fh4dLkrJly6b27dtbHNGDGYaHLkYVtCunlaenVKOGfTkjDu7atasKFSqkixcvKjo6WhMnTtTQoUNT8eYAAMCVOLJ+Auulq46IB3PhC0wiAUiBxN0aOnXqpICAAAujSZlow1f/C37ZIefKkUPavTvjD/bx8dGLL76oDz/8UJL07bff6u2335anC/0SBQAAKefI+gmsl646Ih7MhS8wKUDgASIjI7V48WKzTLeGjPXSSy/Jy+tuzjM4ONju/wIAAABAxiORADzAihUrdOvWLUlSQECA2rRpY3FEWUuRIkXUtWtXs8ygiwAAAIC1SCQADzB37lxzuV27dvL397cwmqwp8aCLy5cv1/Hjxy2MBgAAAMjaGCMBuI/Y2FgtXLjQLCf+ZtzV2RSvAj6XzPLl6IL32fv+4uKkffv+LlerloqxXtJ18F1NmzZVlSpVdODAAUnSjz/+qE8//TRV5wAAANZLqn5i8N1mpuWAah7ux4UvMIkE4D7Wr1+va9euSbo78F9mmK0hgY9HlPqX/J9Z/vTEkDSf6+ZNqVatv8uhoVKuXBlx8F02m00vvviiBg8eLEmaNGmSPvzwQ/n4+KTqPAAAwFpJ1U+i4mntmVk5oJqH+3HhC0z6D7iPxN0aWrVqpZw5c1oYTdb2zDPPyM/PT5J0+fJlLViwwOKIAAAAgKyJRAKQjPj4eM2bN88sZ6ZuDe4oT548evzxx83y999/b2E0AAAAQNZFIgFIxo4dO3Tu3DlJkoeHhzp16mRxRHjxxRfN5RUrVujEiRMWRgMAAABkTSQSgGQk7tbQtGlTFShQwMJoIEmNGzfWQw89ZJZ/+OEHC6MBAAAAsiYSCUASDMOwSyTQrcE1JAy6mGDSpEmKjo62MCIAAAAg6yGRACTh4MGDOnbsmFkmkeA6nnvuOfn6+kq6O+hi4uk5AQAAADgfiQQgCYlbI9StW1clSpSwMBokxqCLAAAAgLVIJABJoFuDa0vcvWH58uU6efKkhdEAAAAAWQuJBOAfTp06pd27d5vlbt26WRcMktSkSRNVqlTJLDPoIgAAAJBxSCQA/7BgwQJzuVKlSnZ/sMI1/HPQxZ9++olBFwEAAIAM4mV1AICrWbx4sbncuXNnCyNJn5h4b82/2NmunFbZskmTJtmXM+bg5D333HMaNmyYoqKidPnyZS1atEjdu3d3yLkBAIBzOLJ+Aus5qZqHBC58gUkkAIncuHFDa9euNcsdO3a0MJr0iZeX9tys5ZBz+fhIvXtbcXDy8ubNqx49emj69OmS7g66SCIBAADX5sj6CaznpGoeErjwBaZrA5DIsmXLFBsbK+nuH6oNGjSwOCLcT+LuDcuWLdPp06etCwYAAADIIkgkAIkk7tbQrl07eXp6WhgNHqRp06aqUKGCWZ48ebJ1wQAAAABZBIkE4P/FxcXp999/N8sdOnSwMBqkhM1mU9++fc3ypEmTFB8fb2FEAAAAgPtjjATg/23dulVXr16VJHl5ealNmzYWR5Q+XrZotS+wxCwvudw+zee6c0caMODv8n//m4qxXtJ18IM999xzevfddxUXF6fg4GCtWrVKrVq1ctj5AQCA4yRVP4k1fCyMCOnh5GoeXPgCk0gA/l/ibg3NmjVTYGCghdGkn6ctTjVz7jHLf15pm+ZzRUdLU6b8Xf7qq1T8DkvXwQ9WuHBhtWvXTosWLZJ0dypIEgkAALimpOonsYaFASFdnFzNgwtfYLo2AP8vcSKBbg2ZS+LuDXPnzlVoaKiF0QAAAADujUQCIOnMmTPat2+fWSaRkLm0b99eBQoUkCRFRUVpxowZFkcEAAAAuC8SCYDsWyNUrFhR5cuXtzAapJa3t7eeffZZs/zTTz9ZGA0AAADg3kgkAKJbgzvo06ePubxz507t3r3bumAAAAAAN0YiAVnerVu3tGrVKrNMIiFzqlKlih5++GGzPGnSJAujAQAAANwXiQRkeStXrlR0dLQkKVeuXGrcuLHFESGtEg+6+PPPPysqKsrCaAAAAAD35LaJhMjISI0YMUIVKlSQn5+fihQpor59+yokJCRN5zt+/LheeOEFlSpVSn5+fsqfP78aNWqkzz77zMGRI6MlTBsoSW3btpW3t7eF0SA9nnzySfn7+0uSrl+/roULF1ocEQAAAOB+3DKREBkZqUcffVQffvihbt26pc6dO6t48eKaNGmSateurRMnTqTqfPPmzVO1atU0ceJE5c2bV127dlWtWrV06tQp/e9//3PSp0BGMAxDv//+u1mmW0PmljNnTj3++ONmmUEXAQAAAMfzsjoAZ/jkk0+0adMmNWzYUMuWLVP27NklSWPHjtWbb76pvn37au3atSk61549e/Tkk08qR44cWr58uZo0aWJui4+P186dO53yGZAx9uzZowsXLkiSPDw81LZtW4sjQnr17dtXU6dOlSQtXbpUZ8+eVfHixS2OCgAAAHAfbtciISYmRuPHj5ckTZgwwUwiSNIbb7yh6tWra926dfrrr79SdL5BgwYpOjpakydPtksiSHf/8Kxbt67jgkeG+/PPP83l+vXrK2/evBZG42g2Rcb5mi/JlvYz2aTAwL9fttScKl0Hp16zZs1UtmxZSXdbnEyZMsWp7wcAAFLDcfUTWC+Dq3lZjwtfYLdrkbBhwwaFhYWpbNmyqlWr1j3be/Toob1792rRokWqU6fOfc916NAhrV+/XhUqVKDJu5tKnEhwt9YIUfF++s/JYQ45V2CgFBZmxcGpZ7PZ1KdPH7333nuS7s7eMHz4cHl4uF3eFACATMeR9RNYL4OreVmPC19gt6tZ79mzR5JUu3btJLcnrE/Y735WrlwpSXrssccUGRmpKVOmaNCgQXr11Vf1448/Kjw83EFRwwrh4eHauHGjWXa3REJWFhQUJNv/Z2xPnjypDRs2WBwRAAAA4D7crkVCcHCwJKlYsWJJbk9Yn7Df/Rw4cECS5O/vr5o1a+rIkSN224cNG6Y5c+aoWbNm6QkZFlm1apViY2MlSXny5KGbihspVqyYWrduraVLl0qSJk+ezM8pAAAA4CBu1yLh1q1bkqRs2bIluT0gIMBuv/sJDQ2VJH311Ve6fv265s6dq7CwMB05ckS9evXS1atX1aVLF3OwvgepUqVKkq/UziIBx0jcraF169by9PS0MBo4WlBQkLk8a9Ys3b5928JoAGQknrcAADiX2yUSDMOQJLNZc3LbUyIuLk6SFBsbq59//lldu3ZVYGCgKlSooOnTp6tevXoKDQ3VhAkT0h84MpRhGG49PsJdhnw9IsyXlPJ7/54zGXe7ZyW8UvFjlM6D065Lly7KmTOnpLuJw3nz5mXI+wIAgPtxXP0E1rOompd1uPAFdruuDTly5JCkZL99vHPnjiTZzebwoHMVLVpUrVu3vmd7nz59tH37dq1ZsyZFsSV0lfinKlWqpOh4OM6RI0d05swZs5zU/29m5+sRqaFl/2OWPz0xJM3nunFDyp3773JoqJQrV0YcnHb+/v564okn9OOPP0qSpkyZomeeecbp7wvAejxvAdeVVP0kKt7fwoiQHhZV87IOF77AbtcioUSJEpKkkJCQJLcnrE/Y735KlSolSSpZsuR9t1++fDmVUcJqiVsj1KxZU4ULF7YwGjhL4u4NK1eu1NmzZy2MBgAAAHAPbpdIqFGjhiRp586dSW5PWF+9evUHnith+sjr168nuf3atWuSUta6Aa7F/bs1QJIaN26ssmXLSrrbnWXatGkWRwQAAABkfm6XSGjcuLECAwN14sQJ7dq1657ts2fPliR16NDhged69NFHFRAQoBMnTiT5TWZCl4bkppqEa4qIiNDatWvNMokE92Wz2fTcc8+Z5SlTpqRqnBQAAAAA93K7RIKPj48GDhwoSRo4cKDdWAljx47V3r171aRJE9WrV89c/80336hSpUoaNmyY3bmyZcumQYMGKSYmRi+//LLduf78809NmTJFNptNL774opM/FRxp7dq1ioyMlHR3HIyGDRtaHBGcKXEi4ejRo9q6dauF0QAAAACZn9sNtihJ7733nlasWKFNmzapfPnyatq0qc6cOaOtW7cqb968mjRpkt3+V69e1ZEjR5KcxnHEiBFav369lixZovLly+vhhx/W5cuXtWXLFsXHx2vUqFGqX79+Rn00OEDibg2PPvqofHx8LIwGzlaqVCm1aNHCbEE0ZcoUNWjQwNqgAAAAgEzMaS0SYmJitH//fq1evVrz58/X6tWrtX//fsXExDjrLU1+fn5avXq13n//fWXLlk3z58/X6dOnFRQUpF27dqlcuXKpOteqVas0atQo5cqVS3/88YcOHDigli1bavHixRo+fLgTPwmcgfERsp7Egy7++uuvZosUAAAAAKnn0BYJV65c0eTJk7VkyRJt27ZNUVFR9+zj5+en+vXrq3379goKClL+/PkdGYLJ399fH374oT788MMH7jty5EiNHDky2e0+Pj4aPnw4SQM3cOrUKR05csQst2nTxsJokFG6d++uV155RXfu3FFYWJgWLlyoJ554wuqwAAAAgEzJIS0Sjh07pqeeekrFixfXkCFDtG7dOmXPnl2NGjVShw4d1KtXL7Vv316NGjVStmzZtHbtWr3zzjsqXry4evXqpePHjzsiDOCBErdGqFSpkjmFJ9xbjhw51L17d7M8ZcoUC6MBAAAAMrd0t0gYNGiQvv/+e8XFxally5bq1auXWrRoodKlSyd7zMmTJ7V69WrNmDFDM2fO1Jw5c/Tiiy9q/Pjx6Q0HuK/ly5eby7RGyFqCgoLM6R+XLl2qixcvqlChQhZHBQAAAGQ+6W6RMHHiRL388ssKDg7W8uXL1adPn/smESSpTJky6tevn1auXKkzZ86of//++umnn9IbCnBfsbGxWrVqlVl+7LHHLIwGGa1ly5YqXry4JCkuLk7Tp0+3OCIAAAAgc0p3i4STJ0+m61u9okWLaty4cfdMvQg42o4dO3Tjxg1Jkre3t5o3b25xRM4Va3hpzbXmduW08vOTRoywL2fMwY7j4eGh5557TqNGjZIkTZ48WW+88YZsNpsl8QAAkBU5sn4C67lINc99ufAFTvdPrqOaBtPEGM62YsUKc7lhw4bKnj27hdE4X5zhrbXXWzrkXH5+0n3GI3XiwY6VOJGwf/9+7dq1S7Vr17Y4KgAAsg5H1k9gPReq5rknF77ATpv+EXA1icdHoFtD1lShQgU1bNjQLDPoIgAAAJB6liQSVq9erW+++UYTJkyw67MOOMutW7e0efNms0wiIesKCgoyl2fMmKHo6GgLowEAAAAynwztlBQcHKxu3bpp586dCgwMlCTduHFDtWrV0ty5c1WyZMmMDAdZyNq1axUTEyNJCgwMVJ06dSyOCFbp2bOnBg8erKioKF29elV//PGHOnfubHVYAAAAQKaRoYmEl156SfHx8dq3b5+qVKkiSTpw4ICCgoLUv39//fHHHxkZDrKQxN0aHnnkEXl5uf/APp62GDXJvcEsbwhtkuZzRUZKn376d3no0FSM9ZKugx0vV65c6ty5s2bOnCnpbvcGEgkAAGSMpOoncYa3hREhPVysmud+XPgCZ+hfU2vWrNGaNWvMJIIkValSRd98840eeeSRjAwFWUzigRazSrcGL1usWuRda5a3hDVI87kiI6V///vv8muvpTKRkOaDnSMoKMhMJCxevFhXr15Vvnz5LI0JAICsIKn6CYmEzMsFq3nuxYUvcIaOkVCgQAFly5btnvXZsmVT3rx5MzIUZCHnz5/XgQMHzHJWSSQgea1btzZniomJidEvv/xicUQAAABA5pGhiYQhQ4ZoyJAhCgsLM9eFhYVp+PDheueddzIyFGQhiVsjlCpVSmXLlrUwGrgCLy8vPfPMM2aZ2RsAAACAlMvQrg2zZs3Szp07VaxYMVWsWFE2m02HDx+Wl5eX7ty5o3nz5pn7MpsDHOWf0z7abDYLo4GrCAoK0ueffy5J+uuvv3TgwAG7blcAAAAAkpahiYRSpUqpVKlSduuqVauWkSEgizEMI0uOj4AHq1q1qmrXrq2dO3dKutsqYcyYMRZHBQAAALi+DE0kTJo0KSPfDtD+/ft18eJFSZLNZmNQT9gJCgoyEwk///yzRo8eLU9PT4ujAgAAAFxbho6RAGS0xK0R6tSpw6CesPPUU0+ZU4FeuHDB7n4BAAAAkLQMTSRcvnxZvXv3VtGiReXl5SVPT0+7F+Bo/xwfAUgsf/78ateunVmeOnWqhdEAAAAAmUOGdm0ICgrSkSNHNHDgQBUuXJhB7+BU0dHRWrv273mKW7VqZWE0cFVBQUFauHChJGnevHkKDw9Xzpw5LY4KAAAAcF0ZmkjYsGGD1qxZozp16mTk2yKL2rp1q+7cuSNJ8vPzU6NGjSyOCK6offv2yp07t0JDQxUREaFZs2apX79+VocFAAAAuKwM7dpQsmRJujAgwySeQrRJkyby8/OzMBq4Kl9fXz311FNmme4NAAAAwP1laIuETz75REOHDtW0adOUP3/+jHxrZEGJEwlZcbaGqHg/fXpiiF05rQIDpdBQ+3LGHJwxgoKC9N///leStG7dOp06dUqlS5e2OCoAANyPI+snsF4mqOZlbi58gTO0RULCH3OFCxdW8eLFVaZMGbsX4Ch37tzR5s2bzXJWTCRINkXF+5svKe1jkthsUq5cf79SNbxJug7OGPXq1VPFihXNMq0SAABwFsfVT2C9TFDNy9xc+AJnaIuE3r17a9u2berXrx+DLcKpNm7cqJiYGElSzpw5GZcD92Wz2RQUFKThw4dLuptI+OCDD/gdBQAAACQhQxMJf/75pxYtWqSWLVtm5NsiC0rcraF58+by8srQWx2Z0DPPPKN3331XhmHo5MmT2rhxo5o0aWJ1WAAAAIDLydCuDfnz51ehQoUy8i2RRa1cudJczprdGpBaxYsXt7tXpkyZYmE0AAAAgOvK0ETC8OHD9dFHH5lNzgFnCAsL019//WWWs2oiwdcjUkPKjDZfvh6RaT7XjRv23bNu3MiogzNWUFCQuTxz5kxFRERYGA0AAO7HkfUTWC8TVfMyJxe+wBna3nvGjBnatWuXihQpokqVKsnb29tue+Lm6EBarVu3TvHx8ZKkfPnyqWrVqhZHZBVDfp5RduU0n8mw/71lpOZU6To4Y3Xr1k0vv/yybt++rfDwcC1YsEBPPvmk1WEBAOBGHFc/gfUyUTUvc3LhC5yhiYRSpUqpVKlSGfmWyIISJ6RatmwpD48MbXiDTCwgIEA9evQwuzVMmTKFRAIAAADwDw5PJCxevFgdOnRIctukSZMc/XbAPRInErJqtwakXVBQkJlIWLZsmS5cuKDChQtbHBUAAADgOhz+VW2nTp3UvHlzbdmyxdGnBh7o8uXL2rdvn1kmkYDUat68uUqUKCFJio+P1/Tp0y2OCAAAAHAtDk8kdO3aVevXr1fjxo3VvXt3HTlyxNFvASRrzZo15nLRokVVvnx564JBpuTh4aFnn33WLE+ZMkWGC/VHAwAAAKzm8ETCnDlztGXLFjVv3lzz5s1TtWrV9NJLL+nChQuOfivgHv+c9tFms1kYDTKr5557zlzev3+/du/ebV0wAAAAgItxyih09evX16pVq/THH3+oatWq+uGHH1S+fHm9++67Cg8Pd8ZbApIYHwGOUaFCBTVs2NAsJ4yZAAAAAMBJiYQEbdq00c6dOzV9+nQVKlRIo0ePVpkyZfTll18qOjramW+NLCg4OFjHjx83yyQSkB6JWyXMmDFDMTExFkYDAAAAuI4MmRfvqaee0uHDh/XNN9/I29tbb775pipUqKBp06ZlxNsji1i9erW5XK5cOXPAPCAtevbsKV9fX0nSlStX9Oeff1ocEQAAAOAaMiSRIEleXl4aMGCATpw4oeHDh+vcuXPq06dPRr09sgC6NcCRcufOrU6dOpllujcAAAAAd3k58+S3b9/WoUOHdPDgQfPfgwcP6vTp04qLi2MgPDiMYRgkEv4hzvDU7vAaduW08vGRgoLsyxlzsLWee+45zZo1S5K0aNEiXb9+XXny5LE4KgAAMi9H1k9gvUxczcscXPgCOzyR8MYbb5iJg5CQEHN9wvRpHh4eKlOmjKpWrapq1ao5+u2RRR07dszufmvRooV1wbiIWMNHCy51dci5smWTJk+24mBrtWnTRgUKFNDly5cVHR2t3377TS+//LLVYQEAkGk5sn4C62Xial7m4MIX2OGJhK+++spcLlKkiKpWrWomDapWraoqVarIz8/P0W+LLC5xa4SqVauqYMGCFkYDd+Ht7a2nn35aX375paS73RtIJAAAACCrc3giYcKECWbiIFeuXI4+PZAkujXAWZ577jkzkbB161YdOXJEFStWtDgqAAAAwDoOH2zx5ZdfVtOmTUkiIMPEx8fbzdhAIgGOVLNmTVWvXt0sT5061cJoAAAAAOulu0VC+fLl1blzZ3Xo0EFNmzaVpycDpiBjHThwQFevXpV0dwyOZs2aWRyRa/BQrKrl2GeW991M+5gk0dHSjBl/l3v1SsVYL+k62DUEBQXpzTfflCRNmzZNH330kTw8MmzSGwAA3EZS9ZN4547/Didyg2qea3PhC+yQn9qxY8fqyy+/VGBgoNq1a6eOHTuqbdu2CgwMdMTpgftau3atuVyzZk3lzp3bwmhch7dHjLoUWmCWD9+ulOZz3bkjJZ6ttUuXVPwOS9fBrqFXr1565513FBcXp7Nnz2rNmjW0fAEAIA2Sqp9ExZNIyKzcoJrn2lz4Aqf7K7Vjx47p0KFDGj16tKpUqaLffvtNvXr1UoECBfToo49q3LhxOnHihCNiBZK0Zs0ac5nZGuAMhQoVUps2bczylClTLIwGAAAAsJZD2uZWrFhR77zzjtavX6+LFy9q0qRJ6tixo3bs2KHXX39dFSpUUOXKlTV06FBt3LjRnAoSSK/4+Hi7FgkkEuAsQYnm8J0zZ45u3bplYTQAAACAdRzeyTdv3rx67rnnNHv2bF29elV//PGHXn75Zd25c0djxoxRs2bNVKBAAfXu3ZvKONLt4MGD5vgINptNTZs2tTgiuKtOnTqZ3bVu376tuXPnWhwRAAAAYA2njhbm7e2tNm3a6JtvvtHp06e1e/dujRw5UmXKlNG0adP0+OOPK1++fPrhhx+cGQbc2D/HR2C2EDiLn5+fevbsaZbp3gAAAICsyuGJhMWLFye7rXr16nr//fe1detWnTt3Tv/73//UunVr3bhxw9FhIItgfARkpMTdG1avXq3g4GALowEAAACs4fBEQqdOndS8eXNt2bLlvvsVKlRIL7zwghYuXKi33nrL0WEgCzAMg0QCMlTDhg1Vrlw5SXfvv59//tniiAAAAICM5/BEQteuXbV+/Xo1btxY3bt315EjRxz9FoAkxkdAxrPZbHruuefM8pQpUxg8FgAAAFmOwxMJc+bM0ZYtW9S8eXPNmzdP1apV00svvaQLFy44+q2QxSUeH6FGjRrKnTu3hdEgq3j22WfN5aNHj2rbtm0WRgMAAABkPKcMtli/fn2tWrVKf/zxh6pWraoffvhB5cuX17vvvqvw8HBnvCWyILo1wAqlSpVS8+bNzTKDLgIAACCrceqsDW3atNHOnTs1ffp0FSpUSKNHj1aZMmX05ZdfKjo62plvDTfH+AiwUuJBF3/99VdFRUVZGA0AAACQsbwy4k2eeuopPf744/r+++/10Ucf6c0339S4ceP00Ucf2TUTBlLq0KFDunLliiTGR0hOdLyvvjvzkl05rXLkkHbtsi9nzMGuqUePHnrllVcUERGh0NBQLV68WN27d7c6LAAAXJ4j6yewnhtW81yLC19gp7ZISMzLy0sDBgzQiRMnNHz4cJ07d059+vTJqLeHm0k8PkL16tWVJ08eC6NxTYY8dCm6sPky0vHj7ukp1az598vTM6MOdk05cuRQt27dzDLdGwAASBlH1k9gPTes5rkWF77ATm2RcPv2bR06dEgHDx40/z148KBOnz6tuLg42Ww2Z7493BjdGmC1oKAgTZ8+XZL0xx9/6PLlyypQoIDFUQEAAADO5/BEwhtvvGEmDkJCQsz1CVOkeXh4qEyZMqpataqqVavm6LdHFsD4CHAFjzzyiIoWLapz584pNjZWv/zyiwYPHmx1WAAAAIDTOTyR8NVXX5nLRYoUUdWqVc2kQdWqVVWlShX5+fk5+m2RhRw+fFiXL1+WdHd8hGbNmlkcEbIiT09PPfPMM/rPf/4j6W73BhIJAAAAyAocnkiYMGGCmTjIlSuXo08P2I2PUK1aNcZHSIaPLUp9iv9klied7Zvmc928KSUez3L9+lSM9ZKug11bUFCQmUjYtWuX9u3bR0srAADuI6n6SbTBgIuZlRtX81yDC19ghycSXn75ZUefErBDt4aUsdniVcj3kl05reLipD177MsZc7Bre+ihh1SvXj1t375dkjR16lR99tlnFkcFAIDrSrJ+YlgYENLFjat5rsGFLzDDpCJTYXwEuJrnnnvOXP75558VGxtrYTQAAACA85FIQKZy9OhRXbr0dxab8RFgtaeeekre3t6SpIsXL2r58uUWRwQAAAA4V7oTCYcPH3ZEHA47D9xb4tYI1apVU968ea0LBpCUN29edejQwSxPnTrVwmgAAAAA50t3IqFq1ap6+umntX///jQdv3v3bj355JMMUIYUoVsDXFHi7g3z58/XjRs3LIwGAAAAcK50JxLef/99LVq0SDVq1FDt2rX1xRdfaMeOHYqJiUly/6ioKG3ZskWjR49WtWrVVKdOHf3+++/64IMP0hsK3BzjI8BVtWvXzmwdExkZqVmzZlkcEQAAAOA86Z61YcSIEXr55Zc1atQoTZ06VW+//bZsNpu8vb1VqlQp5c6dWzly5FB4eLiuX7+uM2fOKDY2VoZhKDAwUIMHD9awYcOUP39+R3weuLFjx47p4sWLZpnxEeAqfHx81KtXL40fP16SNHnyZD3//PMWRwUAAAA4h0OmfyxQoIDGjRunTz/9VDNnztTixYu1ceNGHT169J59CxUqpKZNm6p9+/Z64okn5Ofn54gQkAUkbo1QtWpV5cuXz7pggH8ICgoyEwkJv/8qVKhgcVQAAACA46U7kRAcHKwSJUpIkvz9/RUUFKSgoCBJ0pUrV3T58mXduHFDgYGBKlCgAC0PkGZ0a4Arq127tqpXr669e/dKkn766Sd9+umnFkcFAAAAOF66x0goXbq0XnnllSS35c+fX1WqVFGjRo1UpUoVkghIM8ZHgKuz2Wzq27evWZ4yZYpiY2MtjAgAAABwjnS3SDAMQxEREUluW7lyperWravAwMD0vg2yuOPHj+vChQtmmfERHize8NDpOyXtymnl5SU1b25fzpiDM5enn35ab7/9tmJiYnTx4kX9+eefdlNDAgCQ1TmyfgLrZaFqnjVc+AI7NZLHHntMffr00cSJE535NsgCErdGoHVLysQYvppyro9DzpU9u5TovyADD85c8uXLpy5dupizNkycOJFEAgAAiTiyfgLrZaFqnjVc+AI7PQVoGIaz3wJZAN0akFkk7t6wePFiXbp0ycJoAAAAAMejLRFcHuMjIDN57LHHVKxYMUlSbGysfv75Z4sjAgAAAByLRAJc3okTJ3T+/HmzzPgIcGWenp7q3bu3WZ44cSItswAAAOBWHDJGwrVr13T16lXly5fPEacD7CRujVC5cmUVKFDAumAyEZviVMI/2CwHR5RI87liY6UNG/4uN2mSirFe0nVw5tS7d299/PHHkqRDhw5p69atatCggcVRAQBgvaTqJ4Y8LYwI6ZEFq3kZy4UvsEOiWLx4sQoWLKg8efLooYceUuXKlVW5cmVHnBqgW0Ma+XhEq3exKWb50xND0nyuW7ekli3/LoeGSrlyZcTBmVPZsmXVokUL89796aefSCQAAKCk6ydR8f4WRoT0yILVvIzlwhc43V0bBgwYoMaNGytHjhy6du2aNmzYoO+//16vv/66bDabpk2bpsqVK6tXr1767LPPtGLFCl27ds0Rsd9XZGSkRowYoQoVKsjPz09FihRR3759FRISkq7zHjt2TP7+/rLZbGrbtq2DokVyGB8BmVW/fv3M5V9//VW3b9+2MBoAAADAcdLdIuGbb74xl0+dOqU9e/aYr927d+v06dM6fPiwDh8+rN9++83ct2jRoqpVq5YWLFiQ3hDuERkZqUcffVSbNm1S4cKF1blzZ50+fVqTJk3S4sWLtXnzZpUtWzZN537ppZcUFRXl4IiRnJMnT+rcuXNmuXnieVQBF9atWze98sorCg8P182bNzV79mwFBQVZHRYAAACQbg4dbLF06dLq0qWLRowYoblz5+rkyZO6ceOG1q1bp/Hjx6tv376qU6eO/Pz8FBISosWLFzvy7U2ffPKJNm3apIYNG+ro0aP67bfftHXrVn3xxRe6cuWK3fRsqTFx4kStXr1aL7zwgoMjRnISt0Z46KGHGB8BmUa2bNn01FNPmeWffvrJwmgAAAAAx3H6rA05cuRQkyZN9Morr+iHH37Qtm3bdPPmTR08eFAzZsxw+PvFxMRo/PjxkqQJEyYoe/bs5rY33nhD1atX17p16/TXX3+l6ryXL1/W22+/rVatWtn9cQDnolsDMrPE3RvWrVunY8eOWRgNAAAA4BiWTP/o4eGhSpUqqWfPng4/94YNGxQWFqayZcuqVq1a92zv0aOHJGnRokWpOu+rr76qiIgIffvttw6JEw9mGIbWrl1rlkkkILOpW7euqlatapYnTZpkYTQAAACAY1iSSHCmPXv2SJJq166d5PaE9Qn7pcTvv/+u3377TcOHD1e5cuXSHyRS5NSpUzp79qxZZnwEZDY2m82uK9XkyZMVGxtrYUQAAABA+rldIiE4+O68tMWKFUtye8L6hP0e5Pbt2xowYIAqVqyoIUPSPn0eUi9xt4ZKlSqpYMGC1gUDpNEzzzwjb29vSdKFCxe0dOlSiyMCAAAA0ifdsza4mlu3bkm6O9BZUgICAuz2e5D33ntPZ86c0apVq+Tj45Ou2KpUqZLk+hMnTqR5Fgl3xvgIcAf58+dXp06dNGfOHEl3B11s3769xVEB7o3nLQAAzuV2LRIMw5B0t0nx/banxI4dOzR+/Hg999xzatmypUPiQ8owPgLcSeLuDQsXLtTly5ctjAYAAABIH7drkZAjRw5Jd7skJOXOnTuSZDebQ1JiY2P1wgsvKDAwUJ9//rlDYjtw4ECS65P75iQrO336tF33E8ZHQGbWpk0bFS1aVOfOnVNsbKymTp2qt956y+qwALfF8xYAAOdyu0RCiRIlJEkhISFJbk9Yn7BfckJCQrR7924VKlRIjz/+uN22sLAwSdK2bdvUokULZc+eXYsXL05n5EgscbeGihUrqlChQtYFk0nFxPvo1/M97cppFRAgzZtnX86Yg92Dp6enevfurVGjRkmSfvjhB7355pvJtpwCAMBdObJ+AutRzXMyF77AbpdIqFGjhiRp586dSW5PWF+9evUUne/ixYu6ePFikttCQ0O1du1aBQYGpiFS3A/jI6RfvDx15PZDDjmXt7fUpYsVB7uPfv366ZNPPpFhGDp69KjWrVtHSxsAQJbjyPoJrEc1z8lc+AK73RgJjRs3VmBgoE6cOKFdu3bds3327NmSpA4dOtz3PKVKlZJhGEm+Vq9eLeluc2XDMMwWCnAcxkeAuyldurRat25tlr///nsLowEAAADSzu0SCT4+Pho4cKAkaeDAgXZjJYwdO1Z79+5VkyZNVK9ePXP9N998o0qVKmnYsGEZHi/udfr0aZ05c8Ys860t3MWLL75oLs+ePVvXrl2zMBoAAAAgbdwukSDdnbLx4Ycf1qZNm1S+fHn17NlTDRo00Jtvvqm8efNq0qRJdvtfvXpVR44c0YULFyyKGIkl7tZQoUIFFS5c2LpgAAfq2LGjChYsKEmKjo7W1KlTLY4IAAAASD23TCT4+flp9erVev/995UtWzbNnz9fp0+fVlBQkHbt2qVy5cpZHSLug/ERHMPbFq2ehX8xX9626DSf6/btu92zEl7JTIrihIPdi7e3t91UkN9//32qpqQFACCzc2T9BNajmudkLnyB3W6wxQT+/v768MMP9eGHHz5w35EjR2rkyJEpPneLFi2o/DsRiQTH8LDFqVL2I3bltIqJkRYssC9nzMHu5/nnn9fo0aMlSYcPH9aGDRvUtGlTi6MCACBjJFk/oVqdaVHNczIXvsBu2SIBmRfjI8DdlSlTRo899phZZtBFAAAAZDYkEuBSEs/WUKFCBRUpUsTCaADnSDzo4qxZs3T9+nULowEAAABSh0QCXArdGpAVdOrUSQUKFJAkRUVFadq0aRZHBAAAAKQciQS4lMSJBLo1wF35+PioT58+ZplBFwEAAJCZkEiAyzhz5oxOnz5tlkkkwJ09//zz5vLBgwe1ceNGC6MBAAAAUo5EAlxG4vERypcvr6JFi1oYDeBc5cqV06OPPmqWGXQRAAAAmQWJBLgMxkdAVpN40MWZM2cy6CIAAAAyBRIJcBkkEpDVdOnSRfnz55fEoIsAAADIPEgkwCWcOXNGp06dMsuMj4CswMfHR7179zbL3377LYMuAgAAwOV5WR0AINmPj1CuXDnGR3AAQzaFxQTaldPKw0MqWdK+nDEHu7/+/fvr888/l2EYOnLkiFatWmU3dgIAAO7EkfUTWI9qnpO58AUmkQCXQLcGx4uO99O406875Fw5c0qJJtTIwIPdX5kyZfSvf/1Lv//+uyTpv//9L4kEAIDbcmT9BNajmudkLnyBXSelgSwtcYsEEgnIagYMGGAuL1iwQCEhIRZGAwAAANwfiQRYLjg4WCdPnjTLjI+ArKZt27YqVaqUJCkuLk4//PCDtQEBAAAA90EiAZb75/gIxYoVszAaION5enqqf//+Zvn7779XdHS0hREBAAAAySORAMslHh+B1giOFK9Ar1DzJcWn/Uzxd7tnJbziU3OqdB2cdfTt21c+Pj6SpIsXL2r+/PnWBgQAgFM4rn4C61HNczIXvsAMtgjLMdCic/h6ROm10uPM8qcnhqT5XOHhUunSf5dDQ6VcuTLi4Kwjf/786tmzp6ZNmybp7qCLTzzxhMVRAQDgWEnVT6Li/S2MCOlBNc/JXPgC0yIBljp79izjIwD/L/Ggi2vXrtWBAwcsjAYAAABIGokEWCrx+Ahly5ZV8eLFLYwGsNbDDz+sWrVqmeVvv/3WwmgAAACApJFIgKXo1gD8zWaz2bVKmDp1qm7evGlhRAAAAMC9SCTAUiQSAHu9evVSYGCgJOnmzZv6+eefLY4IAAAAsEciAZY5e/asTpw4YZYZHwGQsmXLpj59+pjl//73vzIMw8KIAAAAAHskEmCZxOMjlClThvERgP/Xv39/c3n//v1av369hdEAAAAA9kgkwDKJEwl0awD+VrFiRbVq1cosjx8/3sJoAAAAAHskEmAZxkcAkjdw4EBzed68eQoODrYwGgAAAOBvJBJgiZCQEB0/ftwsMz4CYK9Dhw4qU6aMJCkuLk4TJkywOCIAAADgLhIJsMQ/x0coUaKEhdEArsfT01ODBg0yy99//71u375tYUQAAADAXV5WB4CsKXG3BlojOEes4a0/r7SxK6eVv7/05Zf25Yw5OGvr06eP3n//fd26dUthYWGaNm2a3UCMAABkNo6sn8B6VPOczIUvMIkEWILxEZwvzvDS1rCGDjmXr6/02mtWHJy1BQYGqm/fvvr6668lSePGjdOLL74oDw8akwEAMidH1k9gPap5TubCF5jaKDLcuXPnGB8BSKFBgwbJZrNJkg4fPqzly5dbHBEAAACyOhIJyHCJx0coXbq0SpYsaWE0gGsrV66cOnToYJbHjRtnYTQAAAAAiQRYgG4NQOoMHjzYXP7jjz90+PBhC6MBAABAVscYCchwJBIyhpctRo/mXWGWV15rleZzRURIw4b9XR49OhVjvaTrYEjSI488oqpVq2r//v2SpPHjxzMdJAAgU0qqfsKAi5kX1Twnc+ELTCIBGer8+fM6duyYWWZ8BOfxtMWqQe6tZnnN9RZpPldUlJS4Rf3Ikan4HZaugyFJNptNgwcP1gsvvCBJmjx5sj7++GPlzp3b4sgAAEidpOonJBIyL6p5TubCF5iuDchQq1evNpdLlSrF+AhACj399NPKmzevJOnOnTuaOHGixREBAAAgqyKRgAy1atUqc/mRRx6xMBIgc/H399eLL75olr/55hvFxsZaGBEAAACyKhIJyFAkEoC0GzBggLy87vZIO3PmjBYsWGBxRAAAAMiKSCQgw5w6dUqnT582yy1btrQuGCATKlasmHr06GGWv/jiCwujAQAAQFZFIgEZJnFrhEqVKqlIkSIWRgNkTm+88Ya5vHnzZm3cuNHCaAAAAJAVkUhAhqFbA5B+9erVs5vt5LPPPrMwGgAAAGRFJBKQIQzDIJEAOMhbb71lLi9cuFBHjhyxMBoAAABkNSQSkCEOHz6sixcvmuUWLVpYFwyQybVr104PPfSQpLtJurFjx1ocEQAAALISEgnIEIlbI9SsWVN58+a1MBogc/Pw8LBrlTBlyhRdunTJwogAAACQlZBIQIagWwPgWE8//bQKFSokSYqKitKECRMsjggAAABZhZfVAcD9xcfHa/Xq1WaZRELGiIr317+PjXTIuXLlkgzDioORHF9fX7366qsaPny4JGnChAkaMmSIAgICLI4MAIDkObJ+AutRzXMyF77AtEiA0+3Zs0ehoaGSJE9PTzVt2tTiiAD30L9/fzNxcP36dU2aNMniiAAAAJAVkEiA0yXu1lCvXj3lzJnTwmgA95E7d2698MILZnns2LGKjY21MCIAAABkBSQS4HSMjwA4z2uvvSZPT09J0qlTpzRr1iyLIwIAAIC7I5EAp4qJidG6devMMokEwLFKliypp556yix/8sknio+PtzAiAAAAuDsSCXCqHTt26NatW5IkHx8fNWrUyOKIsg5fjwiNKD/SfPl6RKT5XGFhks329yssLKMORkoMHTrUXN6/f7+WLFliYTQAACTPkfUTWI9qnpO58AUmkQCnStytoVGjRvL397cwGsA9ValSRV26dDHLo0aNkuGiI/wCAAAg8yORAKdifAQgYwwbNsxc3rp1q9asWWNdMAAAAHBrJBLgNBEREdq4caNZJpEAOE/9+vXVqlUrs/zJJ59YGA0AAADcGYkEOM3mzZsVFRUlSQoICFC9evUsjghwb8OHDzeXV6xYoW3btlkYDQAAANwViQQ4TeJuDU2bNpWPj4+F0QDur0WLFmrQoIFZHj16tIXRAAAAwF2RSIDTMD4CkLFsNptdq4T58+frwIEDFkYEAAAAd0QiAU5x8+ZNu2bVJBKAjNG+fXtVq1bNLI8aNcrCaAAAAOCOSCTAKdatW6e4uDhJUq5cuVSzZk1rAwKyCA8PD7sZHH799VcdPnzYwogAAADgbkgkwCmWL19uLrds2VKenp4WRgNkLU888YQqVaokSTIMQx999JHFEQEAAMCdkEiAU6xYscJcfuyxxyyMBMh6PD099cEHH5jlX375hVYJAAAAcBgvqwOA+zl//rzdAG8kEqwRZ3hpS+jDduW08vWVBg+2L2fMwUirJ554Qh9++KEOHz5stkqYPn261WEBALI4R9ZPYD2qeU7mwheYn1w4XOLWCCVLllTZsmUtjCbrijW8tfTqvxxyLn9/6auvrDgYaZXQKqFXr16S7rZKeP/9980uDwAAWMGR9RNYj2qek7nwBaZrAxwu8fgIjz32mGw2m4XRAFkXYyUAAADAGUgkwKEMw2B8BMBFMFYCAAAAnIFEAhzqwIEDunjxoiTJZrPp0UcftTgiIGujVQIAAAAcjTES4FCJuzXUrl1befPmtTCarM3TFqu6gdvN8o4b9dJ8rqgo6dtv/y6//HIqxnpJ18FIr6TGSnj33XdVuXJliyMDAGRFSdVPGHAx86Ka52QufIH5qYVD/XN8BFjHyxajtvmXmuXd4TXTfK6ICOn11/8u9+6dit9h6ToYjvDPGRzee+89zZ071+qwAABZUFL1ExIJmRfVPCdz4QtM1wY4TFRUlNauXWuWSSQArsHT09OuS8O8efO0bds2CyMCAABAZkYiAQ6zefNm3blzR5Lk5+enRo0aWRwRgATdu3dXnTp1zPK7775rYTQAAADIzEgkwGESd2to1qyZ/Pz8LIwGQGI2m02jRo0yyytWrNCqVassjAgAAACZFYkEOAzTPgKurXXr1mrevLlZHjZsmAzDsDAiAAAAZEYkEuAQoaGh2rFjh1kmkQC4HpvNptGjR5vlbdu2aeHChRZGBAAAgMyIRAIcYtWqVYqPj5ckFShQQNWqVbM4IgBJadiwoTp27GiW3333XcXFxVkYEQAAADIbEglwiMTjI7Rq1UoeHtxagKv6+OOPZbPZJEkHDhzQjBkzLI4IAAAAmQl/7SHdDMPQsmXLzHKrVq0sjAbAg1SvXl1PPfWUWX7vvfcUGRlpYUQAAADITEgkIN2OHTumU6dOmeXWrVtbGA2AlPjwww/l7e0tSQoODta4ceMsjggAAACZhdsmEiIjIzVixAhVqFBBfn5+KlKkiPr27auQkJAUnyMsLEwzZsxQr169VLlyZQUEBChHjhx6+OGHNW7cOMXExDjxE2Qef/75p7lcvXp1FS1a1MJoAKRE2bJlNXDgQLP8ySef6MqVKxZGBAAAgMzCy+oAnCEyMlKPPvqoNm3apMKFC6tz5846ffq0Jk2apMWLF2vz5s0qW7bsA8/z+eefa9SoUfLw8FCtWrXUsWNHXblyRRs3btS2bds0e/ZsLV26VNmyZcuAT+W6EicS2rZta2EkSCwq3ldfnRpsV06rnDmlRI1OlDNnRh0MZ3rvvfc0adIkhYWFKTw8XB9++KHGjx9vdVgAADfmyPoJrEc1z8lc+AK7ZYuETz75RJs2bVLDhg119OhR/fbbb9q6dau++OILXblyRX379k3RebJnz67hw4crODhYO3bs0K+//qqVK1dq3759KlGihDZs2KCPP/7YyZ/GtUVERGj16tVmmUSCK/HQjdjc5is9P+4eHlKpUn+/UjWWZroOhjPlyZNH77//vln+7rvvdOTIEQsjAgC4P8fVT2A9qnlO5sIX2HUicZCYmBjzG7UJEyYoe/bs5rY33nhD1atX17p16/TXX3898FxDhw7VqFGj7mmqX758eX366aeSpF9++cWB0Wc+69atMwdpy549uxo3bmxxRABS45VXXlGZMmUkSbGxsRoyZIjFEQEAAMDVuV0iYcOGDQoLC1PZsmVVq1ate7b36NFDkrRo0aJ0vU+NGjUkSefPn0/XeTK7xN0aHn30Ufn4+FgYDYDU8vX1NROjkrRgwQKtXbvWwogAAADg6twukbBnzx5JUu3atZPcnrA+Yb+0OnnypCSpUKFC6TpPZvfHH3+Yy3RrADKnHj16qGHDhmb5zTffVHx8vIURAQAAwJW53WCLwcHBkqRixYoluT1hfcJ+aZUwVVrnzp3TdZ7M7NSpU3b9qUkkuBYfj0i9XOJbs/xt8MtpPld4uFS9+t/lvXtTMdZLug5GRrDZbPriiy/UqFEjSdJff/2lqVOnqnfv3tYGBgBwO0nVT6Lj/SyMCOlBNc/JXPgCu10i4datW5KU7EwKAQEBdvulxXfffacVK1YoV65cGjp0aIqPq1KlSpLrT5w4kaJZJFzN0qVLzeVKlSqpVKlS1gWDe9hkKJf3DbtyWsXHS2fO2Jcz5mBklIYNG+qJJ57QzJkzJUlDhgxR165dFRgYaHFkQOq52/MWcCeOrJ/AelTznMyFL7DbdW0wjLu/jGw22323p9XatWs1ePBg2Ww2/fTTTypSpEi6zpeZ0a0BcC+fffaZ/P39JUmXL1/Whx9+aHFEAAAAcEVu1yIhR44ckqTbt28nuf3OnTuSZDebQ0rt3btXXbp0UXR0tL7++mt17do1VccfOHAgyfXJfXPiyqKjo7Vy5UqzTCIByPxKlCihYcOG6YMPPpAkff3113r++ef10EMPWRwZkDru9LwFAMAVuV2LhBIlSkiSQkJCktyesD5hv5Q6ceKE2rRpo7CwMI0cOVKDBg1KX6CZ3MaNG81kjb+/v5o3b25xRAAc4e2331bp0qUl3Z0O8tVXX013Sy4AAAC4F7dLJCRMy7hz584ktyesr5540IoHOH/+vB577DFdvHhRgwcP1ogRI9IfaCaXeNrHFi1ayM+PQXIAd+Dn56exY8ea5RUrVmj+/PnWBQQAAACX43aJhMaNGyswMFAnTpzQrl277tk+e/ZsSVKHDh1SdL7Q0FC1adNGp06dUp8+ffTll186NN7MivERAPfVuXNntW7d2iy/8cYbioiIsDAiAAAAuBK3SyT4+Pho4MCBkqSBAwfajZUwduxY7d27V02aNFG9evXM9d98840qVaqkYcOG2Z3rzp07ateunfbv368nnnhCP/zwQ7KDOGYl586d0759+8wyiQTAvdhsNo0bN05eXneH0Tl9+rT+85//WBwVAAAAXIXbDbYoSe+9955WrFihTZs2qXz58mratKnOnDmjrVu3Km/evJo0aZLd/levXtWRI0d04cIFu/XvvvuutmzZIk9PT3l5ealfv35Jvt/kyZOd9VFcUuLWCGXKlFH58uUtjAaAM1SqVEmDBw/WF198IUn69NNP1atXL1WoUMHiyAAAAGA1t0wk+Pn5afXq1Ro9erRmzJih+fPnK3fu3AoKCtJHH32k4sWLp+g8oaGhkqS4uDjNmDEj2f2yWiJh0aJF5nK7du1opQG4qQ8++EC//PKLzp8/r6ioKPXv318rV67kZx4AACCLc7uuDQn8/f314Ycf6vjx44qKitLFixc1efLkJJMII0eOlGEY9yQEJk+eLMMwHvjKSiIiIrR8+XKz3LFjRwujAeBMOXPm1Pjx483y6tWrNW3aNAsjAgAAgCtwyxYJcJ5Vq1aZg65lz56daR9dWLzhqcO3KtqV08rbW+rc2b6cMQfDal27dlXHjh3NlkhvvPGG2rVrp3z58lkcGQAgM3Jk/QTWo5rnZC58gUkkIFUSd2to3bq1fH19LYwG9xNj+Oi3C0855FwBAVKaZwBM18Gwms1m0zfffKNVq1bp9u3bunbtmt5+++17xpoBACAlHFk/gfWo5jmZC19gt+3aAMczDEOLFy82y3RrALKGEiVK6KOPPjLLkydP1po1a6wLCAAAAJYikYAU2717t86dOyfp7reU7dq1szgiABll0KBBqlWrlll+6aWXFBkZaWFEAAAAsAqJBKRY4m4NDRo0UIECBSyMBkBG8vLy0vfffy8Pj7uPjaNHj+rf//63xVEBAADACoyRgBRLnEigW4Pr81CcygccNcvHbldI87liYqQlS/4ut2+firFe0nUwXEndunU1aNAgjRs3TpI0ZswYde3aVfXr17c4MgBAZpFU/SReDLiYWVHNczIXvsAkEpAi58+f144dO8wyiQTX5+0RrSeL/GaWPz0xJM3nun1b6tr173JoqJQrV0YcDFczatQoLV68WCdOnFB8fLz69Omjv/76S35+flaHBgDIBJKqn0TF+1sYEdKDap6TufAFpmsDUmRJokxYqVKlVKVKFQujAWCVgIAA/fTTT2b54MGDdHEAAADIYkgkIEX+2a3BZrNZGA0AKzVr1kyvvvqqWR4zZoy2bdtmYUQAAADISCQS8EARERFasWKFWaZbA4BPPvlEZcuWlSSziwOzOAAAAGQNJBLwQCtXrlRERIQkKUeOHGrevLnFEQGwWkBAgCZNmmS2Tjp48KBGjhxpbVAAAADIECQS8ECJuzW0adNGPj4+FkYDwFU0bdpUgwYNMstjxozR2rVrLYwIAAAAGYFEAu4rPj5eixcvNssdOnSwMBoAruaTTz5RhQp3pxY1DEPPPPOMQkNDLY4KAAAAzkQiAfe1bds2nT9/XpLk4eGh9u3bWxwRAFcSEBCg6dOny8vr7mzCISEheumll2QYhsWRAQAAwFlIJOC+5s6day43b95c+fLlszAaAK6obt26+vjjj83yrFmzNGXKFAsjAgAAgDORSECyDMOwSyR069bNwmgAuLK3335bLVu2NMsDBw7U8ePHLYwIAAAAzkIiAcnat2+fTpw4YZa7du1qYTQAXJmHh4emTp2q3LlzS5Ju376tXr16KSYmxuLIAAAA4GheVgcA15W4NUKDBg1UtGhRC6NBakXH+2hySJBdOa2yZ5dWr7YvZ8zByEyKFSumH374QT169JAkbd++XcOHD9dnn31mcWQAAFfhyPoJrEc1z8lc+AKTSECy6NaQuRny1JmI0g45l5eX1KKFFQcjs+nevbv69euniRMnSpI+//xzNWrUiBZNAABJjq2fwHpU85zMhS8wXRuQpGPHjmnfvn1mmT8CAKTU119/rWrVqpnl3r1723WTAgAAQOZGIgFJmjdvnrlcvXp1lStXzsJoAGQm2bJl0+zZs5UjRw5JUnh4uHr06KGIiAiLIwMAAIAjkEhAkujWACA9KlSoYHZvkKTdu3fr1VdftTAiAAAAOApjJOAeZ86c0datW80y3RoyJ29blHoVmWGWZ5zvleZz3boldejwd3nx4lSM9ZKug5GZPf7443r11Vf19ddfS5J+/PFHNW7cWL1797Y2MACAZZKqn8QYvhZGhPSgmudkLnyBSSTgHjNnzjSXK1asaNfXGZmHhy1epbKdsSunVWystHatfTljDkZm99lnn2nr1q1mcrJ///6qXLmy6tevb3FkAAArJFk/MSwMCOlCNc/JXPgC07UB9/jtt9/M5Z49e8pms1kYDYDMzMfHRzNnzlTevHklSVFRUerSpYvOnz9vcWQAAABIKxIJsHP8+HH99ddfZrlnz54WRgPAHZQoUUKzZ8+Wl9fdRnAXLlxQly5dGHwRAAAgkyKRADuJuzVUrVpVlStXtjAaAO6iRYsWGj9+vFnevn27XnjhBRkG7VkBAAAyGxIJsPPPbg0A4Cj9+/fXgAEDzPL06dM1ZswYCyMCAABAWpBIgOnQoUPau3evWSaRAMDRvvrqK7Vs2dIsDxs2TPPmzbMwIgAAAKQWiQSYErdGqFWrlsqXL29hNADckbe3t2bNmqUyZcpIkgzDUK9evbRp0yaLIwMAAEBKkUiApLuV+cSJhCeeeMLCaAC4s7x582rRokXKlSuXJCkyMlIdO3bUkSNHrA0MAAAAKUIiAZKknTt36vDhw2aZRAIAZ6pcubIWLFggHx8fSdL169fVtm1bXbhwweLIAAAA8CAkEiBJmjZtmrncuHFjs9kxADhLs2bN9PPPP8tms0mSTp8+rfbt2+vmzZsWRwYAAID78bI6AFgvNjZWv/zyi1l+9tlnLYwGjmIYHroYVdCunFaenlKNGvbljDkY7u7xxx/XuXPn9Prrr0uSdu3apW7dumnRokXy8/OzODoAgKM5sn4C61HNczIXvsAkEqBly5bp8uXLkiQfHx+6NbiJaMNX/wt+2SHnypFD2r3bioORFbz22msKCQnRF198IUlasWKFnnjiCc2ZM0fe3t4WRwcAcCRH1k9gPap5TubCF5gUIDR16lRzuUOHDsqdO7eF0QDIisaMGaNevXqZ5UWLFunpp59WbGyshVEBAAAgKSQSsrgbN25owYIFZpluDQCs4OHhocmTJ6tLly7mulmzZqlfv36Kj4+3LjAAAADcg0RCFjdnzhxFRkZKkvLkyaN27dpZHBGArMrb21u//vqr2rZta66bOnWqBgwYIMMwLIwMAAAAiTFGQhaXeLaGJ5980pyKDZmfTfEq4HPJLF+OLnifve8vLk7at+/vcrVqqRjrJV0HI6vx9fXV3Llz1a5dO61Zs0aS9L///U82m00TJkyQhwf5bwDIzJKqnxh8t5lpUc1zMhe+wCQSsrATJ06YFXWJbg3uxscjSv1L/s8sf3piSJrPdfOmVKvW3+XQUClXrow4GFmRv7+/Fi5cqDZt2mjz5s2SpO+++04RERH6v/buPC6qcv8D+OcM24Aou+aSEmBaIu6Ka+p1weWikmaluebNay43NZVr3rQ0TZSrubRp6u3Gzdwwck2vgb4M0SwRrmgSLiQoqKSCDNvz+8MfkxPbAGfmzJz5vF8vXnKe55yH73leXzwP3zlzZvPmzbCzkAsoERFVX3nrE12Js4IRUW1wmWdiFjzBLP/ZsM8++0z//TPPPIMuXbooGA0R0e/q1q2L/fv3Izg4WN+2bds2jBkzBoWFhQpGRkREREQsJNiooqIibNmyRb/96quvQpIkBSMiIjLk7u6Ow4cP47nnntO3bd++HSNHjoROp1MwMiIiIiLbxkKCjdq3bx8yMjIAPHrA2bhx4xSOiIiorNI7EwYMGKBv+/rrrzF06FDcv39fwciIiIiIbBcLCTZq06ZN+u9HjBgBb29vBaMhIqqYi4sLvv76a4SGhurbjhw5gl69eukLokRERERkPiwk2KD09HTs379fvz1lyhQFoyEiqpqTkxN27tyJF198Ud/2008/ITg4GBcuXFAwMiIiIiLbw0KCDdqyZQtKSkoAAE899RT69u2rcERERFVzcHDAF198gTlz5ujbrl27hm7duuH48eMKRkZERERkW1hIsDHFxcXYvHmzfnvy5Mn8XHYishoajQarVq3CmjVr9A+IzcnJQf/+/fHvf/9b4eiIiIiIbAP/grQx33zzDa5evQoAsLOzw4QJE5QNiIioBmbNmoUdO3bAyckJAKDT6fDKK69g7ty5KCoqUjg6IiIiInVjIcHGrF27Vv99WFgYGjdurGA0REQ19/zzz+Po0aPw8vLSt61evRqDBw/GnTt3FIyMiIiISN1YSLAh58+fx7Fjx/TbM2fOVDAaIqLa6969O86cOYOgoCB927fffotOnTohKSlJwciIiIiI1Mte6QDIfNatW6f/vn379ujevbuC0ZCpFZY4IDpzmMF2Tbm4AFu2GG6b52Ciqvn6+uLkyZOYOHEiduzYAQD45Zdf0KVLF2zYsAHjx4/XP0+BiIiUJef6hJTHZZ6JWfAEs5BgI27fvm3wILKZM2dyYa1yJbDHufvtZBnL0RGo8eM0anUwkXHq1KmD7du3o127dli4cCGEEMjLy8PEiRNx9OhRbNy4EXXr1lU6TCIimyfn+oSUx2WeiVnwBPOtDTZi8+bNePjwIQDAx8cHo0ePVjgiIiJ5SZKE8PBwfPPNN/D09NS3//vf/0bHjh3x008/KRccERERkYqwkGADCgsLsX79ev32a6+9Bq1Wq2BERESmM3jwYPz0008Gb9+6dOkSgoODERkZieLiYgWjIyIiIrJ+LCTYgKioKFy/fh0AYG9vj6lTpyocERGRaT355JP47rvvsHDhQv3buHQ6HebMmYPevXsjNTVV4QiJiIiIrBefkaByxcXFWL58uX573Lhx/MhHG2EvFWBI/X367X23htR4rLw8YNq037c3bqzGs15qdTBRzdnb22Pp0qXo3bs3xo4di5s3bwIATpw4gaCgIKxcuRJ//etfodGwpk5EZC7lrU+KhKOCEVFtcJlnYhY8wSwkqFx0dDQuXrwI4NH7h+fPn69wRGQudlIx2tY7p98+mBVS47EKCoBt237fXrOmGv+H1epgotrr168fkpKSMH36dGzfvh0AkJeXh+nTp2Pnzp346KOP0KJFC4WjJCKyDeWtT4qEggFRrXCZZ2IWPMF8GUbFhBB477339NujRo3C008/rWBERETK8Pb2xpdffomvvvoKXl5e+vbvvvsOQUFBWLRokf6BtERERERUORYSVOzw4cM4e/asfjs8PFzBaIiIlDdq1CgkJydj+PDh+raCggIsXboUgYGBOHjwoHLBEREREVkJFhJUSgiBZcuW6bcHDx6Mtm3bKhcQEZGFaNCgAXbv3o1du3ahSZMm+vZffvkFgwYNQmhoKFJSUhSMkIiIiMiysZCgUocOHcLx48f12wsXLlQwGiIiyyJJEsLCwnDhwgXMmTMHdnZ2+r6YmBgEBgZi+vTpyMrKUjBKIiIiIsvEQoIKlZSUGDxUsV+/fujWrZuCERERWSZXV1esWrUKZ8+eRY8ePfTtxcXF2LBhAwICArBixQo8ePBAwSiJiIiILAsLCSoUFRWFxMRE/faKFSsUjIaIyPIFBQUhLi4OO3bsgJ+fn7793r17CA8Ph5+fH1atWoW8vDwFoyQiIiKyDCwkqIxOp8Nbb72l337xxRfRoUMHBSMiIrIOkiRh5MiR+N///ofIyEh4eHjo+7KysvDmm2/iqaeeQmRkJHJzcxWMlIiIiEhZLCSozIcffoirV68CAOzt7bF06VKFIyIisi5OTk544403cPnyZcyfPx8uj31e861btzBnzhw0bdoUixYtwq1btxSMlIiIiEgZLCSoSHZ2Nt5991399tSpU+Hv769gRERE1svT0xMrVqxAWloa5s6dC2dnZ33fnTt3sHTpUjRt2hSvvfYaLl68qGCkRERERObFQoKKzJs3D3fu3AHw6AFij7/FgWyRhPxiJ/0XINV8JAlwc/v9S6rOULU6mEh59evXR0REBNLS0jB79mzUqVNH36fT6fDJJ5+gZcuW6NevH3bt2oXCwkIFoyUisnTyrU9IeVzmmZgFT7C90gGQPGJjY7Flyxb99jvvvIMGDRooGBEpTVeixfu/hMsylpsbkJOjxMFElqNBgwZYvXo13nrrLXz88cdYu3YtMjMz9f1Hjx7F0aNH0bBhQ0yZMgUTJ06Er6+vcgETEVkgOdcnpDwu80zMgieYdySogE6nw9SpU/Xbbdu2xYwZMxSMiIhIvTw8PLBgwQJcuXIFmzdvRmBgoEF/RkYG3nnnHTz11FPo06cPtmzZgvv37ysULREREZH8WEhQgYiICKSkpAB49NTxjz/+GPb2vNmEiMiUnJycMGnSJCQmJuL48eN46aWX4ODgYLDPd999h0mTJuGJJ57Ayy+/jN27d/MjJImIiMjqsZBg5c6fP2/wgMVp06ahc+fOCkZERGRbJElCjx49EBUVhfT0dCxfvhzNmzc32CcvLw//+c9/8Pzzz8PHxwejRo3Cl19+yTsViIiIyCqxkGDF8vPz8fLLL6OgoAAA0LBhQyxbtkzhqMhyCDhpHuq/AFHzkcSjt2eVfonqDFWrg4msS/369bFgwQJcvHgR33//PaZOnQp3d3eDffLy8rBz50689NJL8PHxwdChQ7FhwwakpqYqEzQRkVnJtz4h5XGZZ2IWPMG8/92KzZ49G0lJSfrtLVu2wM3NTcGIyJI4afKxwP99/faK1Pk1Huu33wAPj9+3794F/vC3kYkOJrJOkiQhODgYwcHBWLNmDfbt24ddu3YhJibG4C4EnU6Hffv2Yd++fQAAf39/hISEYODAgejTpw9cXV2VOgUiIpMob32iK3Gu5AiyZFzmmZgFTzDvSLBSn3/+OT788EP99syZMzFw4EAFIyIiovI4OTkhLCwMX3zxBbKyshATE4MJEybA4/GFwf9LTU3Fhg0bEBoaCg8PD3Tp0gVz587F3r17cfv2bQWiJyIiIiqLdyRYofj4ePzlL3/Rb3fo0AHvv/9+JUcQEZElcHJywtChQzF06FAUFhYiNjYWBw8exMGDB5GcnGywb1FRERISEpCQkIDVq1cDAFq1aoXu3bujU6dO6NSpE5599tkyD3gkIiIiMjUWEqxMamoqQkNDkZ+fDwDw9PTErl27oNVqFY6MiIiqw8HBAf369UO/fv2watUqpKen49ChQzh06BC+/fZb5JTzudHJyclITk7GJ598AgDQarVo27YtOnXqhPbt26N169Z45pln4OLiYuazISIiIlui2kJCfn4+li9fjv/85z+4du0aPD09ERISgnfeeQdNmjSp1lg5OTlYvHgx9uzZg8zMTDzxxBMYPnw4lixZUuYhWqZ05coV9O3bF1lZWQAeLUJ37dqFZs2amS0GIiIyjSZNmmDy5MmYPHkyiouLcf78ecTFxeH48eM4fvw4bt68WeaY/Px8xMfHIz4+Xt8mSRL8/PwQGBiIVq1aITAwEIGBgQgICICzM9+HTERERLWnykJCfn4+/vSnP+HkyZNo2LAhhg0bhitXrmDLli345ptv8P3338Pf39+osW7fvo2uXbvi559/hp+fH4YPH47k5GR88MEH2L9/P+Lj4+Hl5WXiMwJSUlIQEhKCa9eu6ds2b96M3r17m/xnExGRednZ2aFt27Zo27YtZs6cCSEELl++jLi4OCQkJODMmTNITExEUVFRmWOFEEhNTUVqair27t1r0Ne4cWP4+/sjICAA/v7++i8/Pz94eHhAkiRznSIRERFZMVUWEt577z2cPHkSXbt2xeHDh/VPvY6MjMScOXMwadIkxMbGGjXWG2+8gZ9//hlhYWHYvn077O0fTdnMmTOxbt06zJ49G9u2bTPZuQDA0aNH8cILL+DOnTv6tvXr1+OVV14x6c8lIiLLIEkSmjdvjubNm2Py5MkAHhXNExMTcfr0aZw+fRrnz5/H//73P/1b38rz66+/4tdff0VcXFyZPhcXFzRp0qTCr0aNGsHb2xt2dnYmO08iIiKyDqorJBQWFmLdunUAgA0bNhh8dFbpH/1xcXH44Ycf0KFDh0rHyszMxBdffAEHBwds3LhRX0QAgIiICHz55Zf44osvsHLlSjRo0ED2c8nPz8fSpUvx3nvvQfz/Z4ZKkoS1a9fi9ddfl/3nERGR9dBqtejcuTM6d+6sbysuLkZaWhqSkpKQnJys/zclJQWFhYWVjpeXl4dLly7h0qVLFe4jSRI8PT1Rv359+Pj4wMfHx+B7Hx8feHh4wN3dHW5ubnB3d4e7uzucnJxkO28iIiJSnuoKCSdOnEBOTg78/f3Rrl27Mv0jR45EYmIiYmJiqiwkHDhwACUlJejTp0+ZQoGTkxP+/Oc/47PPPsOBAwcwYcIE2c6hqKgIX331Fd5++21cvnzZ4Gd+/vnnGDVqlGw/i4iI1MPOzg4BAQEICAjA8OHD9e3FxcW4fv06Ll++jNTUVP2/pd/n5eUZNb4QArdv38bt27dx4cIFo+PSarVligv16tWDq6srXF1dUbduXf33rq6uePjwIZ/nQEREZMFUV0g4d+4cAKB9+/bl9pe2l+5X27E+++wzo8aqSl5eHqKionDy5Ens3r0bGRkZBv0BAQH46quvyi2OEBERVcbOzg6+vr7w9fVFv379DPqEEMjOzsavv/6K9PT0cr+uX79udLGhPPn5+cjMzERmZqZR+3t4eLCQQEREZMFUV0gofRhhRZ/MUNr++EMLzTEW8Ojzv8uTkpKCkpISjBkzptx+T09P2NvbY+zYsUb9HCIAyM66ic8dH9su2IRtUXuh0WiqPVZJieF2166A0cPU6mAiUlppEaKkpARFRUUoLi4u99/S70tKSlBcXIzi4uIa/8x79+5V+VaMylR2vXVwcKiwn4hq7/79+5U+q0VCSZn1iUDF6wKtVouFCxfKGSLJiMs8EzPxBKempsLBwaFGx6qukPDgwQMAqPAztOvUqWOwn7nGqkxJSQk0Gg1atmxZq3FsQWpqKgAY/akbtkxAg4uZjx6K5unpWauxNBrg2WeVONi8mF/G41xVjxrmS6PRwNHRseodZZCSkoKHDx/KPq4kSTVeMClJDfljDTjP5iHn+oSqZuq8tqJlnkmZbJ5NPMEODg76v2mrS3WFhMcfSlhZv7nHAoDk5ORy20tfGamon37Huaoezlf1cL6Mx7mqHs5X9dT2jgG1zTPzxzw4z+bDuTYfzrV52OI8q+7Gk7p16wIAcnNzy+0vfY/n45/mYI6xiIiIiIiIiNRAdYWEpk2bAgDS09PL7S9tL93PXGMRERERERERqYHqCglt2rQBAJw9e7bc/tL2oKAgs45FREREREREpAaqKyR0794dbm5uSE1NxY8//limf+fOnQCAoUOHVjlWSEgINBoNjh8/jlu3bhn06XQ6xMTEQKPRYNCgQfIET0RERERERGThVFdIcHR0xPTp0wEA06dPN3i+QWRkJBITE9GjRw906tRJ375+/Xq0bNkS4eHhBmM1bNgQL730EgoKCjBt2jQUFRXp++bNm4esrCy8/PLLeOKJJ0x8VkRERERERESWQRLV/egBK5Cfn4/evXvj1KlTaNiwIXr27ImrV6/i1KlT8PLyQnx8PAICAvT7L168GEuWLMH48eOxdetWg7Gys7MRHByM1NRU+Pv7o2PHjkhOTkZSUhL8/f0RHx8Pb29vM58hERERERERkTJUd0cCAGi1Whw7dgyLFi2Ci4sLoqOjceXKFYwfPx4//vijQRGhKt7e3jh9+jRmzJiBgoIC7NmzB7/99humT5+OhIQEFhGIiIiIiIjIpqjyjgQiIiIiIiIiMg1V3pFARERERERERKbBQgIRERERERERGY2FBCIiIiIiIiIyGgsJRERERERERGQ0FhKIiIiIiIiIyGgsJJhAfn4+3n77bTz99NPQarVo1KgRJk2ahPT09GqPlZOTg7/97W9o1qwZnJyc0KxZM8yaNQs5OTnyB64AuebK19cXkiRV+JWSkmKiMzCfH374AStWrEBYWBgaN24MSZKg1WprPJ6ac0vOuVJ7buXl5SE6OhqTJ09GUFAQ6tWrhzp16qBNmzZ455138ODBg2qPqebcknu+1J5fABAZGYmwsDA0b94cbm5u+pwYP348kpOTqz2eteeXnGuEgwcPYtCgQfD29oaDgwPq16+PoUOH4ujRoyaI3PrIOdcHDhxA//794e7uDhcXF7Ru3RoREREoKioyQeTWhesT85BznmNjY7FkyRIMGTIEPj4+kCQJLVu2lDli6yXXXOfk5CAqKgovv/wynn32WdSpUwd169ZFly5dsHbtWhQWFpogejMSJKuHDx+Kbt26CQCiYcOG4oUXXhCdO3cWAISPj4+4fPmy0WNlZ2eL5s2bCwDCz89PvPDCC6JVq1YCgAgICBDZ2dkmPBPTk3OumjVrJgCI8ePHl/t148YNE56JeQwbNkwAMPhycnKq0Vhqzy0550rtufXpp5/q56hVq1Zi1KhRYuDAgaJu3boCgGjZsqW4efOm0eOpPbfkni+155cQQnh5eQmtVis6d+4sRowYIUaMGCGefvppAUA4OjqK/fv3Gz2WteeXnNe91atXCwBCkiTRo0cPMXr0aNGpUyd9fn744YcmPBPLJ+dcr1ixQgAQGo1GdO3aVYSGhor69esLAGLAgAGisLDQhGdi+bg+MQ8557lNmzZlxmrRooXMEVsvueZ64cKF+v87OnToIEaPHi369u0rnJycBADRo0cPkZuba4IzMA8WEmS2aNEiAUB07dpV3L9/X99eesHv1auX0WO98sorAoAICwszuEjNmDFDABDjxo2TNXZzk3OuShfjarZixQrxj3/8Q8TExIjMzMxaXUDUnltyzpXac2vbtm3ir3/9q7h06ZJB+40bN0S7du0EAPHSSy8ZPZ7ac0vu+VJ7fgkhxIkTJ8TDhw/LtG/cuFEAEI0aNRJFRUVGjWXt+SXXde/WrVvC0dFRODo6iuPHjxv07dy5U0iSJFxcXAx+hq2Ra64TEhKEJEnCwcFBHDp0SN+ek5MjevXqJQCIFStWyB6/NeH6xDzknOc333xTLFu2TBw+fFicPXuWhYQ/kGuuly9fLv7+97+L9PR0g/ZLly6Jpk2bCgAiPDxcrrDNTt2rFzMrKCgQ7u7uAoA4e/Zsmf6goCABQJw5c6bKsTIyMoRGoxEODg4iMzPToC8/P1/4+PgIOzu7Mn3WQs65EsI2FuN/VNP/1NSeW+VhIaFmTp48qZ87nU5X5f62mFuPq+58CWHb+SWEEAEBAQKASE5OrnJfa88vOa97MTExAoAICQkpt7/01cZTp07VOm5rJOdcT548WQAQU6ZMKdOXlJSkv8PB2GKYLeD6xDxqs7Z5XFpaGgsJVZBrrh8XFRUlAAhfX19ZxzUnPiNBRidOnEBOTg78/f3Rrl27Mv0jR44EAMTExFQ51oEDB1BSUoJevXqhQYMGBn1OTk7485//jOLiYhw4cECe4M1Mzrmi6lF7bpF82rRpAwDQ6XS4fft2lfvbem5Vd74IsLOzAwA4OjpWua+155ec1z0nJyejfqanp2f1glQJOef6hx9+AAD07t27TF+rVq3g7e2NrKwsnDx5snZBk9X/jhNVR+ma4caNGwpHUnMsJMjo3LlzAID27duX21/aXrqfucayRKY6v4iICEydOhWzZs3CJ598gqysrNoFqkJqzy1TscXc+uWXXwAADg4ORv1BYuu5Vd35epwt5te//vUvXLx4EU8//TT8/Pyq3N/a80vO+Dt16gQ3Nzf897//xYkTJwz6du/ejcTERHTr1g0BAQG1jNo6yTnXubm5AAAPD49y+0t/1y0176yJtf+OE1VH6ZrhiSeeUDiSmrNXOgA1uXbtGgCgSZMm5faXtpfuZ66xLJGpzm/evHkG22+88QY++OADTJ48uQZRqpPac8tUbDG31q5dCwAICQkx6hVQW8+t6s7X42whvyIiIpCcnIzc3FxcuHABycnJaNSoEaKioqDRVP26hrXnl5zxu7u7Y9OmTRgzZgx69eqF7t27o3HjxkhLS8Pp06cREhKCrVu3yha7tZFzrn18fPDzzz/j6tWrZfpKSkpw/fp1AMCVK1dqGC2VsvbfcaLqKF0zDBs2TOFIao53JMio9GO/XFxcyu2vU6eOwX7mGssSyX1+oaGh2L17N65evYq8vDwkJSVh9uzZ0Ol0ePXVVxEdHS1L3Gqg9tySm63m1v79+7F582Y4ODjg3XffNeoYW86tmswXYFv5dejQIWzbtg07d+5EcnIynnzySURFRaFDhw5GHW/t+SV3/CNHjsSBAwfg5eWFEydOYPv27UhISED9+vXRt29feHl5yRO4FZJzrp977jkAwLZt28r0bd++HQ8fPgQA3L9/v0ax0u+s/XecyFgfffQRjhw5And3dyxYsEDpcGqMhQQZCSEAAJIkVdpv7rEskdzn98EHH2DEiBFo2rQpnJ2d0apVK6xevRobN24EAMyfP792AauI2nNLbraYWxcuXMDYsWMhhEBERIT+fXxVsdXcqul8AbaVX0eOHIEQAnfv3kVcXBxatGiB3r17Y9myZUYdb+35JXf8q1evRv/+/dGrVy8kJibiwYMHSExMRNeuXfHmm29i9OjRtY7ZWsk516+//jrc3NwQHx+PCRMm4PLly8jJycH27dvx+uuvw97+0c29xtxVQ5Wz9t9xImPExsZi1qxZkCQJn332GRo1aqR0SDXG//VkVLduXQC/v5/uj/Ly8gAArq6uZh3LEpnr/F599VXUr18fly5dQlpaWq3GUgu155a5qDW30tPTERISgrt372L27NmYNWuW0cfaYm7VZr4qo9b8Ah7dlt+zZ0/s378fHTp0wKJFi3D69Okqj7P2/JIz/tjYWMydOxdt27bFjh070Lp1a9SpUwetW7fGzp070a5dO+zatQuHDx+W7wSsiJxz3bhxY+zZsweenp7Ytm0bmjdvDg8PD7z44ot48sknMWnSJAAVP0OBjGftv+NEVUlMTMTw4cNRUFCAtWvXYsSIEUqHVCssJMioadOmAB4tLMtT2l66n7nGskTmOj+NRgN/f38AQEZGRq3GUgu155a5qDG3srOz0b9/f1y7dg0TJ07EqlWrqnW8reVWbeerMmrMrz9ycHDA6NGjIYQw6un51p5fcsb/r3/9CwAQFhZW5pVwOzs7hIWFAQC+++67moZr1eTOlT59+iA1NRUfffQRpk2bhunTp+Pzzz9HQkICcnJyADz6BAeqHWv/HSeqTGpqKgYOHIicnBwsXrwYM2bMUDqkWuPDFmVUejvr2bNny+0vbQ8KCjLrWJbInOd39+5dAKxgl1J7bpmTmnLr/v37GDRoEFJSUhAWFoZPP/20wttLK2JLuSXHfFVFTflVEW9vbwAw6lMqrD2/5Iy/9A+qevXqldtf2n7nzp1qx6kGpsgVd3d3vPbaawZtRUVFiI2NhUajQa9evWoYLZWy9t9xoorcuHED/fv3R2ZmJmbNmoW3335b6ZDkIUg2Op1OuLm5CQDi7NmzZfqDgoIEAJGQkFDlWDdu3BAajUY4OjqKmzdvGvTl5+cLHx8fodFoREZGhmzxm5Occ1WZpKQkIUmScHFxETqdrlZjWRoAwsnJqdrHqT23ylPTuaqMmnIrPz9f9OnTRwAQAwcOrPH52EpuyTVflVFTflVm/PjxAoCIiIiocl9rzy85r3vjxo0TAMS4cePK7R87dqwAIJYvX17ruK2RudYYW7duFQDE4MGDazWO2nB9Yh5yrW3S0tIEANGiRQsZolKn2sz1nTt3RGBgoAAgJk6cKEpKSmSOTjksJMhs4cKFAoDo1q2bePDggb599erVAoDo0aOHwf7r1q0TLVq0EAsWLCgz1pgxYwQA8fzzz4vCwkJ9+8yZMwUAMXbsWNOdiBnINVcHDx4UZ86cKTP+uXPnxDPPPCMAiJkzZ5rmJBRU1X9qtpxbf1TTubKF3CoqKhIjRowQAETPnj1Fbm5ulcfYcm7JOV+2kF9xcXHiyy+/NMgFIYQoKCgQH3zwgdBoNMLZ2Vlcu3ZN36fm/JLrurd7924BQNjZ2Ymvv/7aoC86OlpoNBqh0WhESkqK6U7Gwsm5Hjtz5kyZxf/hw4dF3bp1hVartel5Lg/XJ+ZRm3l+HAsJVavpXOfm5org4GABQLzwwguiqKjI1KGaFd/aILO33noLR44cwcmTJ9G8eXP07NkTV69exalTp+Dl5YUtW7YY7J+dnY2LFy+W+x7YNWvWID4+Hrt27ULLli3RsWNHJCcnIykpCf7+/vjnP/9prtMyCbnm6vvvv8eSJUvQrFkz+Pv7w8fHB2lpaTh79iyKiorw3HPPYfny5eY8NZPYt29fmY+VKygoQHBwsH570aJFGDJkCADbzi255soWcmv9+vXYs2cPgEe3mU+bNq3c/VatWqW/Dd2Wc0vO+bKF/EpNTcXEiRPh7e2NDh06wMvLC9nZ2Th//jwyMjKg1WqxdetWPPnkk/pj1Jxfcl33hg8fjlGjRmHHjh0IDQ1Fx44d8dRTTyEtLQ1nzpwBACxbtgwtWrQw27lZGjnXY88//zyKi4vRunVruLm54eLFi/jxxx/h7OyMnTt32vQ8A1yfmIuc87xp0yZs2rQJAKDT6QAAV69eNRhr48aNaN++veznYQ3kmuuFCxciPj4ednZ2sLe3x+TJk8v9eVu3bpX3BMyEhQSZabVaHDt2DMuXL0dUVBSio6Ph4eGB8ePH49133zVYLFXF29sbp0+fxttvv43o6Gjs2bMHDRo0wPTp07FkyRJ4enqa8ExMT665GjhwIK5fv47Tp0/j3Llz+O2331CvXj306NEDY8aMwcSJE2FnZ2fiszG9rKwsnDp1yqBNCGHQZsz7jAH155Zcc2ULuVX6PnwA+j+Qy7N48WL9H8aVUXtuyTlftpBfzz33HP7+978jNjYWiYmJyM7OhqOjI3x9fTFy5EjMnDkTAQEBRo9n7fkl13VPkiRs374dISEh2LZtGxITE/HTTz/B3d0dgwcPxowZMxASEmLis7Fscq7Hpk6diujoaJw6dQoPHjxAw4YN8Ze//AXz58+Hn5+fCc/COnB9Yh5yznN6enqZsfLz8w3a7t27V4torZtcc126ZiguLkZUVFSF+1lrIUESgh/KSkRERERERETG4cc/EhEREREREZHRWEggIiIiIiIiIqOxkEBERERERERERmMhgYiIiIiIiIiMxkICERERERERERmNhQQiIiIiIiIiMhoLCURERERERERkNBYSiIiIiIiIiMhoLCQQERERERERkdFYSCAiIiIiIiIio7GQQERERERERERGYyGBiIiIiIiIiIzGQgIRERERERERGY2FBCJSrbZt20KSJBw9elTpUIiIiFSL11si2yMJIYTSQRARye3q1avw9fWFu7s7bt26BQcHB6VDIiIiUh1eb4lsE+9IICJV2rt3LwBg8ODBXNQQERGZCK+3RLaJhQQiUqXShc2wYcMUjoSIiEi9eL0lsk0sJBCRRbl27RokSYIkSTh27Fil+77xxhuQJAnt27fH4+/Sunv3LuLi4uDo6IiQkBBZxyYiIlIDXm+JqDZYSCAii9K0aVO4u7sDAJKTkyvcLy0tDRs3bgQArFq1CpIk6fv27duHoqIi9O3bF/Xq1ZN1bCIiIjXg9ZaIaoOFBCKyOK1btwZQ+eIjPDwcBQUFGDJkCPr27WvQV9ltlrUdm4iISC14vSWimmIhgYgsTlBQEICKFx8JCQn46quvYGdnh5UrVxr06XQ6HDx4EJIkITQ0VNaxiYiI1ITXWyKqKRYSiMjiVPUqxptvvgkhBF599VU8++yzBn3//e9/8eDBA3Ts2BGNGjWSdWwiIiI14fWWiGqKhQQisjilr2LcuXMHmZmZBn1ff/014uLi4OrqiiVLlpQ5Njo6GkDFT4+uzdhERERqwustEdUUCwlEZHFat26tf+DS469kFBcXY/78+QCA+fPno0GDBgbHCSEQExMDABg+fLisYxMREakNr7dEVFMsJBCRxXF1dYWvry8Aw8XHp59+ipSUFDRu3BizZ88uc1xCQgIyMjLg7++PVq1ayTo2ERGR2vB6S0Q1xUICEVmkPz6k6cGDB1i8eDEAYOnSpXBxcSlzTGVPj67t2Fu3boUkSThy5AjeeustNG7cGK6urhgyZAhu3LgBAIiMjISfnx+0Wi26d++OCxculDvGt99+iwULFqBRo0ZwdnZGz549cfr0aWOmhYiISFa83hJRTdgrHQARUXmCgoKwd+9e/eIjIiICN2/eRJs2bTBu3Lhyj6nq/Zq1GbvU/Pnz4ezsjAULFiA9PR2RkZEYNWoUBgwYgN27d2PGjBn47bffsHLlSowaNQrnz58v87nY8+bNQ0lJCebOnYt79+5h/fr16Nu3L06dOsUHThERkVnxektENcFCAhFZpMdfxcjIyMDq1asBAKtWrYJGU/ZmqsuXL+PChQvw9vZG9+7dZR37cY6OjoiNjYWdnR0AoKCgAGvWrEFmZiaSkpLg7OwMANBqtQgPD8f333+Pbt26GYxx7949nDt3Dq6urgCAkSNHok2bNggPD9e/ykNERGQOvN4SUU3wrQ1EZJFKPzYqJycHU6ZMQW5uLgYNGoR+/fqVu3/pqyNDhw7VLzrkGvtxU6ZMMRi/S5cuAICxY8fqFzUAEBwcDABITU0tM8Zrr72mX9QAQGBgIAYOHIhDhw6hsLCwyhiIiIjkwustEdUECwlEZJGaN2+uXyjs27cPdnZ2iIiIqHB/Y9+vWZOxH9esWTODbXd3dwBA06ZNy22/c+dOmTFatmxZpq1FixbQ6XT6938SERGZA6+3RFQTLCQQkUXSaDQGT4KeNGlShU+GzsrKwsmTJ+Hs7IwBAwbIOvYfVfTqS0XtQgijxiUiIlICr7dEVBN8RgIRWSxjn6wcExODkpIS9OvXr9wnQNdmbFNISUlBaGioQdvFixfh5OSEhg0bKhQVERHZKl5viai6eEcCEVm90tsshw8frmwgRvr444+Rm5ur305KSsKhQ4cwYMAAODo6KhgZERFRxXi9JaJSvCOBiKxe9+7d0a5dO6Per2kJ6tWrh27dumHChAm4d+8e1q1bB61Wi/fee0/p0IiIiCrE6y0RlWIhgYis3rx585QOoVref/99HD16FCtXrsTdu3fRoUMHREZGIjAwUOnQiIiIKsTrLRGVkgSfTEJEZBZbt27FxIkTcezYMfTu3VvpcIiIiFSJ11si0+MzEoiIiIiIiIjIaCwkEBEREREREZHRWEggIiIiIiIiIqPxGQlEREREREREZDTekUBERERERERERmMhgYiIiIiIiIiMxkICERERERERERmNhQQiIiIiIiIiMhoLCURERERERERkNBYSiIiIiIiIiMhoLCQQERERERERkdFYSCAiIiIiIiIio7GQQERERERERERGYyGBiIiIiIiIiIzGQgIRERERERERGY2FBCIiIiIiIiIyGgsJRERERERERGQ0FhKIiIiIiIiIyGgsJBARERERERGR0VhIICIiIiIiIiKjsZBAREREREREREb7P+7yTeUGjYmPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np \n", + "import matplotlib.pyplot as plt \n", + "from scipy.integrate import simpson\n", + "\n", + "def Maxwell_speed(g):\n", + " #g = v/v_mp or v = g*v_mp\n", + " return 4/np.sqrt(np.pi)*g**2*np.exp(-g**2)\n", + "\n", + "v_rng = np.arange(0.99,1.01,0.0001)\n", + "prob = simpson(Maxwell_speed(v_rng),v_rng)\n", + "print(\"The fraction of molecules with speeds within 1 percent of v_mp is %1.4f.\" % prob)\n", + "\n", + "fig = plt.figure(figsize=(8,4),dpi=150)\n", + "ax1 = fig.add_subplot(121)\n", + "ax2 = fig.add_subplot(122)\n", + "ax_list = [ax1,ax2]\n", + "\n", + "g = np.arange(0, 3,0.01)\n", + "for i in range(0,2):\n", + " ax = ax_list[i]\n", + " ax.plot(g,Maxwell_speed(g),'k-',lw=1.5)\n", + " ax.axvline(2/np.sqrt(np.pi),0,Maxwell_speed(2/np.sqrt(np.pi)),color='b',linestyle='--',label='$\\\\overline{v}$')\n", + " ax.axvline(np.sqrt(1.5),0,Maxwell_speed(np.sqrt(1.5)),color='r',linestyle='--',label='$v_{\\\\rm rms}$')\n", + " ax.axvline(1,0,Maxwell_speed(1),color='orange',linestyle='--',label='$v_{\\\\rm mp}$')\n", + " ax.fill_between(v_rng,0,Maxwell_speed(v_rng),color='gray')\n", + "\n", + " ax.legend(loc='best',ncols=3,fontsize='large')\n", + " \n", + " ax.set_xlabel(\"$v/v_{\\\\rm mp}$\",fontsize='large')\n", + " ax.set_ylim(0.,1)\n", + "\n", + "ax1.set_ylabel(\"$F(v/v_{\\\\rm mp})$\")\n", + "ax1.set_xlim(0,3)\n", + "ax2.set_xlim(0.75,1.25)\n", + "ax2.set_title(\"Zoomed $x$\")\n", + "ax2.set_yticklabels([])\n", + "\n", + "fig.subplots_adjust(wspace=0.05);\n" ] }, { diff --git a/docs/Chapter_8/statistical-physics.html b/docs/Chapter_8/statistical-physics.html index f9a0e65..dbcc7b2 100644 --- a/docs/Chapter_8/statistical-physics.html +++ b/docs/Chapter_8/statistical-physics.html @@ -537,18 +537,18 @@

8.2. Maxwell Velocity Distribution

where \(d^3\vec{v} = dv_x\ dv_y\ dv_z\), or a volume element in the phase space. The product of a velocity distribution funciton with a phase space volume plays a role analogous to the probability density \(\Psi^*\Psi\) in quantum theory.

Maxwell proved that the probability distribution funciton is proportional to \(e^{-mv^2/(2kT)}\), where \(m\) is the molecular mass, \(v\) is the molecular speed, \(k\) is Boltzmann’s constant, and \(T\) is the absolute temperature. Then, we may write

-
-(8.1)#\[\begin{align} +
+(8.1)#\[\begin{align} f(\vec{v})\ d^3\vec{v} = Ce^{-\frac{1}{2}\beta mv^2}\ d^3\vec{v}, \end{align}\]

where \(C\) is aproportionality factor and \(\beta \equiv (kT)^{-1}\); not to be confused with \(\beta = v/c\) from relativity. We can expand the above expression as

-
-(8.2)#\[\begin{align} +
+(8.2)#\[\begin{align} f(\vec{v})\ d^3\vec{v} = Ce^{-\frac{1}{2}\beta m(v_x^2+v_y^2+v_z^2)}\ d^3\vec{v}, \end{align}\]

and use the properties of exponents to rewrite as three factors that each contain one of the three velocity components. They are defined as

-
-(8.3)#\[\begin{align} +
+(8.3)#\[\begin{align} g(v_x)\ dv_x &\equiv C^\prime e^{-\frac{1}{2}\beta mv_x^2}\ dv_x, \\ g(v_y)\ dv_y &\equiv C^\prime e^{-\frac{1}{2}\beta mv_y^2}\ dv_y, \\ g(v_z)\ dv_z &\equiv C^\prime e^{-\frac{1}{2}\beta mv_z^2}\ dv_z, @@ -595,24 +595,24 @@

8.2. Maxwell Velocity Distribution

Recalling that \(a=\beta m/2\), we have

-
-(8.6)#\[\begin{align} +
+(8.6)#\[\begin{align} C^\prime &= \frac{1}{2}\sqrt{\frac{4a}{\pi}}, \\ &= \frac{1}{2}\sqrt{\frac{2\beta m}{\pi}} = \sqrt{\frac{\beta m}{2\pi}}, \end{align}\]

and

-
-(8.7)#\[\begin{align} +
+(8.7)#\[\begin{align} g(v_x)\ dv_x = \sqrt{\frac{\beta m}{2\pi}} e^{-\frac{1}{2}\beta mv_x^2}\ dv_x. \end{align}\]

With this distribution we can calculate \(\bar{v}_x\) (mean value of \(v_x\)) as

-
-(8.8)#\[\begin{align} +
+(8.8)#\[\begin{align} \bar{v}_x = \int_{-\infty}^\infty v_x\ g(v_x)\ dv_x = C^\prime \int_{-\infty}^\infty v_x e^{-\frac{1}{2}\beta mv_x^2}\ dv_x = 0 \end{align}\]

because \(v_x\) is an odd function. The result makes sense because in a random distribution of velocities one woul expect the velocity components to be evenly distributed about \(v_x = 0\). The mean value of \(v_x^2\) is

-
-(8.9)#\[\begin{align} +
+(8.9)#\[\begin{align} \bar{v}_x^2 &= \int_{-\infty}^\infty v_x^2\ g(v_x)\ dv_x, \\ &= 2C^\prime \int_{0}^\infty v_x^2 e^{-\frac{1}{2}\beta mv_x^2}\ dv_x. \end{align}\]
@@ -627,14 +627,14 @@

8.2. Maxwell Velocity Distribution

Alternatively, one could use an integral table with exponential functions. The final result via substitution is

-
-(8.10)#\[\begin{align} +
+(8.10)#\[\begin{align} \bar{v}_x^2 &= 2C^\prime I_2 = 2 \left(\frac{\beta m}{2\pi}\right)^{1/2} \frac{\sqrt{\pi}}{4}\left(\frac{2}{\beta m}\right)^{3/2}, \\ &= \frac{1}{\beta m} = \frac{kT}{m}. \end{align}\]

There’s nothing special about the \(x\)-direction, so the results for the \(x\)-, \(y\)-, and \(z\)-velocity components are identical. The three components can be summed to find the mean translational kinetic energy \(\overline{K}\) of a molecule:

-
-(8.11)#\[\begin{align} +
+(8.11)#\[\begin{align} \overline{K} = \frac{1}{2}m \left(\bar{v}_x^2 + \bar{v}_y^2 + \bar{v}_z^2\right) = \frac{1}{2}m \left(\frac{3kT}{m}\right) = \frac{3}{2}kT. \end{align}\]

This is one of the principal results of kinetic theory.

@@ -692,7 +692,7 @@

8.3. Equipartition Theorem\(\frac{3}{2}kT\). In a monatomic gas (e.g., \(\rm He\) or \(\rm Ar\)), virtually all of the energy is in the translational kinetic energy.

Consider a diatomic gas (e.g., \(\rm O_2\)) as two atoms connected by a massless rod (i.e., a rigid rotator). Then the molecule can have rotational kinetic energy in addtion to translational kinetic energy. The crucial questions are:

    @@ -713,7 +713,7 @@

    8.3. Equipartition Theorem\((K_x\ \text{or}\ K_y)\) is quadratic in angular velocity, so the equipartition theorem instructs us to add \(2\left(\frac{1}{2}kT\right) = kT\) per molecule to the translational kinetic energy for a total of \(\frac{5}{2}kT\).

    Sometimes it is a better approximation to think of atoms connected by a massless spring rather than a rigid rod. In this model, we use the potential energy of a spring but in radial coordinates:

    @@ -828,6 +828,260 @@

    8.3. Equipartition Theorem

    8.4. Maxwell Speed Distribution#

    +

    The general form of the Maxwell velocity distribution is given as

    +
    +\[\begin{align*} +f(\vec{v})\ d^3\vec{v} = C e^{-\frac{1}{2}\beta m v^2}\ d^3\vec{v}, +\end{align*}\]
    +

    where \(C = {C^\prime}^3 = \left(\frac{\beta m}{2\pi}\right)^{3/2}\).

    +

    The distribution \(f(\vec{v})\) is a function of the speed \(v\) in the exponent and not the velocity \(\vec{v}\), but it is still a velocity distribution due to the phase space volume element \(d^3\vec{v}\). We can turn this velocity distribution into a speed distribution \(F(v)\) using the definition

    +
    +\[\begin{align*} +F(v)\ dv =& \text{ probability of finding a particle } \\ +& \text{ with speed between } v\ \text{and}\ v + dv. +\end{align*}\]
    +

    Consider the analogous problem in 3-D position space \((x,\ y,\ z)\). Some distribution of particles exist, where a particle can be located with \((x,\ y,\ z)\) with a distance \(r = \sqrt{x^2+ y^2 + z^2}\) from the origin and has a position vector \(\vec{r}\) measured relative to the origin. Then

    +
    +\[\begin{align*} +f(x,\ y,\ z)\ d^3\vec{r} = & \text{ probability of finding a particle} \\ +& \text{ between }\vec{r}\ \text{and}\ \vec{r} + d^3\vec{r}, +\end{align*}\]
    +

    with \(d^3\vec{r} = dx\ dy\ dz\). To shift to the scalar radial distribution we introduce the definition

    +
    +\[\begin{align*} +F(r)dr = & \text{ probability of finding a particle} \\ +& \text{ between }r\ \text{and}\ r + dr. +\end{align*}\]
    +

    The space between \(r\) and \(r+dr\) is a spherical shell, and thus, we must integrate over that volume to transform to the radial distribution. These two distributions are related by the volume of spherical shell, or \(4\pi r^2\). We may write

    +
    +(8.12)#\[\begin{align} +F(r)dr = f(x,\ y,\ z) 4\pi r^2\ dr. +\end{align}\]
    +

    Returning to the problem of the speed distribution \(F(v)\) from the velocity distribution \(f(\vec{v})\). We need to integrate over a spherical shell in the velocity phase space, where we replace \(r\rightarrow v\) from the previous example. The desired speed distribution is

    + +
    +(8.13)#\[\begin{align} +F(v)\ dv = 4\pi Ce^{-\frac{1}{2}\beta m v^2}v^2\ dv. +\end{align}\]
    +

    The Maxwell speed distribution as derived from purely classical considerations, where it gives a nonzero probability of finding a particle with a speed greater than \(c\). Therefore, it is only valid in the classical limit.

    +

    The assymetry of the distribution curve leads to an interesting result:

    +
    +

    the most probable speed \(v_{\rm mp}\), the mean speed \(\bar{v}\), and the root-mean-square speed \(v_{\rm rms}\) are all slightly different from each other.

    +
    +

    To find the most probable speed, we simply find maximum speed in the probabilty curve, or

    +
    +(8.14)#\[\begin{align} +\frac{dF}{dv} &= 4\pi C \frac{d}{dv}\left[e^{-\frac{1}{2}\beta m v^2}v^2 \right], \\ +&= 2ve^{-\frac{1}{2}\beta m v^2} - \left(\beta m v\right)v^2 e^{-\frac{1}{2}\beta m v^2}. +\end{align}\]
    +

    Replacing \(v\rightarrow v_{\rm mp}\) to denote the most probable speed and setting the above result equal to zero, we can solve for \(v_{\rm mp}\):

    + +
    +(8.15)#\[\begin{align} +2v_{\rm mp}e^{-\frac{1}{2}\beta m v_{\rm mp}^2} &= \left(\beta m v_{\rm mp}\right)v_{\rm mp}^2 e^{-\frac{1}{2}\beta m v_{\rm mp}^2}, \\ +v_{\rm mp} &= \sqrt{\frac{2}{\beta m}} = \sqrt{\frac{2kT}{m}}. +\end{align}\]
    +

    A particle moving at the most probable speed has a kinetic energy \(K_{\rm mp} = \frac{1}{2}mv_{\rm mp}^2 = kT\).

    +

    The mean speed is found by integrating (summing up) the probabilities for individual speeds, or

    +
    +\[\begin{align*} +\bar{v} = \int_0^\infty vF(v)\ dv = 4\pi C \int_0^\infty v^3e^{-\frac{1}{2}\beta m v^2}dv. +\end{align*}\]
    +

    See a list of integrals containing exponential functions and using \((k=1,\ n=3,\ a=\beta m/2)\) to find

    + +
    +\[\begin{align*} +\bar{v} &= 4\pi C \left(\frac{1}{2(\beta m/2)^2}\right) = 8\pi \left(\frac{\beta m}{2\pi}\right)^{3/2} \left(\frac{1}{(\beta m)^2}\right), \\ + &= \frac{4}{\sqrt{2\pi}} \left(\frac{1}{\sqrt{\beta m}}\right), \\ &= \frac{2}{\sqrt{\pi}} \sqrt{\frac{2kT}{m}}, \\ + &= \frac{2}{\sqrt{\pi}} v_{\rm mp}. +\end{align*}\]
    +

    We define the root-mean-square \(v_{\rm rms}\) to be \( v_{\rm rms} \equiv \left(\overline{v^2}\right)^{1/2}\). We cannot simply use the result for the mean speed \(\bar{v}\) directly. Instead, we need to find the mean using the probability function \(F(v)\), or

    +
    +\[\begin{align*} +\overline{v^2} = \int_0^\infty v^2F(v)\ dv = 4\pi C \int_0^\infty v^4e^{-\frac{1}{2}\beta m v^2}dv. +\end{align*}\]
    +

    See a list of integrals containing exponential functions and using \((k=2,\ n=4,\ a=\beta m/2)\) to find

    +
    +(8.16)#\[\begin{align} +\overline{v^2} &= 4\pi C \int_0^\infty v^4e^{-\frac{1}{2}\beta m v^2}dv = 4\pi C \left(\frac{3!!}{8a^2}\sqrt{\frac{\pi}{a}}\right), \\ +&= 4\pi \left(\frac{\beta m}{2\pi}\right)^{3/2} \frac{3}{2(\beta m)^2} \sqrt{\frac{2\pi}{\beta m}}, \\ +&= \frac{3(\beta m)^{3/2}}{(\beta m)^{5/2} } = \frac{3}{\beta m}, \\ +&= \frac{3kT}{m}. +\end{align}\]
    +

    Then

    + +
    +(8.17)#\[\begin{align} +v_{\rm rms} = \left(\overline{v^2}\right)^{1/2} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3}{2}}v_{\rm mp}. +\end{align}\]
    +

    A particle moving with the mean squared speed has a kinetic energy

    +
    +\[ \overline{K} = \frac{1}{2}m\overline{v^2} = \frac{1}{2}m \left(\frac{3kT}{m}\right) = \frac{3}{2}kT \]
    +

    in keeping with our basic law of kinetic theory.

    +

    The standard deviation of the molecular speeds \(\sigma_v\) is

    +
    +(8.18)#\[\begin{align} +\sigma_v &= \left(\overline{v^2} - \bar{v}^2\right)^{1/2} = \left(\frac{3kT}{m} - \frac{8kT}{m\pi}\right)^{1/2}, \\ +&= \left[\frac{(3\pi-8)kT}{m\pi}\right]^{1/2},\\ +&= \left[3-\left(\frac{8}{\pi}\right)\right]^{1/2} \sqrt{\frac{kT}{m}}, \\ +&= \left[\frac{3}{2}-\left(\frac{8}{2\pi}\right)\right]^{1/2} v_{\rm mp}. +\end{align}\]
    +
    + +

    Exercise 8.3

    +
    +

    Computre the mean molecular speed \(\bar{v}\) in hydrogen \(({\rm H_2})\) and radon \(({\rm Rn})\) gas, both at room temperature \(293\ {\rm K}\). Use the longest-lived radon isotope, which has a molar mass of \(222\ {\rm u}\). Compare the results.

    +

    The mean molecular speed is given by

    +
    +\[ \bar{v} = \frac{2}{\sqrt{\pi}} \sqrt{\frac{2kT}{m}}, \]
    +

    which can be applied to each type of gas. The only difference between results will be due to the molar mass \(m\). The molar mass of \(\rm H_2\) is \(2.01568\ {\rm u}\), which is found by multiplying the mass of hydrogen by two. The conversion from atomic mass units \({\rm u}\) to \(\rm kg\) is \(1.660539 \times 10^{-27}\ {\rm kg/u}\). Let’s re-write the mean molecular speed so that all the physical constants are combined and so that we can use atomic mass units directly. This gives

    +
    +(8.19)#\[\begin{align} +\bar{v} = \left(2\sqrt{\frac{2k}{\pi u}}\right)\sqrt{\frac{T\ \text{(in K)}}{m\ \text{(in u)}}} = 145.5081\sqrt{\frac{T}{m}}. +\end{align}\]
    +

    Then, we compute the mean molecular speed for molecular hydrogen \(\rm H_2\) as

    +
    +\[ \bar{v}_{\rm H_2} = 145.5081\sqrt{\frac{293}{2.01568}} = 1750\ {\rm m/s}.\]
    +

    The mean molecular speed for radon \({\rm Rn}\) can be calculated a mass ratio because the temperature is the same in both cases. From this method we find that the mean speed is:

    +
    +\[ \bar{v}_{\rm Rn} = \sqrt{\frac{2.01568}{222}}\bar{v}_{\rm H_2} = 166\ {\rm m/s}.\]
    +

    The hydrogen molecule is \({\sim}10\times\) faster on average. That’s to be expected because the mass ratio \((m_{\rm Rn}/m_{\rm H_2}) \sim \sqrt{100} = 10.\)

    +
    +
    +
    +
    +
    import numpy as np
    +from scipy.constants import physical_constants 
    +
    +def mean_molecular_speed(T,m):
    +    #T = absolute temperature in K
    +    #m = molar mass in u
    +    return (2/np.sqrt(np.pi))*np.sqrt((2*k*T)/(m*u))
    +
    +k = physical_constants['Boltzmann constant'][0]
    +u = physical_constants['atomic mass constant'][0]
    +mean_speed_constant = 2/np.sqrt(np.pi)*np.sqrt(2*k/u)
    +
    +T = 293 #room temperature in K
    +m_H2 = 2.01568 #molar mass in u
    +m_Rn = 222 #molar mass in u
    +mass_ratio = m_Rn/m_H2
    +
    +v_H2 = np.round(mean_molecular_speed(T,m_H2),-1)
    +v_H2_constant = np.round(mean_speed_constant*np.sqrt(T/m_H2),-1)
    +
    +print("----For hydrogen-----")
    +print("The mean molecular speed of molecular hydrogen (H_2) is %i m/s." % v_H2)
    +print("The mean molecular speed using our simplified equation is %i m/s." % v_H2_constant)
    +
    +print("----For radon-----")
    +v_Rn = v_H2/np.sqrt(mass_ratio)
    +print("The mean molecular speed of radon gas (Rn) is %i m/s." % v_Rn)
    +print("The mass ratio (m_Rn/m_H2) is %i and the ratio of speeds (v_H2/v_Rn) is %1.1f." % (mass_ratio, np.sqrt(mass_ratio)))
    +
    +
    +
    +
    +
    ----For hydrogen-----
    +The mean molecular speed of molecular hydrogen (H_2) is 1750 m/s.
    +The mean molecular speed using our simplified equation is 1750 m/s.
    +----For radon-----
    +The mean molecular speed of radon gas (Rn) is 166 m/s.
    +The mass ratio (m_Rn/m_H2) is 110 and the ratio of speeds (v_H2/v_Rn) is 10.5.
    +
    +
    +
    +
    +
    + +

    Exercise 8.4

    +
    +

    What fraction of the molecules in an ideal gas in equilibrium has speeds with \(\pm1\%\) of the most probable speed \(v_{\rm mp}\)?

    +

    The Maxwell speed distribution function provides the probability of finding a particle within an interval of speeds. The fraction of molecules within the a given speed interval is equal to the integrated probability over the interval. Mathematically, this is expressed by the number of molecules at a particular speed \(N(v)\):

    +
    +(8.20)#\[\begin{align} +P(\pm1\%) = \frac{N(1.01v_{\rm mp})-N(0.99v_{\rm mp})}{N} = \int_{0.99v_{\rm mp}}^{1.01v_{\rm mp}} F(v)dv. +\end{align}\]
    +

    The indefinite integral introduces the error function, which is beyond the scope of this course. However, we can obtain an approximate solution by calculating \(F(v_{\rm mp})\) and multiplying by \(dv \approx \Delta v = 0.02v_{\rm mp}\). This solution works for a small window, where wider intervals are easily evaluated using numerical methods (e.g., Simpson’s rule).

    +

    Recall the most probable speed \(v_{\rm mp} = \sqrt{\frac{2}{\beta m}}\) and substitute to get

    +
    +\[\begin{align*} +F(v_{\rm mp}) &= 4\pi \left(\frac{\beta m}{2\pi}\right)^{3/2} v_{\rm mp}^2 e^{-\frac{1}{2}\beta m v_{\rm mp}^2}, \\ +&= 4\pi \sqrt{\frac{\beta m}{2\pi}}\left(\frac{\beta m}{2\pi}\right) \left(\frac{2}{\beta m}\right) e^{-\frac{1}{2}\beta m \frac{2}{\beta m}}, \\ +&= \frac{4}{e} \sqrt{\frac{\beta m}{2\pi}}. +\end{align*}\]
    +

    Then applying our approximation

    +
    +\[\begin{align*} +P(\pm1\%) &= F(v_{\rm mp})(0.02v_{\rm mp}),\\ +&= \frac{4}{e} \sqrt{\frac{\beta m}{2\pi}} (0.02) \sqrt{\frac{2}{\beta m}}, \\ +&= \frac{4}{\sqrt{\pi}}(0.02 e^{-1}) \approx 0.017. +\end{align*}\]
    +

    The python code plots the Maxwell speed distribution for an ideal gas using \(g=v/v_{\rm mp}\) for the \(x\)-axis coordinate, where the vertical lines denote the mean, root-mean-squared, and most probable speeds. It also numerically calculates (via Simpson’s rule) the proability and finds good agreement with our approximation (\(0.0166\)).

    +
    +
    +
    +
    +
    import numpy as np 
    +import matplotlib.pyplot as plt 
    +from scipy.integrate import simpson
    +
    +def Maxwell_speed(g):
    +    #g = v/v_mp or v = g*v_mp
    +    return 4/np.sqrt(np.pi)*g**2*np.exp(-g**2)
    +
    +v_rng = np.arange(0.99,1.01,0.0001)
    +prob = simpson(Maxwell_speed(v_rng),v_rng)
    +print("The fraction of molecules with speeds within 1 percent of v_mp is %1.4f." % prob)
    +
    +fig = plt.figure(figsize=(8,4),dpi=150)
    +ax1 = fig.add_subplot(121)
    +ax2 = fig.add_subplot(122)
    +ax_list = [ax1,ax2]
    +
    +g = np.arange(0, 3,0.01)
    +for i in range(0,2):
    +    ax = ax_list[i]
    +    ax.plot(g,Maxwell_speed(g),'k-',lw=1.5)
    +    ax.axvline(2/np.sqrt(np.pi),0,Maxwell_speed(2/np.sqrt(np.pi)),color='b',linestyle='--',label='$\\overline{v}$')
    +    ax.axvline(np.sqrt(1.5),0,Maxwell_speed(np.sqrt(1.5)),color='r',linestyle='--',label='$v_{\\rm rms}$')
    +    ax.axvline(1,0,Maxwell_speed(1),color='orange',linestyle='--',label='$v_{\\rm mp}$')
    +    ax.fill_between(v_rng,0,Maxwell_speed(v_rng),color='gray')
    +
    +    ax.legend(loc='best',ncols=3,fontsize='large')
    +    
    +    ax.set_xlabel("$v/v_{\\rm mp}$",fontsize='large')
    +    ax.set_ylim(0.,1)
    +
    +ax1.set_ylabel("$F(v/v_{\\rm mp})$")
    +ax1.set_xlim(0,3)
    +ax2.set_xlim(0.75,1.25)
    +ax2.set_title("Zoomed $x$")
    +ax2.set_yticklabels([])
    +
    +fig.subplots_adjust(wspace=0.05);
    +
    +
    +
    +
    +
    The fraction of molecules with speeds within 1 percent of v_mp is 0.0166.
    +
    +
    +../_images/6acf80a5a688a4dcf9eb28c4fa3d9c1bef4f9bfe57f9c3560e061b385bd84126.png +
    +

    8.5. Classical and Quantum Statistics#

    diff --git a/docs/_images/57e9d47a126527075e8ffb05fa67e6c5d88de367cc7c80c7c5f2c58856f3fd52.png b/docs/_images/57e9d47a126527075e8ffb05fa67e6c5d88de367cc7c80c7c5f2c58856f3fd52.png new file mode 100644 index 0000000..3abb6a6 Binary files /dev/null and b/docs/_images/57e9d47a126527075e8ffb05fa67e6c5d88de367cc7c80c7c5f2c58856f3fd52.png differ diff --git a/docs/_images/6acf80a5a688a4dcf9eb28c4fa3d9c1bef4f9bfe57f9c3560e061b385bd84126.png b/docs/_images/6acf80a5a688a4dcf9eb28c4fa3d9c1bef4f9bfe57f9c3560e061b385bd84126.png new file mode 100644 index 0000000..2d13150 Binary files /dev/null and b/docs/_images/6acf80a5a688a4dcf9eb28c4fa3d9c1bef4f9bfe57f9c3560e061b385bd84126.png differ diff --git a/docs/_sources/Chapter_8/statistical-physics.ipynb b/docs/_sources/Chapter_8/statistical-physics.ipynb index 42609d9..41ef520 100644 --- a/docs/_sources/Chapter_8/statistical-physics.ipynb +++ b/docs/_sources/Chapter_8/statistical-physics.ipynb @@ -265,7 +265,7 @@ "Similarly, there is an average energy associated with the other two velocity components, which produces a net average energy per molecule of $\\frac{3}{2}kT$. In a monatomic gas (e.g., $\\rm He$ or $\\rm Ar$), virtually all of the energy is in the translational kinetic energy.\n", "\n", "```{margin}\n", - "Rigid rotator model\n", + "**Rigid rotator model**\n", "```\n", "\n", "**Consider a diatomic gas (e.g., $\\rm O_2$) as two atoms connected by a massless rod (i.e., a rigid rotator).** Then the molecule can have *rotational* kinetic energy in addtion to translational kinetic energy. The crucial questions are:\n", @@ -289,7 +289,7 @@ "Each of these rotational energies $(K_x\\ \\text{or}\\ K_y)$ is quadratic in angular velocity, so the equipartition theorem instructs us to add $2\\left(\\frac{1}{2}kT\\right) = kT$ per molecule to the translational kinetic energy for a total of $\\frac{5}{2}kT$.\n", "\n", "```{margin}\n", - "Spring model\n", + "**Spring model**\n", "```\n", "\n", "Sometimes it is a better approximation to think of atoms connected by a massless spring rather than a rigid rod. In this model, we use the potential energy of a spring but in radial coordinates:\n", @@ -377,7 +377,321 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Maxwell Speed Distribution" + "## Maxwell Speed Distribution\n", + "\n", + "The general form of the Maxwell velocity distribution is given as\n", + "\n", + "\\begin{align*}\n", + "f(\\vec{v})\\ d^3\\vec{v} = C e^{-\\frac{1}{2}\\beta m v^2}\\ d^3\\vec{v},\n", + "\\end{align*}\n", + "\n", + "where $C = {C^\\prime}^3 = \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2}$.\n", + "\n", + "The distribution $f(\\vec{v})$ is a function of the speed $v$ in the exponent and not the velocity $\\vec{v}$, but it is still a velocity distribution due to the phase space volume element $d^3\\vec{v}$. We can turn this velocity distribution into a speed distribution $F(v)$ using the definition\n", + "\n", + "\\begin{align*} \n", + "F(v)\\ dv =& \\text{ probability of finding a particle } \\\\ \n", + "& \\text{ with speed between } v\\ \\text{and}\\ v + dv.\n", + "\\end{align*}\n", + "\n", + "**Consider the analogous problem in 3-D position space $(x,\\ y,\\ z)$.** Some distribution of particles exist, where a particle can be located with $(x,\\ y,\\ z)$ with a distance $r = \\sqrt{x^2+ y^2 + z^2}$ from the origin and has a position vector $\\vec{r}$ measured relative to the origin. Then\n", + "\n", + "\\begin{align*}\n", + "f(x,\\ y,\\ z)\\ d^3\\vec{r} = & \\text{ probability of finding a particle} \\\\\n", + "& \\text{ between }\\vec{r}\\ \\text{and}\\ \\vec{r} + d^3\\vec{r},\n", + "\\end{align*}\n", + "\n", + "with $d^3\\vec{r} = dx\\ dy\\ dz$. To shift to the scalar *radial* distribution we introduce the definition \n", + "\n", + "\\begin{align*}\n", + "F(r)dr = & \\text{ probability of finding a particle} \\\\\n", + "& \\text{ between }r\\ \\text{and}\\ r + dr.\n", + "\\end{align*}\n", + "\n", + "The space between $r$ and $r+dr$ is a *spherical shell*, and thus, we must integrate over that volume to transform to the radial distribution. These two distributions are related by the volume of spherical shell, or $4\\pi r^2$. We may write\n", + "\n", + "\\begin{align}\n", + "F(r)dr = f(x,\\ y,\\ z) 4\\pi r^2\\ dr.\n", + "\\end{align}\n", + "\n", + "Returning to the problem of the speed distribution $F(v)$ from the velocity distribution $f(\\vec{v})$. We need to integrate over a spherical shell in the velocity phase space, where we replace $r\\rightarrow v$ from the previous example. The desired speed distribution is\n", + "\n", + "```{margin}\n", + "**Maxwell speed distribution**\n", + "```\n", + "\n", + "\\begin{align}\n", + "F(v)\\ dv = 4\\pi Ce^{-\\frac{1}{2}\\beta m v^2}v^2\\ dv.\n", + "\\end{align}\n", + "\n", + "The Maxwell speed distribution as derived from purely classical considerations, where it gives a nonzero probability of finding a particle with a speed greater than $c$. Therefore, it is only valid in the classical limit.\n", + "\n", + "The assymetry of the distribution curve leads to an interesting result:\n", + "\n", + "> the most probable speed $v_{\\rm mp}$, the mean speed $\\bar{v}$, and the root-mean-square speed $v_{\\rm rms}$ are all slightly different from each other.\n", + "\n", + "To find the most probable speed, we simply find *maximum* speed in the probabilty curve, or\n", + "\n", + "\\begin{align}\n", + "\\frac{dF}{dv} &= 4\\pi C \\frac{d}{dv}\\left[e^{-\\frac{1}{2}\\beta m v^2}v^2 \\right], \\\\\n", + "&= 2ve^{-\\frac{1}{2}\\beta m v^2} - \\left(\\beta m v\\right)v^2 e^{-\\frac{1}{2}\\beta m v^2}.\n", + "\\end{align}\n", + "\n", + "Replacing $v\\rightarrow v_{\\rm mp}$ to denote the *most probable* speed and setting the above result equal to zero, we can solve for $v_{\\rm mp}$:\n", + "\n", + "```{margin}\n", + "**Most probable speed $v_{\\rm mp}$**\n", + "```\n", + "\n", + "\\begin{align}\n", + "2v_{\\rm mp}e^{-\\frac{1}{2}\\beta m v_{\\rm mp}^2} &= \\left(\\beta m v_{\\rm mp}\\right)v_{\\rm mp}^2 e^{-\\frac{1}{2}\\beta m v_{\\rm mp}^2}, \\\\\n", + "v_{\\rm mp} &= \\sqrt{\\frac{2}{\\beta m}} = \\sqrt{\\frac{2kT}{m}}.\n", + "\\end{align}\n", + "\n", + "A particle moving at the most probable speed has a kinetic energy $K_{\\rm mp} = \\frac{1}{2}mv_{\\rm mp}^2 = kT$.\n", + "\n", + "The *mean speed* is found by integrating (summing up) the probabilities for individual speeds, or\n", + "\n", + "\\begin{align*}\n", + "\\bar{v} = \\int_0^\\infty vF(v)\\ dv = 4\\pi C \\int_0^\\infty v^3e^{-\\frac{1}{2}\\beta m v^2}dv.\n", + "\\end{align*}\n", + "\n", + "See a list of [integrals containing exponential functions](https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions) and using $(k=1,\\ n=3,\\ a=\\beta m/2)$ to find\n", + "\n", + "```{margin}\n", + "**Mean speed $\\bar{v}$**\n", + "```\n", + "\n", + "\\begin{align*}\n", + "\\bar{v} &= 4\\pi C \\left(\\frac{1}{2(\\beta m/2)^2}\\right) = 8\\pi \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2} \\left(\\frac{1}{(\\beta m)^2}\\right), \\\\\n", + " &= \\frac{4}{\\sqrt{2\\pi}} \\left(\\frac{1}{\\sqrt{\\beta m}}\\right), \\\\ &= \\frac{2}{\\sqrt{\\pi}} \\sqrt{\\frac{2kT}{m}}, \\\\\n", + " &= \\frac{2}{\\sqrt{\\pi}} v_{\\rm mp}.\n", + "\\end{align*}\n", + "\n", + "We define the **root-mean-square** $v_{\\rm rms}$ to be $ v_{\\rm rms} \\equiv \\left(\\overline{v^2}\\right)^{1/2}$. We cannot simply use the result for the mean speed $\\bar{v}$ directly. Instead, we need to find the mean using the probability function $F(v)$, or\n", + "\n", + "\\begin{align*}\n", + "\\overline{v^2} = \\int_0^\\infty v^2F(v)\\ dv = 4\\pi C \\int_0^\\infty v^4e^{-\\frac{1}{2}\\beta m v^2}dv.\n", + "\\end{align*}\n", + "\n", + "See a list of [integrals containing exponential functions](https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions) and using $(k=2,\\ n=4,\\ a=\\beta m/2)$ to find\n", + "\n", + "\\begin{align}\n", + "\\overline{v^2} &= 4\\pi C \\int_0^\\infty v^4e^{-\\frac{1}{2}\\beta m v^2}dv = 4\\pi C \\left(\\frac{3!!}{8a^2}\\sqrt{\\frac{\\pi}{a}}\\right), \\\\\n", + "&= 4\\pi \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2} \\frac{3}{2(\\beta m)^2} \\sqrt{\\frac{2\\pi}{\\beta m}}, \\\\\n", + "&= \\frac{3(\\beta m)^{3/2}}{(\\beta m)^{5/2} } = \\frac{3}{\\beta m}, \\\\\n", + "&= \\frac{3kT}{m}.\n", + "\\end{align}\n", + "\n", + "Then\n", + "\n", + "```{margin}\n", + "**Root-mean-square speed $v_{\\rm rms}$**\n", + "```\n", + "\n", + "\\begin{align}\n", + "v_{\\rm rms} = \\left(\\overline{v^2}\\right)^{1/2} = \\sqrt{\\frac{3kT}{m}} = \\sqrt{\\frac{3}{2}}v_{\\rm mp}.\n", + "\\end{align}\n", + "\n", + "A particle moving with the mean squared speed has a kinetic energy \n", + "\n", + "$$ \\overline{K} = \\frac{1}{2}m\\overline{v^2} = \\frac{1}{2}m \\left(\\frac{3kT}{m}\\right) = \\frac{3}{2}kT $$\n", + "\n", + "in keeping with our basic law of kinetic theory.\n", + "\n", + "The **standard deviation** of the molecular speeds $\\sigma_v$ is \n", + "\n", + "\\begin{align}\n", + "\\sigma_v &= \\left(\\overline{v^2} - \\bar{v}^2\\right)^{1/2} = \\left(\\frac{3kT}{m} - \\frac{8kT}{m\\pi}\\right)^{1/2}, \\\\\n", + "&= \\left[\\frac{(3\\pi-8)kT}{m\\pi}\\right]^{1/2},\\\\\n", + "&= \\left[3-\\left(\\frac{8}{\\pi}\\right)\\right]^{1/2} \\sqrt{\\frac{kT}{m}}, \\\\\n", + "&= \\left[\\frac{3}{2}-\\left(\\frac{8}{2\\pi}\\right)\\right]^{1/2} v_{\\rm mp}.\n", + "\\end{align}\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{exercise}\n", + ":class: orange\n", + "\n", + "**Computre the mean molecular speed $\\bar{v}$ in hydrogen $({\\rm H_2})$ and radon $({\\rm Rn})$ gas, both at room temperature $293\\ {\\rm K}$. Use the longest-lived radon isotope, which has a molar mass of $222\\ {\\rm u}$. Compare the results.**\n", + "\n", + "The mean molecular speed is given by \n", + "\n", + "$$ \\bar{v} = \\frac{2}{\\sqrt{\\pi}} \\sqrt{\\frac{2kT}{m}}, $$\n", + "\n", + "which can be applied to each type of gas. The only difference between results will be due to the molar mass $m$. The molar mass of $\\rm H_2$ is $2.01568\\ {\\rm u}$, which is found by multiplying the mass of hydrogen by two. The conversion from atomic mass units ${\\rm u}$ to $\\rm kg$ is $1.660539 \\times 10^{-27}\\ {\\rm kg/u}$. Let's re-write the mean molecular speed so that all the physical constants are combined and so that we can use atomic mass units directly. This gives\n", + "\n", + "\\begin{align}\n", + "\\bar{v} = \\left(2\\sqrt{\\frac{2k}{\\pi u}}\\right)\\sqrt{\\frac{T\\ \\text{(in K)}}{m\\ \\text{(in u)}}} = 145.5081\\sqrt{\\frac{T}{m}}.\n", + "\\end{align}\n", + "\n", + "Then, we compute the mean molecular speed for molecular hydrogen $\\rm H_2$ as\n", + "\n", + "$$ \\bar{v}_{\\rm H_2} = 145.5081\\sqrt{\\frac{293}{2.01568}} = 1750\\ {\\rm m/s}.$$\n", + "\n", + "The mean molecular speed for radon ${\\rm Rn}$ can be calculated a mass ratio because the temperature is the same in both cases. From this method we find that the mean speed is:\n", + "\n", + "$$ \\bar{v}_{\\rm Rn} = \\sqrt{\\frac{2.01568}{222}}\\bar{v}_{\\rm H_2} = 166\\ {\\rm m/s}.$$\n", + "\n", + "The hydrogen molecule is ${\\sim}10\\times$ faster on average. That's to be expected because the mass ratio $(m_{\\rm Rn}/m_{\\rm H_2}) \\sim \\sqrt{100} = 10.$\n", + "\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----For hydrogen-----\n", + "The mean molecular speed of molecular hydrogen (H_2) is 1750 m/s.\n", + "The mean molecular speed using our simplified equation is 1750 m/s.\n", + "----For radon-----\n", + "The mean molecular speed of radon gas (Rn) is 166 m/s.\n", + "The mass ratio (m_Rn/m_H2) is 110 and the ratio of speeds (v_H2/v_Rn) is 10.5.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from scipy.constants import physical_constants \n", + "\n", + "def mean_molecular_speed(T,m):\n", + " #T = absolute temperature in K\n", + " #m = molar mass in u\n", + " return (2/np.sqrt(np.pi))*np.sqrt((2*k*T)/(m*u))\n", + "\n", + "k = physical_constants['Boltzmann constant'][0]\n", + "u = physical_constants['atomic mass constant'][0]\n", + "mean_speed_constant = 2/np.sqrt(np.pi)*np.sqrt(2*k/u)\n", + "\n", + "T = 293 #room temperature in K\n", + "m_H2 = 2.01568 #molar mass in u\n", + "m_Rn = 222 #molar mass in u\n", + "mass_ratio = m_Rn/m_H2\n", + "\n", + "v_H2 = np.round(mean_molecular_speed(T,m_H2),-1)\n", + "v_H2_constant = np.round(mean_speed_constant*np.sqrt(T/m_H2),-1)\n", + "\n", + "print(\"----For hydrogen-----\")\n", + "print(\"The mean molecular speed of molecular hydrogen (H_2) is %i m/s.\" % v_H2)\n", + "print(\"The mean molecular speed using our simplified equation is %i m/s.\" % v_H2_constant)\n", + "\n", + "print(\"----For radon-----\")\n", + "v_Rn = v_H2/np.sqrt(mass_ratio)\n", + "print(\"The mean molecular speed of radon gas (Rn) is %i m/s.\" % v_Rn)\n", + "print(\"The mass ratio (m_Rn/m_H2) is %i and the ratio of speeds (v_H2/v_Rn) is %1.1f.\" % (mass_ratio, np.sqrt(mass_ratio)))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{exercise}\n", + ":class: orange\n", + "\n", + "**What fraction of the molecules in an ideal gas in equilibrium has speeds with $\\pm1\\%$ of the most probable speed $v_{\\rm mp}$?**\n", + "\n", + "The Maxwell speed distribution function provides the probability of finding a particle within an interval of speeds. The fraction of molecules within the a given speed interval is equal to the integrated probability over the interval. Mathematically, this is expressed by the number of molecules at a particular speed $N(v)$: \n", + "\n", + "\\begin{align}\n", + "P(\\pm1\\%) = \\frac{N(1.01v_{\\rm mp})-N(0.99v_{\\rm mp})}{N} = \\int_{0.99v_{\\rm mp}}^{1.01v_{\\rm mp}} F(v)dv.\n", + "\\end{align}\n", + "\n", + "The indefinite integral introduces the [error function](https://en.wikipedia.org/wiki/Error_function), which is beyond the scope of this course. However, we can obtain an approximate solution by calculating $F(v_{\\rm mp})$ and multiplying by $dv \\approx \\Delta v = 0.02v_{\\rm mp}$. This solution works for a small window, where wider intervals are easily evaluated using numerical methods (e.g., [Simpson's rule](https://saturnaxis.github.io/CompPhysics/Chapter_4/Integration.html#simpson-s-rule)).\n", + "\n", + "Recall the most probable speed $v_{\\rm mp} = \\sqrt{\\frac{2}{\\beta m}}$ and substitute to get\n", + "\n", + "\\begin{align*}\n", + "F(v_{\\rm mp}) &= 4\\pi \\left(\\frac{\\beta m}{2\\pi}\\right)^{3/2} v_{\\rm mp}^2 e^{-\\frac{1}{2}\\beta m v_{\\rm mp}^2}, \\\\\n", + "&= 4\\pi \\sqrt{\\frac{\\beta m}{2\\pi}}\\left(\\frac{\\beta m}{2\\pi}\\right) \\left(\\frac{2}{\\beta m}\\right) e^{-\\frac{1}{2}\\beta m \\frac{2}{\\beta m}}, \\\\\n", + "&= \\frac{4}{e} \\sqrt{\\frac{\\beta m}{2\\pi}}.\n", + "\\end{align*}\n", + "\n", + "Then applying our approximation\n", + "\n", + "\\begin{align*}\n", + "P(\\pm1\\%) &= F(v_{\\rm mp})(0.02v_{\\rm mp}),\\\\\n", + "&= \\frac{4}{e} \\sqrt{\\frac{\\beta m}{2\\pi}} (0.02) \\sqrt{\\frac{2}{\\beta m}}, \\\\\n", + "&= \\frac{4}{\\sqrt{\\pi}}(0.02 e^{-1}) \\approx 0.017.\n", + "\\end{align*}\n", + "\n", + "The python code plots the Maxwell speed distribution for an ideal gas using $g=v/v_{\\rm mp}$ for the $x$-axis coordinate, where the vertical lines denote the mean, root-mean-squared, and most probable speeds. It also numerically calculates (via Simpson's rule) the proability and finds good agreement with our approximation ($0.0166$).\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The fraction of molecules with speeds within 1 percent of v_mp is 0.0166.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBIAAAJVCAYAAABj1dYoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAACxA0lEQVR4nOzdd3gU5drH8d+mhwCh996ld+lFETj0piiWUCyIIHaKBY6KeFBRRI4eFWmCSq8qvXek904IvSSEkp55/+DNmJUEUnYzm833c117Mc+0vXeYZJ7c+xSbYRiGAAAAAAAAUsDD6gAAAAAAAEDmQSIBAAAAAACkGIkEAAAAAACQYiQSAAAAAABAipFIAAAAAAAAKUYiAQAAAAAApBiJBAAAAAAAkGIkEgAAAAAAQIqRSAAAAAAAAClGIgEAAAAAAKQYiQQAAAAAAJBiJBIAAAAAAECKkUgAAAAAAAApRiIBAAAAAACkGIkEAAAAAFlW7969ZbPZ1Lt3b6tDATINEgkAAACARRL+iE3tq0WLFlaHDiAL87I6AAAAACCrCgwMVMGCBVO0b0REhMLDwyVJfn5+zgwLAO6LRAIAAABgkXHjxmncuHEP3C8qKkpNmzbV9u3bFRAQoM8++ywDogOApNG1AQAAAHBx/fv31/bt2yVJkyZNUrVq1SyOCEBWRiIBAAAAcGFff/21Jk+eLEkaPny4Hn/88WT3XbNmjR5//HEVLVpUvr6+ypcvnx599FFNmjRJcXFx932ftBzbokUL2Ww2jRw5UnFxcfryyy9Vq1YtZc+eXQUKFFCXLl20Z88ec/87d+7o448/VtWqVRUQEKC8efOqZ8+eOnHixAOvw8WLFzV06FDVqFFDgYGB8vPzU5kyZfT888/r4MGD9z12+vTpaty4sXLkyKHAwEA9/PDD+v7772UYxgPf9342btxojlsxa9asJPfZunWrsmfPLpvNpnfeeSdd7we4DAMAAACAS1qzZo3h5eVlSDLatWtnxMXFJbvv66+/bkgyJBk2m83IlSuX4enpaa575JFHjPDwcIce27x5c0OSMXz4cKNVq1aGJMPHx8cICAgwj82ePbuxfft24+rVq0atWrUMSYafn5/h7+9v7lOgQAHjzJkzyX62RYsWGdmzZzf39/b2tnsPHx8fY8qUKfccFx8fb/Tp08fus+XOndvw8PAwJBlPPvmkERQUZEgygoKCHvwfkoROnToZkoxKlSoZsbGxdtsOHz5s5MuXzzx/fHx8mt4DcDUkEgAAAAAXdObMGSN//vyGJKNChQpGWFhYsvuOHz/e/GP5xRdfNC5cuGAYhmHcunXL+PLLL81kRM+ePR16bEIiIVeuXEbevHmNWbNmGdHR0UZ8fLyxbds2o0yZMoYko1GjRkbXrl2NUqVKGUuXLjXi4uKMuLg4Y8WKFeZnfPrpp5P8bFu3bjV8fHwMScZLL71kHDp0yPyD/cyZM8aAAQMMSYaXl5exfft2u2PHjRtnfraBAwcaV65cMQzDMMLCwoyRI0eaSZP0JBIOHjxoJl0mT55srj937pxRsmRJQ5LRoUMHIyYmJk3nB1wRiQQAAADAxURERBi1a9c2JBk5cuQwDh48mOy+d+7cMfLkyWNIMp566qkk9/n666/NP6gT/7GdnmMN4+9EgiRj/fr19xy7cuVKc7u/v79x7Nixe/aZOHGiuT06Ovqe7fXq1TMkGe+//36y1+DVV181JBmdO3c210VERJif7dlnn03yuKFDh5rxpTWRYBiG0a9fP0OSUbp0aSM6OtoIDQ01qlWrZkgymjRpYty5cyfN5wZcEWMkAAAAAC7mhRde0M6dO2Wz2TRt2jQ99NBDye67fPlyXb9+XZI0cuTIJPcZMGCAChcuLEn65ZdfHHJsYk2aNFGTJk3uWd+8eXP5+vpKknr06KFy5crds0+bNm0k3Z3e8tixY3bb9uzZo+3bt8vb21tvvvlmku8tSc8995wkacWKFeZ4DsuWLTM/2wcffJDkcUOHDnXIVJr//ve/5e/vr1OnTmnChAnq3Lmz9u3bp2rVqmnRokXy9/dP93sAroREAgAAAOBCvvzyS/3888+SpBEjRqhz58733X/Hjh2SpOLFi6tChQpJ7uPp6alHHnnEbv/0HptY/fr1kz02X758kqR69eoluU/BggXN5dDQULttGzZskCTFx8erYsWKKlSoUJKvtm3bSpJu376ta9eu3fPZkkpgSFJgYKDq1KmT5LbUKFq0qF599VVJ0uuvv65169apVKlS+vPPP5UrV650nx9wNV5WBwAAAADgrlWrVuntt9+WJHXp0iXZb9ITu3z5sqS7f8zeT7Fixez2T++xieXIkSPZY728vO67T8J2SYqJibHbdv78eUlSXFycLl26dN8YE9y5c8cu1pR+tvQaPHiwPvvsM8XHxytPnjxatmyZihQp4pBzA66GRAIAAADgAk6fPq0nnnhCcXFxqly5sqZOnSqbzZbi41O6b1L7pedYZ0roplCpUiUdOnQoTefIiJhjY2P14osvKj4+XtLdZAbdGeDO6NoAAAAAWOzOnTvq2rWrrl27ply5cmnBggX3/ZY/sQIFCkiSzp49e9/9QkJCJEn58+d3yLEZoVChQpKkkydP6vbt26k6NuGzJcSenHPnzqUtuP9nGIaef/55LV68WPnz51fp0qUVGRmpESNGpOu8gCsjkQAAAABY7Pnnn9fu3bvl4eGhX375Jdk+/UmpW7eupLt/MB89ejTJfeLi4rR69WpJ9mMVpOfYjNC4cWNJUnR0tObNm5eqYxM+29mzZ3XixIkk9wkPD9dff/2VrhjfeecdTZkyRdmzZ9eSJUs0atQoSdKUKVN08ODBdJ0bcFUkEgAAAAALffbZZ+ZsCKNGjTIHDkypxx57THnz5pWU/MwL//vf/8zxBp566imHHJsR6tatq1q1akmS3n33XV25cuW++yfM0iDd/Wy5c+eWJH300UdJ7j9mzBhFRESkOb7PP/9cn3/+uby9vTVnzhzVq1dPTz75pKpXr664uDgNGzYszecGXBmJBAAAAMAiy5cvN//YfOKJJzR06NBUn8Pf399MAvzyyy/q37+/OTDhnTt3NH78eL322muSpJ49e9rNUpCeYzOCzWbTd999J19fXwUHB+vhhx/W7NmzzQEVpbtdE37++Wc99thjGjJkiLne399f77//vqS7rQNee+01c0aH8PBwffTRR/rkk0/SPKvC1KlT9c4778hms2ny5Mlq3bq1GXNC4mLhwoXauHFjms4PuDQDAAAAgCUqVqxoSDIkGXny5DEKFiyY4tc/vf766+a5bDabkTt3bsPLy8tc17JlSyM8PDzJONJ6bPPmzQ1JxogRI5L9jCVLljQkGZMmTUp2n4T3Wb16dZLbly1bZuTNm9fcz9PT08ibN6+RLVs2c50k4/nnn7c7Li4uznj22WfN7R4eHkbu3LkNT09PQ5Lx5JNPGkFBQYYkIygoKNn4/mnJkiXm9fnyyy+T3Ofhhx82JBmNGzdO8XmBzIIWCQAAAIBFIiMjzeXr16/r0qVLKX7909ixY7Vq1Sp1795dBQsW1K1bt5QjRw61bNlSP/30k5YvX57sAI7pOTYjPPbYYzp+/LhGjx6tJk2aKDAwUGFhYfLw8FDlypXVr18/LVy4UOPHj7c7zsPDQ1OnTtXUqVPVoEED+fv7KzY2VrVr19Z3332nGTNmpDqWzZs36/HHH1dsbKyGDBlittj4p4SxEjZu3KgFCxak+n0AV2YzDMOwOggAAAAAAJA50CIBAAAAAACkGIkEAAAAAACQYiQSAAAAAABAipFIAAAAAAAAKeZ2iYS//vpLn376qbp166aiRYvKZrPJz88vzecLCwvTa6+9ppIlS8rX11clS5bU4MGDFRYW5rigAQAAAADIJNxu1oYuXbrcM72Kr6+v3dQ6KXXt2jU1bNhQx44dU5kyZVS3bl0dOHBABw4cULly5bRlyxblzZvXUaEDAAAAAODy3K5FQsOGDfXBBx9o0aJFunjxYrrO9frrr+vYsWPq1q2bjhw5ot9++0379+/XoEGDdPz4cb3xxhsOihoAAAAAgMzB7Vok/JPNZktTi4SLFy+qaNGi8vT01NmzZ1WwYEFzW1RUlIoXL67r16/r3LlzdtsAAAAAAHBnbtciwVH++OMPxcfHq1mzZvckCnx9fdWxY0fFxcXpjz/+sChCAAAAAAAyHomEZOzZs0eSVLt27SS3J6xP2A8AAAAAgKzAy+oAXFVwcLAkqVixYkluT1ifsF9KVKlSJcn1R44ckb+/v0qUKJHKKAEAcD/BwcEKCAhI81hHPG8BAHiw9DxvaZGQjFu3bkmSsmXLluT2gIAAu/3SwzAMxcTEpPs8AAC4g5iYGN2+fdvh5+V5CwDA39LzvKVFQjISxqC02Wz33Z4aBw4cSHJ9wjcnyW0HACArSa5FQUrxvAUA4MHS87ylRUIycuTIIUnJZmju3LkjScqePXuGxQQAAAAAgNVIJCQjof9kSEhIktsT1tPPEgAAAACQlZBISEaNGjUkSTt37kxye8L66tWrZ1hMAAAAAABYjURCMtq2bSsPDw+tX79ely9fttsWFRWlRYsWycPDQ//6178sihAAAAAAgIyX5RMJ33zzjSpVqqRhw4bZrS9cuLCeeuopRUdHa8CAAYqNjTW3vfPOO7py5Yp69eqlQoUKZXTIAAAAAABYxu1mbViyZIk++ugju3XR0dFq0KCBWX7//ffVvn17SdLVq1d15MgRXbhw4Z5zffXVV9qyZYvmzJmjSpUqqW7dujpw4ID279+vsmXL6ssvv3TuhwEAAAAAwMW4XSLhypUr2rp1q906wzDs1l25ciVF58qXL5+2b9+uESNGaP78+Zo3b54KFiyogQMH6t///rfy5Mnj0NgBAAAAAHB1NsMwDKuDyOqY1xoAgL8567nI8xYAgL+l57mY5cdIAAAAAAAAKed2XRvciWEYosEIACAzsdlsstlsVoeRKjxvAQCZjdXPWxIJLiYiIkI3btzQzZs37WaKAAAgs/Dy8lKOHDkUGBgof39/q8NJEs9bAEBmZ+XzlkSCCwkPD9e5c+esDgMAgHSJjY1VaGioQkNDVbRoUeXMmdPqkOzwvAUAuAMrn7ckElxE0aJFzUpN9uzZlTt3bvn5+cnDg2EsAACZR3x8vCIjIxUaGqpbt27p3Llz8vb2dpmWCTxvAQDuwOrnLYkEF1GzZk1Jdys1xYoVy3T9SwEAkCQPDw9lz55dAQEBCgkJ0a1bt3Tjxg2XSSTwvAUAuAOrn7ek311EpUqVJEm5c+emUgMAyPRsNpty584tSbp586bF0fyN5y0AwJ1Y9bwlkeACPDw8zP4sfn5+FkcDAIBjJDzTYmNjXWJWBJ63AAB3ZMXzlkSCC/D09DSX6aMJAHAXiZ9prpBI4HkLAHBHVjxveYoCAAAAAIAUI5EAAAAAAABSjEQCAAAAAABIMRIJAAAAAAAgxbysDgBwpPRO5eUKg4EBAODqeN4CQNZGIgFuhYoJAADOx/MWALI2ujYAAAAAAIAUI5EAAAAAAABSjEQCAAAAAABIMRIJcDvBwcGy2Wyy2WxavXr1ffd9/fXXZbPZVLt2bfp7ZiHcI3B13KPIDLhP8SDcI3B13KNpRyIBbqdEiRLKlSuXJOnAgQPJ7nfq1Cn997//lSR9/vnn6R6BGpkH9whcHfcoMgPuUzwI9whcHfdo2pFIgFuqVq2apPv/Qhg2bJiio6PVvn17PfLIIxkVGlwE9whcHfcoMgPuUzwI9whcHfdo2pBIgFuqXr26pOR/IWzbtk0zZ86Up6enxowZk5GhwUVwj8DVcY8iM+A+xYNwj8DVcY+mjZfVASD1IiPvvlIqMFD6Z+ubGzeklHbt8fGRsmWzXxcdLd25k/IYcuSQPD3t18XESN7eKT9Hajwos/j222/LMAw9//zzqly5snOCsBI3yQNl+XvEanGRd18p5Z3EPRp9Q1IK71EPH8nrH/doXLQUl4p71CuH5PGPezQ+RvLgHnVX/Cp9sCx/n3KTPFCWv0esxvP2gbhH04ZEQib06afSv/+d8v1DQ6X/7/pjKlny7nMrJYKCpMmT7dfNmCH16ZPyGHbtkmrWtF+3ZInUpUvKz5EaCZnF69ev6+LFiypUqJC5beHChVq3bp2yZ8+uf6fmQmYm3CQPlOXvEasd+FTan4pr2yNU8sllv25BSSkmhfdo6SCp4WT7dWdmSFtScY/+a5eUu6b9unNLpOJdUn6OVOAetR6/Sh8sy9+n3CQPlOXvEavxvH0g7tG0oWsD3FK1atXMQVASZxfj4uI0ZMgQSdKQIUNUsGBBS+KD9bhH4Oq4R5EZcJ/iQbhH4Oq4R9OGRALcUvbs2VWqVClJ9r8QfvjhBx0+fFhFixbVG2+8YVF0cAWOukdiYmIUExPjrDCRhfF7DJkB9ykehOctXB2/x9LIgOVq1KhhzJo1yzh48KARFxf3wP0jIgwjNDTlr/j4e88RFpby42/fvvf4qKjUxRAbe+85oqMf+FHTpXPnzoYk48UXXzQMwzBu3rxpFCxY0JBkTJo0yblvbjVukhRJ7T0yadIkQ5KxdOlSY/jw4UaxYsUMDw8PY9euXea25cuXG++++65RpEgRIyAgwGjXrp1x7tw5wzAM44svvjBKly5t+Pr6Go0aNTIOHjx4z3vcvn3bGDZsmFGuXDnDz8/PyJMnj1GnTh3j22+/deq1yHCxEYYRFZryV1L3aFRYyo+PSeIejY1KXQxxSdyjca55j6bnPkw4x7Jly4whQ4YYhQsXNvz8/IwmTZoY27ZtS1X8cXFxxsGDB1P8fEtQuXJlo3Llyql6r5TgeescPG9DuUkegOethXjepgjP29RjjIRMyM/v7is9AgPTd7yPz91Xejhr4KcE1atX14IFC8zM4meffaZLly6pRo0aeu6555z75lbjJkmRtN4jb731lnx9ffX6669LkvLkyWNuGzJkiPz9/TV06FCFhIRo7Nixevzxx9W6dWvNnTtXgwYN0o0bNzRmzBg9/vjj2rdvn91cxAMGDNCMGTPUv39/Va9eXbdv39aBAwe0fv169e/f30lXwgKefndf6eGTznvU0+fuKz2cNPBTgrTeo+m9DyXpnXfeUXx8vN566y2Fh4frm2++0SOPPKKtW7dmmcGm+FWaMjxvuUkehOethXjepgjP29QjkQC3lXgqlwsXLuiLL76QJH3++efy8KBXD9J+j9hsNm3cuFE+SVTcfHx8tHbtWnn+/4jY0dHR+uqrr3Tx4kXt379f/v7+kiQ/Pz8NGzZMmzdvVqNGjczjFyxYoOeff15ff/21wz4nMq+03qPpvQ8lKTw8XHv27FH27NklST169FCNGjU0bNgwLViwwOGfFZkXz1s8CM9buDqet6nHb3e4rYSpXMLCwvTCCy/o9u3b+te//qVWrVpZHBlcRVrvkRdeeCHJSk3CNs9E02o9/PDDkqRnnnnGfJhIUoMGDSRJJ06csDs+V65c2r59u86ePZv6DwS3k557ND33oSS99NJLZqVGkqpWrao2bdpo6dKl9FOGHZ63eBCet3B1PG9Tj0QC3Fb58uXNH+AlS5bI09NTn332mcVRwZWk9R4pW7ZssttKlixpV871/9N8lShRIsn1169ft1v/xRdf6NChQypZsqRq1qypN998Uxs3bnxgTHBPab1H03sfSlKlSpXuWVexYkVFRUXp/PnzKQkfWQTPWzwIz1u4Op63qUciAW7Lw8NDVapUMct9+/a1KwNpvUcSZ5j/KXFWOiXrDcOwK3fr1k2nT5/WTz/9pBo1amjGjBlq0qSJXnnllQfGBfeT1ns0vfchkBo8b/EgPG/h6njeph5jJMCtbd++3eoQ4OJc8R7Jly+fevfurd69eys2NlY9e/bUf//7X7311lsqXbq01eEhg1l1jx4+fFidOnWyW3fkyBH5+vqqcOHClsQE1+WKv0vhWlzxHuF5i8R43qYOLRIAwEXExcUpLCzMbp2Xl5fZb+/atWsWRIWs6n//+59u375tlvfv36+lS5eqdevWyfZZBoDMgOctXElmfd7SIgEAXMTNmzdVpEgRdenSRTVr1lTevHl16NAhTZgwQVWqVFGtWrWsDhFZSM6cOdWoUSP17t1b4eHhGj9+vPz8/PTJJ59YHRoApAvPW7iSzPq8JZEAAC4iW7ZsevXVV7VixQr9+eefunPnjooVK6aXX35Zw4YNS7a/HeAM//nPf7Ry5UqNGTNGoaGhqlOnjsaOHauqVataHRoApAvPW7iSzPq8tRnuNOJDJlWzZk299957qlKliipWrMicywAAy0yePFl9+vTR6tWr1aJFi3SdKz4+XkeOHJGkVD3fEga4OnDgQLre/5943gIAXEVmf97yBAUAAAAAAClGIgEAAAAAAKQYiQQAAAAAAJBiJBIAAICpd+/eMgwj3f01AQBA8jL785ZEAgAAAAAASDESCQAAAAAAIMVIJAAAAAAAgBQjkQAAAAAAAFKMRAIAAAAAAEgxEgkAAAAAACDFSCQAAAAAAIAUI5HgAuLi4szl+Ph4CyMBAMBxEj/TbDabhZHcxfMWAOCOrHjekkhwAfHx8QoPD5ckRUZGWhwNAACOkfBM8/LycolEAs9bAIA7suJ5SyLBRRw+fFiSFBoaKsMwLI4GAID0MQxDoaGhkqQcOXJYHM3feN4CANyJVc9brwx7J9zX7t27JUm3bt1SSEiIcufOLT8/P3l4kOsBAGQe8fHxioyMVGhoqG7duiVJCgwMtDiqv/G8BQC4A6uftyQSXMS5c+dUtGhRnTt3Trdu3TJvBgAAMrOiRYvK39/f6jBMPG8BAO4oo5+3JBJcSM6cOeXt7a0bN27o5s2bio2NtTokAABSzcvLSzly5FBgYKBLJRES8LwFALgDK5+3JBJcjL+/v/z9/VWoUCEZhkH/TQBApmKz2VxiYMUH4XkLAMjMrH7ekkhwYVbfHAAAZAU8bwEASB1GFgIAAAAAAClGIgEAAAAAAKQYiQQAAAAAAJBiJBIAAAAAAECKkUgAAAAAAAApRiIBAAAAAACkGIkEAAAAAACQYiQSAAAAAABAipFIAAAAAAAAKUYiAQAAAAAApBiJBAAAAAAAkGJeVgcAwHEuXbqkNWvWaO/evTpx4oTCwsJkGIZy5sypUqVKqUqVKmrevLlKlSolm81mdbgAAMBFREVF6ebNm7p9+3ayrzt37igyMlJRUVGKjo5O9t/Y2FjFx8ebr7i4OLtyfHy8DMOQp6enPDw87F6J13l5ecnHx0e+vr7y8fFJctnX11cBAQEKCAhQtmzZklxOeFH3ARyHRAKQyd25c0fTpk3TlClTtHnz5hQd89BDD6lXr1564YUXVLBgQSdHCAAAMkJ0dLSuXbumq1evmq+EclhYmMLCwnTjxg3z38TLUVFRVofvVJ6ensqZM6dy5sypwMDAJF958+ZN8pU7d255enpa/REAl0IiAcikoqKi9PXXX2vMmDG6evXqPdt9vaWhHf8uf7pIioq5u3zo0CG9//77+uijj9S3b1998MEHKly4cAZFDgAAUioyMlKXLl3ShQsXdPHiRV28eNFu+eLFi2bSIDw83OpwH+h+9RNniouLU2hoqEJDQ1N9rM1mU65cuZQvXz4VKFBABQsWTPJVqFAhFSxYUAEBAU74BIBrIZEAZEKrVq3SCy+8oJMnT96zrXjx4mrSpInCrwVrZPeN5vqVIVV1KTRKx44dM9dFR0fru+++09SpUzVixAi9/vrr8vb2zpDPAABAVhcREaGQkBCdPXs2yVdISIjCwsIyPK7E3QUSv7JlyyZ/f3+ze0FS/544cUKXLl2SzWZL8pXdJ1Yjuy813+tQfGvdivaSYRj3vOLj45U/f36VLl062a4UkZGRZreLxP8mLDuCYRhmEiJxPSo5OXPmVNGiRe1exYoVsysXKFBAHh4MV4fMi0QCkIlER0dryJAh+uqrr+zWZ8uWTf369VOfPn1Us2ZN2Ww2jfrwPW0JjTX3adu+lQYOflvXrl3T9OnT9e233+rChQuS7naPGDJkiGbOnKmZM2eqTJkyGfmxAABwS9HR0QoODtapU6d08uRJnTp1ylw+ffp0ki0KHcHf31/58uUzX3nz5lWePHnMJvy5cuVKcjlHjhzKli2bvLzS/ifCokWLtHPnzmS3e9litCU0zCxXr1VPsUbyX2LUqFFDXbp0SVMshmEoIiJCt27dMrtyJPUKDw9XaGiorl+/rmvXrtm94uLiUv2+4eHhCg8P16FDh5Ldx8fHRyVKlFDJkiWTfBUrVowvd+DSSCQAmcSlS5fUvXt3bdz4dysDT09PvfLKK3r//feVL18+u/1jDW8tvfqve85TpkwZvf/++xoyZIh+/PFHjRw5UleuXJEk/fXXX6pTp46mTZumDh06OPcDAQDgBqKionTy5EkdPXrUfB0/flwnT55USEiI4uPjHfI+efPmVaFChVSoUCEVLlzYXC5UqJAKFChglzTIli2bQ97TGZKrnziDzWZTtmzZlC1bNhUoUCDVxxuGofDwcDOpcPXqVV26dCnZ19WrV2UYRorOHR0drePHj+v48eNJbvfw8FDx4sVVpkwZlS1b9p5XYGBgqj8P4EgkEoBM4OjRo2rbtq1OnTplrqtataqmTJmi2rVrp+mcPj4+GjBggJ566im9/fbbmjhxoiQpLCxMHTt21HvvvacPP/yQEY4BAFmeYRi6dOmSDhw4oMOHD9slDU6fPp2uZIGHh4cKFy6s4sWL272KFSum4sWLq0iRIipQoIB8fX0d+ImQEjabzWytkZLWmrGxsbp8+bLOnz+vkJAQnTt3LsnXzZs3H3iu+Ph4nTlzRmfOnNHq1avv2Z4nTx6VLVtWFSpUUIUKFVSxYkVzmTEakBFIJAAu7sCBA3rkkUd0+fJlc13v3r313//+V/7+/uk+f+7cufXjjz+qVatWev7553X79m1J0scff6xLly7p22+/ZaRiAECWYBiGLl68qAMHDujgwYN2/6ZlkD7p7h+jxYoVU+nSpVWmTBm7f0uUKKHChQunqysBXIeXl5eKFCmiIkWKqG7dusnuFx4ebiYJzpw5o+DgYLtyQtfT+7l+/bquX7+u7du337OtWLFidsmFhx56SFWqVFHRokX5gggO47a/tSIjIzV69Gj98ssvCg4OVp48edS2bVt9+OGHKlasWKrO9eeff2rcuHHavn27bty4ody5c6t+/fp6/fXX9eijjzrpEwB3Z1do2bKl2fVAkj777DO9+eabDn8QPPnkk6pevbq6d++uw4cPS5J++OEH3b59W5MnT6afHgDArURERGj//v3as2eP+dq/f3+aEgaenp4qU6aM+Y1w+fLlVbZsWTNZQGsCJJYzZ05Vq1ZN1apVS3J7VFSUgoODdfLkSZ04ceKeV0RExH3PHxISopCQEK1atcpufY4cOVS5cmVVqVLF7t/ixYuTYECquWUiITIyUo8++qg2bdqkwoULq3Pnzjp9+rQmTZqkxYsXa/PmzSpbtmyKzjV27Fjzj7bGjRuraNGiOnnypJYsWaIlS5bo22+/Vf/+/Z38iZAVXbx4Uf/617/MJIKHh4cmTZqk5557LkXHe9piVTfw7yz1jhv1HnhM5cqVtWXLFrVr106bNm2SJM2YMUN37tzRzJkzSSYAADKlixcvaufOnXZJg6NHj6a6S0LBggX10EMPqVKlSmbSoEKFCipVqhTPyBRKqn4SZ7jlnyRp5uvrq/Lly6t8+fL3bEtoNXPixAkdP35cx44d05EjR3TkyBEdO3ZMUVFRyZ735s2b2rp1q7Zu3Wq3Pnv27KpataqqV69uvqpVq6ZcuXI5+qPBjbjlT+0nn3yiTZs2qWHDhlq2bJmyZ88u6e+kQN++fbV27doHnufKlSsaNmyYfHx8tHLlSjVp0sTcNmfOHD3++ON688039cwzz5jvATjC7du31bFjR505c0bS3WaRU6dO1dNPP53ic3jZYtQ2/9/TK+0Or5mi4wIDA7Vs2TJ17txZK1eulCTNnz9fL774on766Scy1gAAl3bp0iX99ddf2rFjh3bs2KG//vpL58+fT9U5ChYsaPetbcJy3rx5nRR11pFU/YREQsrZbDYVLlxYhQsXtvvbRJLi4uJ09uxZHTlyREePHtWRI0d0+PBhHTp06L4/A7du3dKWLVu0ZcsWu/UlSpQwkwrVq1dXjRo1VKFCBbq8QpIbJhJiYmI0fvx4SdKECRPs/sB/4403NGXKFK1bt84cnf5+tm7dqujoaLVt2/aeH9Tu3burevXq2rNnjw4ePKj69es7/sMgS4qLi9PTTz+tHTt2mOvGjh2bqiRCegUEBGjx4sV64okntGjRIknS5MmTVbRoUX388ccZFgcAAPcTGhqqbdu2afv27WbSICQkJMXH+/n5qVq1aqpRo4Zq1Kih6tWrq0qVKiQMkCl5enqqVKlSKlWqlNq0aWO3LSwsTAcPHjRfCeN/3O/nJTg4WMHBwVq8eLG5Llu2bKpZs6Zq1aql2rVrq1atWqpSpYp8fHyc9rngmtwukbBhwwaFhYWpbNmyqlWr1j3be/Toob1792rRokUPTCSktD9bnjx50hQrkJQPPvhACxYsMMsDBw7U4MGDMzwOPz8/zZw5U23atNG6deskSaNGjVLRokX18ssvZ3g8AICsLTY2VgcOHDC/Od2yZYs5pk9KFClSRDVr1jSTBjVq1FD58uX5dhVZQq5cudSoUSM1atTIbn14eLgOHjyoffv2ae/evdq7d6/27NmjGzduJHmeO3fuaNOmTWYXWEny9vZWtWrVzORC/fr1Vb16dZILbs7tEgl79uyRpGSnxEtYn7Df/dSrV0+BgYFatWqVNmzYYNcqYe7cudq7d68aNWqkcuXKOSByQFq5cqVGjx5tljt27KivvvrKsu4Efn5+mj9/vpo2baoDBw5IupvYKF++vFq1amVJTACArOHatWvmHyxbtmzR9u3bzZmFHqRw4cKqW7eu6tSpY/5bqFAhJ0cMZD45c+ZUgwYN1KBBA3OdYRg6e/asmVhISC4kN65ITEyMdu7cqZ07d5rTifv4+KhGjRqqV6+e+apUqRKJOzfidomE4OBgSUp2ZoaE9Qn73U+uXLn0448/6umnn1azZs3MwRZPnTql7du3q23btpo8ebLDYkfWdvnyZT3zzDMyDEOSVLFiRc2YMcPyX7i5c+fWvHl/qE6dWbp5M1zx8dKTT/bWrl2bVbx4cUtjAwC4j+DgYK1fv958HTx4MEXH5c2bVw8//LDq1q1rJg2KFCni5GgB92Wz2VSiRAmVKFFCHTp0MNffvn1be/fu1a5du8zEwb59xxQb+2aioz+VFKXo6Ght377dbnrK7Nmzmy0WGjRooIYNG/Kzmom5XSLh1q1bku7230lKQECA3X4P0qNHD+XJk0c9e/bUhg0bzPUFCxbUI488kqo+dFWqVEly/YkTJ1I8iwTcU3x8vIKCgnTx4kVJd7O4v/76q8sM4pk/f3HdvPmGWb527Sv16NFD69atY0orAC6H563rMwxDBw8etEscnD179oHHeXp6qmbNmuY3qA0aNFDZsmUZCBjIAAEBAWrYsKEaNmxorrt8OVoFC/7dhaF27fXav3+DoqOj7zn+1q1bWrdundllVpKKFy+uhg0bmomFWrVqUbfMJNwukZDwbW5yD5SE7Sn1xRdf6J133lGXLl00cuRIlSlTRidPntQHH3ygt99+W1u2bNHs2bPTHTeytvHjx+vPP/80y59//rlq1qxpXUApsG3bNr322mv69ttvrQ4FAODiDMPQ0aNHtXr1aq1evVpr1qzR5cuXH3hcgQIF1KRJE/MPjdq1ayf7ZRGAjPfPcRBWrlypbNmitW/fPrNFwvbt23XgwIEku0WcPXtWZ8+e1cyZM83z1apVSw0bNlSTJk3UuHFjuiW5KLdLJOTIkUOSku1Dd+fOHUlK0Te9a9eu1VtvvaXatWtr1qxZ8vDwkCRVq1ZNs2fPVr169TRnzhwtW7ZMrVu3fuD5EvqY/1Ny35wgazh9+rSGDx9uljt16qSBAwdaGFHKfffdd3rkkUf0+OOPWx0KAJh43lrPMAydOnVKq1ev1qpVq7RmzZoUTcFYtmxZNW3aVE2bNlWTJk1Uvnx5WhsAmYyPj4/q1KmjOnXqqH///pLu/m22a9cubd++XVu3btXmzZuT7GoeHR2trVu3auvWrfrqq68kSeXKlVPjxo3VpEkTNWnSRBUrVuT3ggtwu0RCiRIlJCnZqUwS1ifsdz9Tp06VJHXr1s1MIiTw9PRUt27dtGvXLq1ZsyZFiQTgnwzD0IABA8wEV758+fTjjz+6/C/HmjVraffuNZKk/v37q0mTJipcuLC1QQEALHX9+nWtXLlSy5Yt0/Lly3XmzJn77m+z2VSjRg27xAHPEsA9BQQEmImABOfPn9eWLVu0efNmbdmyRTt27FBkZOQ9xx4/flzHjx/XlClTJN0dFyXhXC1atFCtWrUsH1MsK3K7REKNGjUkSTt37kxye8L66tWrP/BcCUmHnDlzJrk9Yf3169dTHScgSTNnztQff/xhlr/88kvlz5/fwohSZuLEiWrWrLpu376t69evq2/fvvr9999dPgECAHCc6Ohobd682Uwc7Nix44FdSKtVq6aWLVuqZcuWatasGVNoA1lYkSJF1K1bN3Xr1k3S3d8pe/fu1ebNm7Vx40Zt2LBB586du+e4a9euacGCBeZ06Tlz5lSzZs3UokULtWzZUjVq1CCxkAHcLpHQuHFjBQYG6sSJE9q1a5dq1apltz1hPIPEI5AmJ6E/zo4dO5LcnjAKaalSpdIRMbKq0NBQvfrqq2b5scce09NPP21hRClXpkwZjR07Vi+99JIk6c8//9R3332nl19+2eLIAADOdOzYMf3xxx9atmyZ1qxZ88DpGCtVqqRHHnlELVu2VPPmzTNFshyANXx8fMzZVwYNGiTDMBQcHKwNGzaYrwMHDtyTsAwPD9fixYu1ePFiSXdn3mvWrJlatmypFi1aqHr16ve0Lkf6uV0iwcfHRwMHDtSoUaM0cOBALVu2zJypYezYsdq7d6+aNGmievXqmcd88803+uabb9S1a1eNHj3aXN+lSxdNnTpV06dPV48ePdSxY0dz24IFCzRjxgx5eHioa9euGfcB4TaGDx9uDjTl7++v7777zqHf6EfF++qrU4PtymmVM6d06pR9+YUXXtDChQu1ZMkSSdKbb76pxx57TOXKlUvz+wAAXEtkZKTWrVun33//XUuWLNHx48fvu3+hQoX02GOPqXXr1nr00UfpqoB7OLJ+AuslVUd0FJvNppIlS6pkyZLml22hoaHavHmz1q9fr3Xr1mnbtm2KjY21Oy4sLEwLFy7UwoULJd2dyrx58+Zma6gqVaqQWHAAt0skSNJ7772nFStWaNOmTSpfvryaNm2qM2fOaOvWrcqbN68mTZpkt//Vq1d15MgRXbhwwW59ly5d9Pjjj2vWrFnq1KmT6tatq9KlS+vUqVNmK4VRo0apYsWKGfbZ4B4OHDig77//3iwnzAjiWB66EZvbMWfykO5teGPTjz/+qGrVqunq1auKiIjQyy+/rGXLltHFAQAyseDgYP3+++/6/ffftXLlSnMcn6T4+fmpefPmZvKgatWqPAPwAI6rn8B6SdcRnSd37txq166d2rVrJ+nulJKbNm0yZ4TZsWOH4uLi7I4JDQ3V/PnzNX/+fEl3xyRr3ry52RWicuXK/N5KA7dMJPj5+Wn16tUaPXq0ZsyYofnz5yt37twKCgrSRx99pOLFi6foPDabTb/99pvatm2rKVOmaO/evdq9e7dy5cqldu3aadCgQWrbtq2TPw3c0dtvv21OgVO+fHm99tpr1gaURoUKFdKECRPUs2dPSdKKFSv0888/69lnn7U4MgBASsXHx2vbtm3mN3jJzXqRoFq1amrbtq1at26tJk2ayM/PL4MiBQB72bNnV+vWrc2B72/evKkNGzZozZo1Wr16tf766697pp28evWq5syZozlz5ki6O81sq1atzPPQkiplbMaDRsWB0yVMR/WgBzfcw7Jly9SmTRuzPG/ePHXp0sXh7/Pvf//7nnWvvfaaAgMDHfo+hmGoY8eOZheHfPny6dChQ8qXL59D3wdA1uGs5yLP279FRERo5cqVWrBggRYtWqRLly4lu2+2bNnUqlUrtW/fXv/6179S/IUMsqZFixYlO+h5WtSoUcMp9SRkDTdu3NCGDRu0evVqrVmzRjt37nzgoLDVq1dX69at1aZNG7dPlqbnueiWLRIAVxUXF6e33nrLLDdr1kydO3e2MKL0s9lsmjBhgjno1tWrV/XWW29p8uTJVocGAEjkypUrWrx4sRYuXKhly5bdt8tChQoVzObDzZo1k68v/dgBZD6BgYFq37692rdvL+nu+Anr1683u0Ls2bPnnsTC3r17tXfvXn3++efy9/dXixYtzMRCpUqV6Abx/0gkABlo8uTJ2rdvn1n+4osvnPbLyMcjUi+X+NYsfxuc9hkVwsOlxDOm7t1rP5hOyZIl9dFHH+mNN96QJE2ZMkV9+vRR8+bN0/yeAID0CwkJ0dy5czVnzhxt2LDhnia+CTw9PdW0aVN16tRJHTt2ZOBcOE1S9ZPoePf9xtfdPaiO6Gpy5cqljh07moPoX79+XatXr9bSpUu1dOlSBQcH2+0fERGhP/74w5yuvXjx4mrTpo1at26tVq1aKXfurDveB4kEIINERUXZdTd45plnVLduXae9n02GcnnfsCunVXy8dOaMffmfBg0apOnTp+uvv/6SJA0ePFh//fUX8/gCQAY7ceKEmTzYunVrsvtlz55dbdu2VefOndWuXTvlyZMnA6NEVuXI+gmsl5I6oivLkyePunfvru7du8swDB09etRMKqxZs+aelltnz57Vjz/+qB9//FEeHh6qX7++2Vqhfv368vLKOn9eZ51PCljsp59+0tmzZyVJ3t7e+vjjjy2OyLG8vLw0YcIENWjQQJK0Z88e/fjjj3rppZcsjgwA3N/BgwfNwcP27NmT7H5FixZVp06d1LlzZ7Vo0YIuCwDw/2w2mypWrKiKFSvq1VdfVVRUlDZu3KilS5dq2bJl2r17t93+8fHx2rJli7Zs2aIPP/xQgYGBatOmjTp06KB27dopb9681nyQDEIiAcgAUVFR+uSTT8xyv379VLJkSQsjco6HH35Yzz33nKZOnSpJevfdd/XEE09k6WZfAOAsR48e1W+//abffvvtvgNllS1b1vzGrV69evTvBYAU8PX11SOPPKJHHnlE//nPf3Tx4kUtX75cy5Yt07Jly3T58mW7/W/cuKGZM2dq5syZ8vDwUMOGDdWxY0d16NDBLaeYJJEAZICJEycqJCRE0t3WCMOHD7c4Iuf59NNPNXfuXN26dUvXrl3Tv//9b3311VdWhwUAbuHUqVOaOXOmfv3113u+HUusSpUq6t69u7p166bq1au7XQUWADJaoUKF9Oyzz+rZZ59VfHy89uzZo2XLlmnp0qXasGGDYmJizH3j4+O1ceNGbdy4UUOHDlXp0qXVoUMHdejQQc2bN3eL1mAkEgAn+2drhOeff96tp84qXLiw3n33XQ0bNkyS9M033+ill17SQw89ZHFkAJA5hYSEaObMmfrtt9+0bdu2ZPerXbu22fKgYsWKGRghAGQtHh4eqlWrlmrVqqUhQ4bo1q1bWrVqlRYvXqzFixfrwoULdvufOnVK48eP1/jx45U9e3a1bt1aHTp0UPv27VWgQAGLPkX6kEgAnGzixIk6d+6cJMnHx8f8A9udvfbaa/rhhx908uRJxcXFafjw4Zo3b57VYQFAphEaGqrZs2fr559/1rp165Ldr3r16nryySf1xBNPqGzZshkYIQAgQfbs2dWpUyd16tRJ8fHx2rVrlxYvXqxFixaZA5EnuHXrlubOnau5c+fKZrOpfv36ZheIzNSCjEQC4ESxsbEaM2aMWXb31ggJ/Pz8NGbMGPXo0UOSNH/+fG3atEmNGjWyODIAcF2RkZFasmSJfv75Z/3++++Kjo5Ocr+HHnpIPXv2VM+ePVWpUqUMjhIAcD8eHh6qU6eO6tSpoxEjRuj8+fNasmSJFi9erOXLlysiIsLc1zAMbd26VVu3btV7772n4sWLq0OHDurcubNatmwpHx8fCz/J/ZFIAJxo9uzZOvP/c+J4eXlp6NChFkeUcbp166b69eubzXDfeecdrV+/PtNkWQEgI8THx2vt2rWaPn26Zs+erRs3biS5X9myZfXkk0+qZ8+eqlq1Kr9LASCTKFKkiF544QW98MILioiI0OrVq80uEAkzuiU4e/asvv32W3377bcKDAxUhw4d1K1bN7Vp00YBAQEWfYKkeVgdAOCuDMPQZ599ZpaffPLJLNEaIYHNZrNrjbFx40YtWrTIwogAwHUcOnRIQ4cOVcmSJfXII49o4sSJ9yQRChQooFdffVXbtm3TsWPH9PHHH6tatWokEQAgk/L391e7du303//+V2fOnNHu3bv18ccf6+GHH77nd/uNGzc0ffp0de/eXfnz51fXrl01bdo0hYaGWhS9PVokAE6yevVq7dy50yy/9dZbFkZjjebNm6tzmzaquXSpJOlsv36KPXVKXtmzWxwZAGS80NBQ/frrr5o8eXKygyYGBASoa9euevrpp9WqVSt5eVFVAwB3ZLPZVKNGDdWoUUPvvvuuLl26pD/++EMLFizQ0qVLFRERIV9JQyUpIkKaP18vzJ+vOC8vtWzZUt26dVPnzp1VuHBhS+Ln6QQ4SeLWCI899phq1KiRoe8fb3jq8K2KduW08vaWOne2L6fURyNH6sT/JxJ09ap+nT5dz7z0UppjAYDMJDY2VsuWLdPkyZO1YMGCJMc98PT0VJs2bfT000+rc+fOLtd8FXAkR9ZPYL301BFhr2DBgurdu7d69+6t27dva+nSpVoyc6bqzZmjmNhYSZKnpKjYWC1fvlzLly/XgAED1LBhQ3Xr1k1du3ZVmTJlMixeEgmAE+zbt09//vmnWX777bczPIYYw0e/XXjKIecKCJDmz0/bsdUaNNBnzz6radOmSZLKjBmjnn37ypsnDQA3dvDgQU2ePFnTpk3TxYsXk9ynVq1aCgoK0lNPPZVpp/8CUsuR9RNYLz11RCQvICBA3bp1U7du3RQdHa3Vq1dr7ty5yj5/vu5cvmzuZxiGNm3apE2bNumtt95SzZo11bVrV3Xr1k1VqlRxalc4xkgAnGDs2LHmco0aNdSqVSsLo7HeiBEj5Ol59xuHkydPaurUqRZHBACOd+vWLf30009q1KiRqlSpos8+++yeJEKBAgX0xhtvaM+ePdq5c6cGDx5MEgEAkCwfHx+1adNG//vf/3T+/HmtX79er7/+ukqWLHnPvrt379aIESNUrVo1VahQQUOHDtWuXbtkGIbD4yKRADjY1atX9csvv5jlN998M8sPjFW2bFkFBQWZ5Y8//jjZac0AIDMxDEPbtm3Tiy++qMKFC6tfv37avHmz3T7e3t7q1q2bFi5cqJCQEH3xxReqXr26RREDADIrT09PNWnSRGPHjtWpU6e0c+dOvffee6pcufI9+x4/flz/+c9/VLt2bVWsWFHvvfee9u3b57CkAokEwMEmTpyoqKgoSXf7OvXs2dPiiFzDe++9Zw4advr0aU2ePNnagAAgHa5du6Zx48apRo0aevjhh/XDDz/o1q1bdvvUrFlT48eP14ULFzRnzhx17NiRbl0AAIew2WyqVauWPvroIx04cECHDh3SJ598onr16t2z77FjxzRq1ChVr15dVapU0b///W8dOnQoXe/PGAmAA8XFxenbb781yy+88IJ8fHwsicVDcSofcNQsH7tdIc3niomRliz5u9y+fSoG0/n/g0tLGteypQYvX65Y3W2VEBQUJF9f3zTHBQAZyTAMbdiwQd99951mz56dZMuqwMBAPf300+rXr59q165tQZSAa0uqfhIvBlzMrNJVR8SDpeICV6pUScOGDdOwYcMUHBysuXPnaubMmfe0kjt06JBGjhypkSNHytfXV2XLlk1TaCQSAAf6/fffdebMGUl3mx69ZOHsBN4e0XqyyG9m+dMTQ9J8rtu3pa5d/y6Hhkq5cqX+4AGSRnh56WpsrM6ePavJkydbeo0AICXCwsI0bdo0fffddzp48GCS+zRr1kzPP/+8unfvrmzZsmVwhEDmkVT9JCre38KIkB7pqiPiwdJ4gUuUKKHXXntNr732moKDgzVr1iz99ttv2r59u91+Ca2o04KuDYADTZgwwVzu3LmzihUrZmE0runZZ581l8eMGaPY/5/OBgBciWEY2r59u/r166ciRYro1VdfvSeJUKBAAb3zzjs6fPiw1q5dq2effZYkAgDApZQoUUJvvvmmtm3bphMnTujTTz9VrVq10n1eEgmAgxw7dkxLly41ywMHDrQwGtc1ePBguxkcZs2aZXFEAPC3W7du6YcfflDdunVVv359/fTTT4qIiLDbp1WrVpo1a5ZCQkL0n//8RxUrVrQoWgAAUq5MmTIaMmSIdu7cqSNHjih//vxpPheJBMBBEo+NULlyZbVo0cK6YFxYyZIl9eSTT5rl0aNHO2VKGgBIjaNHj+q1115T0aJF9eKLL2rnzp122/Pmzau3335bx44d0/Lly9WjRw8GTgQAZFoVKlQgkQBYLSoqSlOmTDHLAwYMyPJTPt7P0KFDzeV9+/ZpSeJBZAAgg8TFxWnx4sVq27atKlasqHHjxik8PNxun6ZNm2r69OkKCQnRmDFjVK5cOYuiBQDAdZBIABxg/vz5un79uiTJ399fzzzzjMURubaqVauqU6dOZplWCQAy0vXr1/X555+rfPny6tixo123NEnKmTOnBg0apP3792vdunXq1auX/Pz8LIoWAADXw6wNgANMnDjRXH788ccVGBhoYTSZw7Bhw7Rw4UJJ0qZNm7R+/Xo1a9bM4qgAuLvz58+raNGiioyMvGdblSpVNHDgQD3zzDPKnj27BdEBAJA50CIBSKfTp09r+fLlZvn555+3MJrMo0GDBnbjSIwePdq6YABkGWFhYXZJBE9PT3Xv3l2rV6/Wvn371L9/f5IIAAA8AIkEIJ0mTZpkLleoUEFNmjSxMJrMZdiwYebyn3/+ec/gZgDgLPnz59e7776rU6dOafbs2WrRogVj2wAAkEIkEoB0iIuLs0sk9O3bl4poKjz22GOqXbu2Wf70008tjAZAVuDn56dp06bp7Nmz+vjjj1W8eHGrQwIAINMhkQCkw/Lly3X27FlJd5vHBgUFWRxR5mKz2exaJcyZM0enTp2yMCIA7q5MmTJ65pln5Ovra3UoAABkWgy2CKTDTz/9ZC536NBBhQoVsjAae9HxPpocEmRXTqvs2aXVq+3Ljjq4a9euKleunI4fP674+Hh9/fXX+vLLL9McKwAAcF2OrJ/AeumqI+LBXPgCk0gA0ig0NFQLFiwwy/369bMwmnsZ8tSZiNIOOZeXl5RoXESHHuzp6anBgwdr0KBBku7OgDFy5EhmvgAAwA05sn4C66WrjogHc+ELTNcGII1mz56t6OhoSXcH7Wrbtq3FEWVevXv3Vq5cuSRJN2/etJtOEwAAAIBrIZEApNG0adPM5aeeekre3t4WRpO5Zc+eXS+++KJZ/vrrrxUbG2thRAAAAACSQyIBSIPTp09r/fr1ZvmZZ56xMBr3MHDgQHl6ekqSzpw5o/nz51sbEAAAAIAkMUYCkAY///yzuVyxYkXVrVvXwmiS5m2LUq8iM8zyjPO90nyuW7ekDh3+Li9enIqxXlJ4cPHixfXEE0/ol19+kSSNHTtWPXr0SHPMAADA9SRVP4kxmEUls0pXHREP5sIXmEQCkEqGYdglEp599lnZbDYLI0qahy1epbKdsSunVWystHatfdkZB7/++utmImHz5s3aunWrHn744VRGCwAAXFWS9RPDwoCQLumqI+LBXPgC07UBSKUdO3boyJEjZvnpp5+2MBr3Uq9ePTVu3NgsMw0kAAAA4HpIJACplHiQxaZNm6pUqVLWBeOG3njjDXN59uzZCg4OtjAaAAAAAP9EIgFIhdjYWP32229m+dlnn7UwGvfUuXNnlS59d37puLg4TZgwweKIAAAAACRGIgFIhbVr1+ry5cuSJG9vbwYDdAJPT08NGjTILE+cOFGRkZEWRgQAAAAgMRIJQCr8+uuv5nKbNm2UO3duC6NxX3369FG2bNkkSdeuXbNrBQIAAADAWiQSgBSKjo7W3LlzzXLPnj0tjMa95cqVy24Qy2+++cbCaAAAAAAkRiIBSKEVK1bo+vXrkiRfX1916tTJ4ojc2yuvvGIu79ixQ9u2bbMwGgAAAAAJSCQAKZS4eX379u2VM2dOC6NxfzVq1FCTJk3MMoMuAgAAAK6BRAKQApGRkZo/f75ZpltDxhg4cKC5/Ouvv+rKlSsWRgMAAABAkrysDgDIDP7880+Fh4dLkrJly6b27dtbHNGDGYaHLkYVtCunlaenVKOGfTkjDu7atasKFSqkixcvKjo6WhMnTtTQoUNT8eYAAMCVOLJ+Auulq46IB3PhC0wiAUiBxN0aOnXqpICAAAujSZlow1f/C37ZIefKkUPavTvjD/bx8dGLL76oDz/8UJL07bff6u2335anC/0SBQAAKefI+gmsl646Ih7MhS8wKUDgASIjI7V48WKzTLeGjPXSSy/Jy+tuzjM4ONju/wIAAABAxiORADzAihUrdOvWLUlSQECA2rRpY3FEWUuRIkXUtWtXs8ygiwAAAIC1SCQADzB37lxzuV27dvL397cwmqwp8aCLy5cv1/Hjxy2MBgAAAMjaGCMBuI/Y2FgtXLjQLCf+ZtzV2RSvAj6XzPLl6IL32fv+4uKkffv+LlerloqxXtJ18F1NmzZVlSpVdODAAUnSjz/+qE8//TRV5wAAANZLqn5i8N1mpuWAah7ux4UvMIkE4D7Wr1+va9euSbo78F9mmK0hgY9HlPqX/J9Z/vTEkDSf6+ZNqVatv8uhoVKuXBlx8F02m00vvviiBg8eLEmaNGmSPvzwQ/n4+KTqPAAAwFpJ1U+i4mntmVk5oJqH+3HhC0z6D7iPxN0aWrVqpZw5c1oYTdb2zDPPyM/PT5J0+fJlLViwwOKIAAAAgKyJRAKQjPj4eM2bN88sZ6ZuDe4oT548evzxx83y999/b2E0AAAAQNZFIgFIxo4dO3Tu3DlJkoeHhzp16mRxRHjxxRfN5RUrVujEiRMWRgMAAABkTSQSgGQk7tbQtGlTFShQwMJoIEmNGzfWQw89ZJZ/+OEHC6MBAAAAsiYSCUASDMOwSyTQrcE1JAy6mGDSpEmKjo62MCIAAAAg6yGRACTh4MGDOnbsmFkmkeA6nnvuOfn6+kq6O+hi4uk5AQAAADgfiQQgCYlbI9StW1clSpSwMBokxqCLAAAAgLVIJABJoFuDa0vcvWH58uU6efKkhdEAAAAAWQuJBOAfTp06pd27d5vlbt26WRcMktSkSRNVqlTJLDPoIgAAAJBxSCQA/7BgwQJzuVKlSnZ/sMI1/HPQxZ9++olBFwEAAIAM4mV1AICrWbx4sbncuXNnCyNJn5h4b82/2NmunFbZskmTJtmXM+bg5D333HMaNmyYoqKidPnyZS1atEjdu3d3yLkBAIBzOLJ+Aus5qZqHBC58gUkkAIncuHFDa9euNcsdO3a0MJr0iZeX9tys5ZBz+fhIvXtbcXDy8ubNqx49emj69OmS7g66SCIBAADX5sj6CaznpGoeErjwBaZrA5DIsmXLFBsbK+nuH6oNGjSwOCLcT+LuDcuWLdPp06etCwYAAADIIkgkAIkk7tbQrl07eXp6WhgNHqRp06aqUKGCWZ48ebJ1wQAAAABZBIkE4P/FxcXp999/N8sdOnSwMBqkhM1mU9++fc3ypEmTFB8fb2FEAAAAgPtjjATg/23dulVXr16VJHl5ealNmzYWR5Q+XrZotS+wxCwvudw+zee6c0caMODv8n//m4qxXtJ18IM999xzevfddxUXF6fg4GCtWrVKrVq1ctj5AQCA4yRVP4k1fCyMCOnh5GoeXPgCk0gA/l/ibg3NmjVTYGCghdGkn6ctTjVz7jHLf15pm+ZzRUdLU6b8Xf7qq1T8DkvXwQ9WuHBhtWvXTosWLZJ0dypIEgkAALimpOonsYaFASFdnFzNgwtfYLo2AP8vcSKBbg2ZS+LuDXPnzlVoaKiF0QAAAADujUQCIOnMmTPat2+fWSaRkLm0b99eBQoUkCRFRUVpxowZFkcEAAAAuC8SCYDsWyNUrFhR5cuXtzAapJa3t7eeffZZs/zTTz9ZGA0AAADg3kgkAKJbgzvo06ePubxz507t3r3bumAAAAAAN0YiAVnerVu3tGrVKrNMIiFzqlKlih5++GGzPGnSJAujAQAAANwXiQRkeStXrlR0dLQkKVeuXGrcuLHFESGtEg+6+PPPPysqKsrCaAAAAAD35LaJhMjISI0YMUIVKlSQn5+fihQpor59+yokJCRN5zt+/LheeOEFlSpVSn5+fsqfP78aNWqkzz77zMGRI6MlTBsoSW3btpW3t7eF0SA9nnzySfn7+0uSrl+/roULF1ocEQAAAOB+3DKREBkZqUcffVQffvihbt26pc6dO6t48eKaNGmSateurRMnTqTqfPPmzVO1atU0ceJE5c2bV127dlWtWrV06tQp/e9//3PSp0BGMAxDv//+u1mmW0PmljNnTj3++ONmmUEXAQAAAMfzsjoAZ/jkk0+0adMmNWzYUMuWLVP27NklSWPHjtWbb76pvn37au3atSk61549e/Tkk08qR44cWr58uZo0aWJui4+P186dO53yGZAx9uzZowsXLkiSPDw81LZtW4sjQnr17dtXU6dOlSQtXbpUZ8+eVfHixS2OCgAAAHAfbtciISYmRuPHj5ckTZgwwUwiSNIbb7yh6tWra926dfrrr79SdL5BgwYpOjpakydPtksiSHf/8Kxbt67jgkeG+/PPP83l+vXrK2/evBZG42g2Rcb5mi/JlvYz2aTAwL9fttScKl0Hp16zZs1UtmxZSXdbnEyZMsWp7wcAAFLDcfUTWC+Dq3lZjwtfYLdrkbBhwwaFhYWpbNmyqlWr1j3be/Toob1792rRokWqU6fOfc916NAhrV+/XhUqVKDJu5tKnEhwt9YIUfF++s/JYQ45V2CgFBZmxcGpZ7PZ1KdPH7333nuS7s7eMHz4cHl4uF3eFACATMeR9RNYL4OreVmPC19gt6tZ79mzR5JUu3btJLcnrE/Y735WrlwpSXrssccUGRmpKVOmaNCgQXr11Vf1448/Kjw83EFRwwrh4eHauHGjWXa3REJWFhQUJNv/Z2xPnjypDRs2WBwRAAAA4D7crkVCcHCwJKlYsWJJbk9Yn7Df/Rw4cECS5O/vr5o1a+rIkSN224cNG6Y5c+aoWbNm6QkZFlm1apViY2MlSXny5KGbihspVqyYWrduraVLl0qSJk+ezM8pAAAA4CBu1yLh1q1bkqRs2bIluT0gIMBuv/sJDQ2VJH311Ve6fv265s6dq7CwMB05ckS9evXS1atX1aVLF3OwvgepUqVKkq/UziIBx0jcraF169by9PS0MBo4WlBQkLk8a9Ys3b5928JoAGQknrcAADiX2yUSDMOQJLNZc3LbUyIuLk6SFBsbq59//lldu3ZVYGCgKlSooOnTp6tevXoKDQ3VhAkT0h84MpRhGG49PsJdhnw9IsyXlPJ7/54zGXe7ZyW8UvFjlM6D065Lly7KmTOnpLuJw3nz5mXI+wIAgPtxXP0E1rOompd1uPAFdruuDTly5JCkZL99vHPnjiTZzebwoHMVLVpUrVu3vmd7nz59tH37dq1ZsyZFsSV0lfinKlWqpOh4OM6RI0d05swZs5zU/29m5+sRqaFl/2OWPz0xJM3nunFDyp3773JoqJQrV0YcnHb+/v564okn9OOPP0qSpkyZomeeecbp7wvAejxvAdeVVP0kKt7fwoiQHhZV87IOF77AbtcioUSJEpKkkJCQJLcnrE/Y735KlSolSSpZsuR9t1++fDmVUcJqiVsj1KxZU4ULF7YwGjhL4u4NK1eu1NmzZy2MBgAAAHAPbpdIqFGjhiRp586dSW5PWF+9evUHnith+sjr168nuf3atWuSUta6Aa7F/bs1QJIaN26ssmXLSrrbnWXatGkWRwQAAABkfm6XSGjcuLECAwN14sQJ7dq1657ts2fPliR16NDhged69NFHFRAQoBMnTiT5TWZCl4bkppqEa4qIiNDatWvNMokE92Wz2fTcc8+Z5SlTpqRqnBQAAAAA93K7RIKPj48GDhwoSRo4cKDdWAljx47V3r171aRJE9WrV89c/80336hSpUoaNmyY3bmyZcumQYMGKSYmRi+//LLduf78809NmTJFNptNL774opM/FRxp7dq1ioyMlHR3HIyGDRtaHBGcKXEi4ejRo9q6dauF0QAAAACZn9sNtihJ7733nlasWKFNmzapfPnyatq0qc6cOaOtW7cqb968mjRpkt3+V69e1ZEjR5KcxnHEiBFav369lixZovLly+vhhx/W5cuXtWXLFsXHx2vUqFGqX79+Rn00OEDibg2PPvqofHx8LIwGzlaqVCm1aNHCbEE0ZcoUNWjQwNqgAAAAgEzMaS0SYmJitH//fq1evVrz58/X6tWrtX//fsXExDjrLU1+fn5avXq13n//fWXLlk3z58/X6dOnFRQUpF27dqlcuXKpOteqVas0atQo5cqVS3/88YcOHDigli1bavHixRo+fLgTPwmcgfERsp7Egy7++uuvZosUAAAAAKnn0BYJV65c0eTJk7VkyRJt27ZNUVFR9+zj5+en+vXrq3379goKClL+/PkdGYLJ399fH374oT788MMH7jty5EiNHDky2e0+Pj4aPnw4SQM3cOrUKR05csQst2nTxsJokFG6d++uV155RXfu3FFYWJgWLlyoJ554wuqwAAAAgEzJIS0Sjh07pqeeekrFixfXkCFDtG7dOmXPnl2NGjVShw4d1KtXL7Vv316NGjVStmzZtHbtWr3zzjsqXry4evXqpePHjzsiDOCBErdGqFSpkjmFJ9xbjhw51L17d7M8ZcoUC6MBAAAAMrd0t0gYNGiQvv/+e8XFxally5bq1auXWrRoodKlSyd7zMmTJ7V69WrNmDFDM2fO1Jw5c/Tiiy9q/Pjx6Q0HuK/ly5eby7RGyFqCgoLM6R+XLl2qixcvqlChQhZHBQAAAGQ+6W6RMHHiRL388ssKDg7W8uXL1adPn/smESSpTJky6tevn1auXKkzZ86of//++umnn9IbCnBfsbGxWrVqlVl+7LHHLIwGGa1ly5YqXry4JCkuLk7Tp0+3OCIAAAAgc0p3i4STJ0+m61u9okWLaty4cfdMvQg42o4dO3Tjxg1Jkre3t5o3b25xRM4Va3hpzbXmduW08vOTRoywL2fMwY7j4eGh5557TqNGjZIkTZ48WW+88YZsNpsl8QAAkBU5sn4C67lINc99ufAFTvdPrqOaBtPEGM62YsUKc7lhw4bKnj27hdE4X5zhrbXXWzrkXH5+0n3GI3XiwY6VOJGwf/9+7dq1S7Vr17Y4KgAAsg5H1k9gPReq5rknF77ATpv+EXA1icdHoFtD1lShQgU1bNjQLDPoIgAAAJB6liQSVq9erW+++UYTJkyw67MOOMutW7e0efNms0wiIesKCgoyl2fMmKHo6GgLowEAAAAynwztlBQcHKxu3bpp586dCgwMlCTduHFDtWrV0ty5c1WyZMmMDAdZyNq1axUTEyNJCgwMVJ06dSyOCFbp2bOnBg8erKioKF29elV//PGHOnfubHVYAAAAQKaRoYmEl156SfHx8dq3b5+qVKkiSTpw4ICCgoLUv39//fHHHxkZDrKQxN0aHnnkEXl5uf/APp62GDXJvcEsbwhtkuZzRUZKn376d3no0FSM9ZKugx0vV65c6ty5s2bOnCnpbvcGEgkAAGSMpOoncYa3hREhPVysmud+XPgCZ+hfU2vWrNGaNWvMJIIkValSRd98840eeeSRjAwFWUzigRazSrcGL1usWuRda5a3hDVI87kiI6V///vv8muvpTKRkOaDnSMoKMhMJCxevFhXr15Vvnz5LI0JAICsIKn6CYmEzMsFq3nuxYUvcIaOkVCgQAFly5btnvXZsmVT3rx5MzIUZCHnz5/XgQMHzHJWSSQgea1btzZniomJidEvv/xicUQAAABA5pGhiYQhQ4ZoyJAhCgsLM9eFhYVp+PDheueddzIyFGQhiVsjlCpVSmXLlrUwGrgCLy8vPfPMM2aZ2RsAAACAlMvQrg2zZs3Szp07VaxYMVWsWFE2m02HDx+Wl5eX7ty5o3nz5pn7MpsDHOWf0z7abDYLo4GrCAoK0ueffy5J+uuvv3TgwAG7blcAAAAAkpahiYRSpUqpVKlSduuqVauWkSEgizEMI0uOj4AHq1q1qmrXrq2dO3dKutsqYcyYMRZHBQAAALi+DE0kTJo0KSPfDtD+/ft18eJFSZLNZmNQT9gJCgoyEwk///yzRo8eLU9PT4ujAgAAAFxbho6RAGS0xK0R6tSpw6CesPPUU0+ZU4FeuHDB7n4BAAAAkLQMTSRcvnxZvXv3VtGiReXl5SVPT0+7F+Bo/xwfAUgsf/78ateunVmeOnWqhdEAAAAAmUOGdm0ICgrSkSNHNHDgQBUuXJhB7+BU0dHRWrv273mKW7VqZWE0cFVBQUFauHChJGnevHkKDw9Xzpw5LY4KAAAAcF0ZmkjYsGGD1qxZozp16mTk2yKL2rp1q+7cuSNJ8vPzU6NGjSyOCK6offv2yp07t0JDQxUREaFZs2apX79+VocFAAAAuKwM7dpQsmRJujAgwySeQrRJkyby8/OzMBq4Kl9fXz311FNmme4NAAAAwP1laIuETz75REOHDtW0adOUP3/+jHxrZEGJEwlZcbaGqHg/fXpiiF05rQIDpdBQ+3LGHJwxgoKC9N///leStG7dOp06dUqlS5e2OCoAANyPI+snsF4mqOZlbi58gTO0RULCH3OFCxdW8eLFVaZMGbsX4Ch37tzR5s2bzXJWTCRINkXF+5svKe1jkthsUq5cf79SNbxJug7OGPXq1VPFihXNMq0SAABwFsfVT2C9TFDNy9xc+AJnaIuE3r17a9u2berXrx+DLcKpNm7cqJiYGElSzpw5GZcD92Wz2RQUFKThw4dLuptI+OCDD/gdBQAAACQhQxMJf/75pxYtWqSWLVtm5NsiC0rcraF58+by8srQWx2Z0DPPPKN3331XhmHo5MmT2rhxo5o0aWJ1WAAAAIDLydCuDfnz51ehQoUy8i2RRa1cudJczprdGpBaxYsXt7tXpkyZYmE0AAAAgOvK0ETC8OHD9dFHH5lNzgFnCAsL019//WWWs2oiwdcjUkPKjDZfvh6RaT7XjRv23bNu3MiogzNWUFCQuTxz5kxFRERYGA0AAO7HkfUTWC8TVfMyJxe+wBna3nvGjBnatWuXihQpokqVKsnb29tue+Lm6EBarVu3TvHx8ZKkfPnyqWrVqhZHZBVDfp5RduU0n8mw/71lpOZU6To4Y3Xr1k0vv/yybt++rfDwcC1YsEBPPvmk1WEBAOBGHFc/gfUyUTUvc3LhC5yhiYRSpUqpVKlSGfmWyIISJ6RatmwpD48MbXiDTCwgIEA9evQwuzVMmTKFRAIAAADwDw5PJCxevFgdOnRIctukSZMc/XbAPRInErJqtwakXVBQkJlIWLZsmS5cuKDChQtbHBUAAADgOhz+VW2nTp3UvHlzbdmyxdGnBh7o8uXL2rdvn1kmkYDUat68uUqUKCFJio+P1/Tp0y2OCAAAAHAtDk8kdO3aVevXr1fjxo3VvXt3HTlyxNFvASRrzZo15nLRokVVvnx564JBpuTh4aFnn33WLE+ZMkWGC/VHAwAAAKzm8ETCnDlztGXLFjVv3lzz5s1TtWrV9NJLL+nChQuOfivgHv+c9tFms1kYDTKr5557zlzev3+/du/ebV0wAAAAgItxyih09evX16pVq/THH3+oatWq+uGHH1S+fHm9++67Cg8Pd8ZbApIYHwGOUaFCBTVs2NAsJ4yZAAAAAMBJiYQEbdq00c6dOzV9+nQVKlRIo0ePVpkyZfTll18qOjramW+NLCg4OFjHjx83yyQSkB6JWyXMmDFDMTExFkYDAAAAuI4MmRfvqaee0uHDh/XNN9/I29tbb775pipUqKBp06ZlxNsji1i9erW5XK5cOXPAPCAtevbsKV9fX0nSlStX9Oeff1ocEQAAAOAaMiSRIEleXl4aMGCATpw4oeHDh+vcuXPq06dPRr09sgC6NcCRcufOrU6dOpllujcAAAAAd3k58+S3b9/WoUOHdPDgQfPfgwcP6vTp04qLi2MgPDiMYRgkEv4hzvDU7vAaduW08vGRgoLsyxlzsLWee+45zZo1S5K0aNEiXb9+XXny5LE4KgAAMi9H1k9gvUxczcscXPgCOzyR8MYbb5iJg5CQEHN9wvRpHh4eKlOmjKpWrapq1ao5+u2RRR07dszufmvRooV1wbiIWMNHCy51dci5smWTJk+24mBrtWnTRgUKFNDly5cVHR2t3377TS+//LLVYQEAkGk5sn4C62Xial7m4MIX2OGJhK+++spcLlKkiKpWrWomDapWraoqVarIz8/P0W+LLC5xa4SqVauqYMGCFkYDd+Ht7a2nn35aX375paS73RtIJAAAACCrc3giYcKECWbiIFeuXI4+PZAkujXAWZ577jkzkbB161YdOXJEFStWtDgqAAAAwDoOH2zx5ZdfVtOmTUkiIMPEx8fbzdhAIgGOVLNmTVWvXt0sT5061cJoAAAAAOulu0VC+fLl1blzZ3Xo0EFNmzaVpycDpiBjHThwQFevXpV0dwyOZs2aWRyRa/BQrKrl2GeW991M+5gk0dHSjBl/l3v1SsVYL+k62DUEBQXpzTfflCRNmzZNH330kTw8MmzSGwAA3EZS9ZN4547/Didyg2qea3PhC+yQn9qxY8fqyy+/VGBgoNq1a6eOHTuqbdu2CgwMdMTpgftau3atuVyzZk3lzp3bwmhch7dHjLoUWmCWD9+ulOZz3bkjJZ6ttUuXVPwOS9fBrqFXr1565513FBcXp7Nnz2rNmjW0fAEAIA2Sqp9ExZNIyKzcoJrn2lz4Aqf7K7Vjx47p0KFDGj16tKpUqaLffvtNvXr1UoECBfToo49q3LhxOnHihCNiBZK0Zs0ac5nZGuAMhQoVUps2bczylClTLIwGAAAAsJZD2uZWrFhR77zzjtavX6+LFy9q0qRJ6tixo3bs2KHXX39dFSpUUOXKlTV06FBt3LjRnAoSSK/4+Hi7FgkkEuAsQYnm8J0zZ45u3bplYTQAAACAdRzeyTdv3rx67rnnNHv2bF29elV//PGHXn75Zd25c0djxoxRs2bNVKBAAfXu3ZvKONLt4MGD5vgINptNTZs2tTgiuKtOnTqZ3bVu376tuXPnWhwRAAAAYA2njhbm7e2tNm3a6JtvvtHp06e1e/dujRw5UmXKlNG0adP0+OOPK1++fPrhhx+cGQbc2D/HR2C2EDiLn5+fevbsaZbp3gAAAICsyuGJhMWLFye7rXr16nr//fe1detWnTt3Tv/73//UunVr3bhxw9FhIItgfARkpMTdG1avXq3g4GALowEAAACs4fBEQqdOndS8eXNt2bLlvvsVKlRIL7zwghYuXKi33nrL0WEgCzAMg0QCMlTDhg1Vrlw5SXfvv59//tniiAAAAICM5/BEQteuXbV+/Xo1btxY3bt315EjRxz9FoAkxkdAxrPZbHruuefM8pQpUxg8FgAAAFmOwxMJc+bM0ZYtW9S8eXPNmzdP1apV00svvaQLFy44+q2QxSUeH6FGjRrKnTu3hdEgq3j22WfN5aNHj2rbtm0WRgMAAABkPKcMtli/fn2tWrVKf/zxh6pWraoffvhB5cuX17vvvqvw8HBnvCWyILo1wAqlSpVS8+bNzTKDLgIAACCrceqsDW3atNHOnTs1ffp0FSpUSKNHj1aZMmX05ZdfKjo62plvDTfH+AiwUuJBF3/99VdFRUVZGA0AAACQsbwy4k2eeuopPf744/r+++/10Ucf6c0339S4ceP00Ucf2TUTBlLq0KFDunLliiTGR0hOdLyvvjvzkl05rXLkkHbtsi9nzMGuqUePHnrllVcUERGh0NBQLV68WN27d7c6LAAAXJ4j6yewnhtW81yLC19gp7ZISMzLy0sDBgzQiRMnNHz4cJ07d059+vTJqLeHm0k8PkL16tWVJ08eC6NxTYY8dCm6sPky0vHj7ukp1az598vTM6MOdk05cuRQt27dzDLdGwAASBlH1k9gPTes5rkWF77ATm2RcPv2bR06dEgHDx40/z148KBOnz6tuLg42Ww2Z7493BjdGmC1oKAgTZ8+XZL0xx9/6PLlyypQoIDFUQEAAADO5/BEwhtvvGEmDkJCQsz1CVOkeXh4qEyZMqpataqqVavm6LdHFsD4CHAFjzzyiIoWLapz584pNjZWv/zyiwYPHmx1WAAAAIDTOTyR8NVXX5nLRYoUUdWqVc2kQdWqVVWlShX5+fk5+m2RhRw+fFiXL1+WdHd8hGbNmlkcEbIiT09PPfPMM/rPf/4j6W73BhIJAAAAyAocnkiYMGGCmTjIlSuXo08P2I2PUK1aNcZHSIaPLUp9iv9klied7Zvmc928KSUez3L9+lSM9ZKug11bUFCQmUjYtWuX9u3bR0srAADuI6n6SbTBgIuZlRtX81yDC19ghycSXn75ZUefErBDt4aUsdniVcj3kl05reLipD177MsZc7Bre+ihh1SvXj1t375dkjR16lR99tlnFkcFAIDrSrJ+YlgYENLFjat5rsGFLzDDpCJTYXwEuJrnnnvOXP75558VGxtrYTQAAACA85FIQKZy9OhRXbr0dxab8RFgtaeeekre3t6SpIsXL2r58uUWRwQAAAA4V7oTCYcPH3ZEHA47D9xb4tYI1apVU968ea0LBpCUN29edejQwSxPnTrVwmgAAAAA50t3IqFq1ap6+umntX///jQdv3v3bj355JMMUIYUoVsDXFHi7g3z58/XjRs3LIwGAAAAcK50JxLef/99LVq0SDVq1FDt2rX1xRdfaMeOHYqJiUly/6ioKG3ZskWjR49WtWrVVKdOHf3+++/64IMP0hsK3BzjI8BVtWvXzmwdExkZqVmzZlkcEQAAAOA86Z61YcSIEXr55Zc1atQoTZ06VW+//bZsNpu8vb1VqlQp5c6dWzly5FB4eLiuX7+uM2fOKDY2VoZhKDAwUIMHD9awYcOUP39+R3weuLFjx47p4sWLZpnxEeAqfHx81KtXL40fP16SNHnyZD3//PMWRwUAAAA4h0OmfyxQoIDGjRunTz/9VDNnztTixYu1ceNGHT169J59CxUqpKZNm6p9+/Z64okn5Ofn54gQkAUkbo1QtWpV5cuXz7pggH8ICgoyEwkJv/8qVKhgcVQAAACA46U7kRAcHKwSJUpIkvz9/RUUFKSgoCBJ0pUrV3T58mXduHFDgYGBKlCgAC0PkGZ0a4Arq127tqpXr669e/dKkn766Sd9+umnFkcFAAAAOF66x0goXbq0XnnllSS35c+fX1WqVFGjRo1UpUoVkghIM8ZHgKuz2Wzq27evWZ4yZYpiY2MtjAgAAABwjnS3SDAMQxEREUluW7lyperWravAwMD0vg2yuOPHj+vChQtmmfERHize8NDpOyXtymnl5SU1b25fzpiDM5enn35ab7/9tmJiYnTx4kX9+eefdlNDAgCQ1TmyfgLrZaFqnjVc+AI7NZLHHntMffr00cSJE535NsgCErdGoHVLysQYvppyro9DzpU9u5TovyADD85c8uXLpy5dupizNkycOJFEAgAAiTiyfgLrZaFqnjVc+AI7PQVoGIaz3wJZAN0akFkk7t6wePFiXbp0ycJoAAAAAMejLRFcHuMjIDN57LHHVKxYMUlSbGysfv75Z4sjAgAAAByLRAJc3okTJ3T+/HmzzPgIcGWenp7q3bu3WZ44cSItswAAAOBWHDJGwrVr13T16lXly5fPEacD7CRujVC5cmUVKFDAumAyEZviVMI/2CwHR5RI87liY6UNG/4uN2mSirFe0nVw5tS7d299/PHHkqRDhw5p69atatCggcVRAQBgvaTqJ4Y8LYwI6ZEFq3kZy4UvsEOiWLx4sQoWLKg8efLooYceUuXKlVW5cmVHnBqgW0Ma+XhEq3exKWb50xND0nyuW7ekli3/LoeGSrlyZcTBmVPZsmXVokUL89796aefSCQAAKCk6ydR8f4WRoT0yILVvIzlwhc43V0bBgwYoMaNGytHjhy6du2aNmzYoO+//16vv/66bDabpk2bpsqVK6tXr1767LPPtGLFCl27ds0Rsd9XZGSkRowYoQoVKsjPz09FihRR3759FRISkq7zHjt2TP7+/rLZbGrbtq2DokVyGB8BmVW/fv3M5V9//VW3b9+2MBoAAADAcdLdIuGbb74xl0+dOqU9e/aYr927d+v06dM6fPiwDh8+rN9++83ct2jRoqpVq5YWLFiQ3hDuERkZqUcffVSbNm1S4cKF1blzZ50+fVqTJk3S4sWLtXnzZpUtWzZN537ppZcUFRXl4IiRnJMnT+rcuXNmuXnieVQBF9atWze98sorCg8P182bNzV79mwFBQVZHRYAAACQbg4dbLF06dLq0qWLRowYoblz5+rkyZO6ceOG1q1bp/Hjx6tv376qU6eO/Pz8FBISosWLFzvy7U2ffPKJNm3apIYNG+ro0aP67bfftHXrVn3xxRe6cuWK3fRsqTFx4kStXr1aL7zwgoMjRnISt0Z46KGHGB8BmUa2bNn01FNPmeWffvrJwmgAAAAAx3H6rA05cuRQkyZN9Morr+iHH37Qtm3bdPPmTR08eFAzZsxw+PvFxMRo/PjxkqQJEyYoe/bs5rY33nhD1atX17p16/TXX3+l6ryXL1/W22+/rVatWtn9cQDnolsDMrPE3RvWrVunY8eOWRgNAAAA4BiWTP/o4eGhSpUqqWfPng4/94YNGxQWFqayZcuqVq1a92zv0aOHJGnRokWpOu+rr76qiIgIffvttw6JEw9mGIbWrl1rlkkkILOpW7euqlatapYnTZpkYTQAAACAY1iSSHCmPXv2SJJq166d5PaE9Qn7pcTvv/+u3377TcOHD1e5cuXSHyRS5NSpUzp79qxZZnwEZDY2m82uK9XkyZMVGxtrYUQAAABA+rldIiE4+O68tMWKFUtye8L6hP0e5Pbt2xowYIAqVqyoIUPSPn0eUi9xt4ZKlSqpYMGC1gUDpNEzzzwjb29vSdKFCxe0dOlSiyMCAAAA0ifdsza4mlu3bkm6O9BZUgICAuz2e5D33ntPZ86c0apVq+Tj45Ou2KpUqZLk+hMnTqR5Fgl3xvgIcAf58+dXp06dNGfOHEl3B11s3769xVEB7o3nLQAAzuV2LRIMw5B0t0nx/banxI4dOzR+/Hg999xzatmypUPiQ8owPgLcSeLuDQsXLtTly5ctjAYAAABIH7drkZAjRw5Jd7skJOXOnTuSZDebQ1JiY2P1wgsvKDAwUJ9//rlDYjtw4ECS65P75iQrO336tF33E8ZHQGbWpk0bFS1aVOfOnVNsbKymTp2qt956y+qwALfF8xYAAOdyu0RCiRIlJEkhISFJbk9Yn7BfckJCQrR7924VKlRIjz/+uN22sLAwSdK2bdvUokULZc+eXYsXL05n5EgscbeGihUrqlChQtYFk0nFxPvo1/M97cppFRAgzZtnX86Yg92Dp6enevfurVGjRkmSfvjhB7355pvJtpwCAMBdObJ+AutRzXMyF77AbpdIqFGjhiRp586dSW5PWF+9evUUne/ixYu6ePFikttCQ0O1du1aBQYGpiFS3A/jI6RfvDx15PZDDjmXt7fUpYsVB7uPfv366ZNPPpFhGDp69KjWrVtHSxsAQJbjyPoJrEc1z8lc+AK73RgJjRs3VmBgoE6cOKFdu3bds3327NmSpA4dOtz3PKVKlZJhGEm+Vq9eLeluc2XDMMwWCnAcxkeAuyldurRat25tlr///nsLowEAAADSzu0SCT4+Pho4cKAkaeDAgXZjJYwdO1Z79+5VkyZNVK9ePXP9N998o0qVKmnYsGEZHi/udfr0aZ05c8Ys860t3MWLL75oLs+ePVvXrl2zMBoAAAAgbdwukSDdnbLx4Ycf1qZNm1S+fHn17NlTDRo00Jtvvqm8efNq0qRJdvtfvXpVR44c0YULFyyKGIkl7tZQoUIFFS5c2LpgAAfq2LGjChYsKEmKjo7W1KlTLY4IAAAASD23TCT4+flp9erVev/995UtWzbNnz9fp0+fVlBQkHbt2qVy5cpZHSLug/ERHMPbFq2ehX8xX9626DSf6/btu92zEl7JTIrihIPdi7e3t91UkN9//32qpqQFACCzc2T9BNajmudkLnyB3W6wxQT+/v768MMP9eGHHz5w35EjR2rkyJEpPneLFi2o/DsRiQTH8LDFqVL2I3bltIqJkRYssC9nzMHu5/nnn9fo0aMlSYcPH9aGDRvUtGlTi6MCACBjJFk/oVqdaVHNczIXvsBu2SIBmRfjI8DdlSlTRo899phZZtBFAAAAZDYkEuBSEs/WUKFCBRUpUsTCaADnSDzo4qxZs3T9+nULowEAAABSh0QCXArdGpAVdOrUSQUKFJAkRUVFadq0aRZHBAAAAKQciQS4lMSJBLo1wF35+PioT58+ZplBFwEAAJCZkEiAyzhz5oxOnz5tlkkkwJ09//zz5vLBgwe1ceNGC6MBAAAAUo5EAlxG4vERypcvr6JFi1oYDeBc5cqV06OPPmqWGXQRAAAAmQWJBLgMxkdAVpN40MWZM2cy6CIAAAAyBRIJcBkkEpDVdOnSRfnz55fEoIsAAADIPEgkwCWcOXNGp06dMsuMj4CswMfHR7179zbL3377LYMuAgAAwOV5WR0AINmPj1CuXDnGR3AAQzaFxQTaldPKw0MqWdK+nDEHu7/+/fvr888/l2EYOnLkiFatWmU3dgIAAO7EkfUTWI9qnpO58AUmkQCXQLcGx4uO99O406875Fw5c0qJJtTIwIPdX5kyZfSvf/1Lv//+uyTpv//9L4kEAIDbcmT9BNajmudkLnyBXSelgSwtcYsEEgnIagYMGGAuL1iwQCEhIRZGAwAAANwfiQRYLjg4WCdPnjTLjI+ArKZt27YqVaqUJCkuLk4//PCDtQEBAAAA90EiAZb75/gIxYoVszAaION5enqqf//+Zvn7779XdHS0hREBAAAAySORAMslHh+B1giOFK9Ar1DzJcWn/Uzxd7tnJbziU3OqdB2cdfTt21c+Pj6SpIsXL2r+/PnWBgQAgFM4rn4C61HNczIXvsAMtgjLMdCic/h6ROm10uPM8qcnhqT5XOHhUunSf5dDQ6VcuTLi4Kwjf/786tmzp6ZNmybp7qCLTzzxhMVRAQDgWEnVT6Li/S2MCOlBNc/JXPgC0yIBljp79izjIwD/L/Ggi2vXrtWBAwcsjAYAAABIGokEWCrx+Ahly5ZV8eLFLYwGsNbDDz+sWrVqmeVvv/3WwmgAAACApJFIgKXo1gD8zWaz2bVKmDp1qm7evGlhRAAAAMC9SCTAUiQSAHu9evVSYGCgJOnmzZv6+eefLY4IAAAAsEciAZY5e/asTpw4YZYZHwGQsmXLpj59+pjl//73vzIMw8KIAAAAAHskEmCZxOMjlClThvERgP/Xv39/c3n//v1av369hdEAAAAA9kgkwDKJEwl0awD+VrFiRbVq1cosjx8/3sJoAAAAAHskEmAZxkcAkjdw4EBzed68eQoODrYwGgAAAOBvJBJgiZCQEB0/ftwsMz4CYK9Dhw4qU6aMJCkuLk4TJkywOCIAAADgLhIJsMQ/x0coUaKEhdEArsfT01ODBg0yy99//71u375tYUQAAADAXV5WB4CsKXG3BlojOEes4a0/r7SxK6eVv7/05Zf25Yw5OGvr06eP3n//fd26dUthYWGaNm2a3UCMAABkNo6sn8B6VPOczIUvMIkEWILxEZwvzvDS1rCGDjmXr6/02mtWHJy1BQYGqm/fvvr6668lSePGjdOLL74oDw8akwEAMidH1k9gPap5TubCF5jaKDLcuXPnGB8BSKFBgwbJZrNJkg4fPqzly5dbHBEAAACyOhIJyHCJx0coXbq0SpYsaWE0gGsrV66cOnToYJbHjRtnYTQAAAAAiQRYgG4NQOoMHjzYXP7jjz90+PBhC6MBAABAVscYCchwJBIyhpctRo/mXWGWV15rleZzRURIw4b9XR49OhVjvaTrYEjSI488oqpVq2r//v2SpPHjxzMdJAAgU0qqfsKAi5kX1Twnc+ELTCIBGer8+fM6duyYWWZ8BOfxtMWqQe6tZnnN9RZpPldUlJS4Rf3Ikan4HZaugyFJNptNgwcP1gsvvCBJmjx5sj7++GPlzp3b4sgAAEidpOonJBIyL6p5TubCF5iuDchQq1evNpdLlSrF+AhACj399NPKmzevJOnOnTuaOHGixREBAAAgqyKRgAy1atUqc/mRRx6xMBIgc/H399eLL75olr/55hvFxsZaGBEAAACyKhIJyFAkEoC0GzBggLy87vZIO3PmjBYsWGBxRAAAAMiKSCQgw5w6dUqnT582yy1btrQuGCATKlasmHr06GGWv/jiCwujAQAAQFZFIgEZJnFrhEqVKqlIkSIWRgNkTm+88Ya5vHnzZm3cuNHCaAAAAJAVkUhAhqFbA5B+9erVs5vt5LPPPrMwGgAAAGRFJBKQIQzDIJEAOMhbb71lLi9cuFBHjhyxMBoAAABkNSQSkCEOHz6sixcvmuUWLVpYFwyQybVr104PPfSQpLtJurFjx1ocEQAAALISEgnIEIlbI9SsWVN58+a1MBogc/Pw8LBrlTBlyhRdunTJwogAAACQlZBIQIagWwPgWE8//bQKFSokSYqKitKECRMsjggAAABZhZfVAcD9xcfHa/Xq1WaZRELGiIr317+PjXTIuXLlkgzDioORHF9fX7366qsaPny4JGnChAkaMmSIAgICLI4MAIDkObJ+AutRzXMyF77AtEiA0+3Zs0ehoaGSJE9PTzVt2tTiiAD30L9/fzNxcP36dU2aNMniiAAAAJAVkEiA0yXu1lCvXj3lzJnTwmgA95E7d2698MILZnns2LGKjY21MCIAAABkBSQS4HSMjwA4z2uvvSZPT09J0qlTpzRr1iyLIwIAAIC7I5EAp4qJidG6devMMokEwLFKliypp556yix/8sknio+PtzAiAAAAuDsSCXCqHTt26NatW5IkHx8fNWrUyOKIsg5fjwiNKD/SfPl6RKT5XGFhks329yssLKMORkoMHTrUXN6/f7+WLFliYTQAACTPkfUTWI9qnpO58AUmkQCnStytoVGjRvL397cwGsA9ValSRV26dDHLo0aNkuGiI/wCAAAg8yORAKdifAQgYwwbNsxc3rp1q9asWWNdMAAAAHBrJBLgNBEREdq4caNZJpEAOE/9+vXVqlUrs/zJJ59YGA0AAADcGYkEOM3mzZsVFRUlSQoICFC9evUsjghwb8OHDzeXV6xYoW3btlkYDQAAANwViQQ4TeJuDU2bNpWPj4+F0QDur0WLFmrQoIFZHj16tIXRAAAAwF2RSIDTMD4CkLFsNptdq4T58+frwIEDFkYEAAAAd0QiAU5x8+ZNu2bVJBKAjNG+fXtVq1bNLI8aNcrCaAAAAOCOSCTAKdatW6e4uDhJUq5cuVSzZk1rAwKyCA8PD7sZHH799VcdPnzYwogAAADgbkgkwCmWL19uLrds2VKenp4WRgNkLU888YQqVaokSTIMQx999JHFEQEAAMCdkEiAU6xYscJcfuyxxyyMBMh6PD099cEHH5jlX375hVYJAAAAcBgvqwOA+zl//rzdAG8kEqwRZ3hpS+jDduW08vWVBg+2L2fMwUirJ554Qh9++KEOHz5stkqYPn261WEBALI4R9ZPYD2qeU7mwheYn1w4XOLWCCVLllTZsmUtjCbrijW8tfTqvxxyLn9/6auvrDgYaZXQKqFXr16S7rZKeP/9980uDwAAWMGR9RNYj2qek7nwBaZrAxwu8fgIjz32mGw2m4XRAFkXYyUAAADAGUgkwKEMw2B8BMBFMFYCAAAAnIFEAhzqwIEDunjxoiTJZrPp0UcftTgiIGujVQIAAAAcjTES4FCJuzXUrl1befPmtTCarM3TFqu6gdvN8o4b9dJ8rqgo6dtv/y6//HIqxnpJ18FIr6TGSnj33XdVuXJliyMDAGRFSdVPGHAx86Ka52QufIH5qYVD/XN8BFjHyxajtvmXmuXd4TXTfK6ICOn11/8u9+6dit9h6ToYjvDPGRzee+89zZ071+qwAABZUFL1ExIJmRfVPCdz4QtM1wY4TFRUlNauXWuWSSQArsHT09OuS8O8efO0bds2CyMCAABAZkYiAQ6zefNm3blzR5Lk5+enRo0aWRwRgATdu3dXnTp1zPK7775rYTQAAADIzEgkwGESd2to1qyZ/Pz8LIwGQGI2m02jRo0yyytWrNCqVassjAgAAACZFYkEOAzTPgKurXXr1mrevLlZHjZsmAzDsDAiAAAAZEYkEuAQoaGh2rFjh1kmkQC4HpvNptGjR5vlbdu2aeHChRZGBAAAgMyIRAIcYtWqVYqPj5ckFShQQNWqVbM4IgBJadiwoTp27GiW3333XcXFxVkYEQAAADIbEglwiMTjI7Rq1UoeHtxagKv6+OOPZbPZJEkHDhzQjBkzLI4IAAAAmQl/7SHdDMPQsmXLzHKrVq0sjAbAg1SvXl1PPfWUWX7vvfcUGRlpYUQAAADITEgkIN2OHTumU6dOmeXWrVtbGA2AlPjwww/l7e0tSQoODta4ceMsjggAAACZhdsmEiIjIzVixAhVqFBBfn5+KlKkiPr27auQkJAUnyMsLEwzZsxQr169VLlyZQUEBChHjhx6+OGHNW7cOMXExDjxE2Qef/75p7lcvXp1FS1a1MJoAKRE2bJlNXDgQLP8ySef6MqVKxZGBAAAgMzCy+oAnCEyMlKPPvqoNm3apMKFC6tz5846ffq0Jk2apMWLF2vz5s0qW7bsA8/z+eefa9SoUfLw8FCtWrXUsWNHXblyRRs3btS2bds0e/ZsLV26VNmyZcuAT+W6EicS2rZta2EkSCwq3ldfnRpsV06rnDmlRI1OlDNnRh0MZ3rvvfc0adIkhYWFKTw8XB9++KHGjx9vdVgAADfmyPoJrEc1z8lc+AK7ZYuETz75RJs2bVLDhg119OhR/fbbb9q6dau++OILXblyRX379k3RebJnz67hw4crODhYO3bs0K+//qqVK1dq3759KlGihDZs2KCPP/7YyZ/GtUVERGj16tVmmUSCK/HQjdjc5is9P+4eHlKpUn+/UjWWZroOhjPlyZNH77//vln+7rvvdOTIEQsjAgC4P8fVT2A9qnlO5sIX2HUicZCYmBjzG7UJEyYoe/bs5rY33nhD1atX17p16/TXX3898FxDhw7VqFGj7mmqX758eX366aeSpF9++cWB0Wc+69atMwdpy549uxo3bmxxRABS45VXXlGZMmUkSbGxsRoyZIjFEQEAAMDVuV0iYcOGDQoLC1PZsmVVq1ate7b36NFDkrRo0aJ0vU+NGjUkSefPn0/XeTK7xN0aHn30Ufn4+FgYDYDU8vX1NROjkrRgwQKtXbvWwogAAADg6twukbBnzx5JUu3atZPcnrA+Yb+0OnnypCSpUKFC6TpPZvfHH3+Yy3RrADKnHj16qGHDhmb5zTffVHx8vIURAQAAwJW53WCLwcHBkqRixYoluT1hfcJ+aZUwVVrnzp3TdZ7M7NSpU3b9qUkkuBYfj0i9XOJbs/xt8MtpPld4uFS9+t/lvXtTMdZLug5GRrDZbPriiy/UqFEjSdJff/2lqVOnqnfv3tYGBgBwO0nVT6Lj/SyMCOlBNc/JXPgCu10i4datW5KU7EwKAQEBdvulxXfffacVK1YoV65cGjp0aIqPq1KlSpLrT5w4kaJZJFzN0qVLzeVKlSqpVKlS1gWDe9hkKJf3DbtyWsXHS2fO2Jcz5mBklIYNG+qJJ57QzJkzJUlDhgxR165dFRgYaHFkQOq52/MWcCeOrJ/AelTznMyFL7DbdW0wjLu/jGw22323p9XatWs1ePBg2Ww2/fTTTypSpEi6zpeZ0a0BcC+fffaZ/P39JUmXL1/Whx9+aHFEAAAAcEVu1yIhR44ckqTbt28nuf3OnTuSZDebQ0rt3btXXbp0UXR0tL7++mt17do1VccfOHAgyfXJfXPiyqKjo7Vy5UqzTCIByPxKlCihYcOG6YMPPpAkff3113r++ef10EMPWRwZkDru9LwFAMAVuV2LhBIlSkiSQkJCktyesD5hv5Q6ceKE2rRpo7CwMI0cOVKDBg1KX6CZ3MaNG81kjb+/v5o3b25xRAAc4e2331bp0qUl3Z0O8tVXX013Sy4AAAC4F7dLJCRMy7hz584ktyesr5540IoHOH/+vB577DFdvHhRgwcP1ogRI9IfaCaXeNrHFi1ayM+PQXIAd+Dn56exY8ea5RUrVmj+/PnWBQQAAACX43aJhMaNGyswMFAnTpzQrl277tk+e/ZsSVKHDh1SdL7Q0FC1adNGp06dUp8+ffTll186NN7MivERAPfVuXNntW7d2iy/8cYbioiIsDAiAAAAuBK3SyT4+Pho4MCBkqSBAwfajZUwduxY7d27V02aNFG9evXM9d98840qVaqkYcOG2Z3rzp07ateunfbv368nnnhCP/zwQ7KDOGYl586d0759+8wyiQTAvdhsNo0bN05eXneH0Tl9+rT+85//WBwVAAAAXIXbDbYoSe+9955WrFihTZs2qXz58mratKnOnDmjrVu3Km/evJo0aZLd/levXtWRI0d04cIFu/XvvvuutmzZIk9PT3l5ealfv35Jvt/kyZOd9VFcUuLWCGXKlFH58uUtjAaAM1SqVEmDBw/WF198IUn69NNP1atXL1WoUMHiyAAAAGA1t0wk+Pn5afXq1Ro9erRmzJih+fPnK3fu3AoKCtJHH32k4sWLp+g8oaGhkqS4uDjNmDEj2f2yWiJh0aJF5nK7du1opQG4qQ8++EC//PKLzp8/r6ioKPXv318rV67kZx4AACCLc7uuDQn8/f314Ycf6vjx44qKitLFixc1efLkJJMII0eOlGEY9yQEJk+eLMMwHvjKSiIiIrR8+XKz3LFjRwujAeBMOXPm1Pjx483y6tWrNW3aNAsjAgAAgCtwyxYJcJ5Vq1aZg65lz56daR9dWLzhqcO3KtqV08rbW+rc2b6cMQfDal27dlXHjh3NlkhvvPGG2rVrp3z58lkcGQAgM3Jk/QTWo5rnZC58gUkkIFUSd2to3bq1fH19LYwG9xNj+Oi3C0855FwBAVKaZwBM18Gwms1m0zfffKNVq1bp9u3bunbtmt5+++17xpoBACAlHFk/gfWo5jmZC19gt+3aAMczDEOLFy82y3RrALKGEiVK6KOPPjLLkydP1po1a6wLCAAAAJYikYAU2717t86dOyfp7reU7dq1szgiABll0KBBqlWrlll+6aWXFBkZaWFEAAAAsAqJBKRY4m4NDRo0UIECBSyMBkBG8vLy0vfffy8Pj7uPjaNHj+rf//63xVEBAADACoyRgBRLnEigW4Pr81CcygccNcvHbldI87liYqQlS/4ut2+firFe0nUwXEndunU1aNAgjRs3TpI0ZswYde3aVfXr17c4MgBAZpFU/SReDLiYWVHNczIXvsAkEpAi58+f144dO8wyiQTX5+0RrSeL/GaWPz0xJM3nun1b6tr173JoqJQrV0YcDFczatQoLV68WCdOnFB8fLz69Omjv/76S35+flaHBgDIBJKqn0TF+1sYEdKDap6TufAFpmsDUmRJokxYqVKlVKVKFQujAWCVgIAA/fTTT2b54MGDdHEAAADIYkgkIEX+2a3BZrNZGA0AKzVr1kyvvvqqWR4zZoy2bdtmYUQAAADISCQS8EARERFasWKFWaZbA4BPPvlEZcuWlSSziwOzOAAAAGQNJBLwQCtXrlRERIQkKUeOHGrevLnFEQGwWkBAgCZNmmS2Tjp48KBGjhxpbVAAAADIECQS8ECJuzW0adNGPj4+FkYDwFU0bdpUgwYNMstjxozR2rVrLYwIAAAAGYFEAu4rPj5eixcvNssdOnSwMBoAruaTTz5RhQp3pxY1DEPPPPOMQkNDLY4KAAAAzkQiAfe1bds2nT9/XpLk4eGh9u3bWxwRAFcSEBCg6dOny8vr7mzCISEheumll2QYhsWRAQAAwFlIJOC+5s6day43b95c+fLlszAaAK6obt26+vjjj83yrFmzNGXKFAsjAgAAgDORSECyDMOwSyR069bNwmgAuLK3335bLVu2NMsDBw7U8ePHLYwIAAAAzkIiAcnat2+fTpw4YZa7du1qYTQAXJmHh4emTp2q3LlzS5Ju376tXr16KSYmxuLIAAAA4GheVgcA15W4NUKDBg1UtGhRC6NBakXH+2hySJBdOa2yZ5dWr7YvZ8zByEyKFSumH374QT169JAkbd++XcOHD9dnn31mcWQAAFfhyPoJrEc1z8lc+AKTSECy6NaQuRny1JmI0g45l5eX1KKFFQcjs+nevbv69euniRMnSpI+//xzNWrUiBZNAABJjq2fwHpU85zMhS8wXRuQpGPHjmnfvn1mmT8CAKTU119/rWrVqpnl3r1723WTAgAAQOZGIgFJmjdvnrlcvXp1lStXzsJoAGQm2bJl0+zZs5UjRw5JUnh4uHr06KGIiAiLIwMAAIAjkEhAkujWACA9KlSoYHZvkKTdu3fr1VdftTAiAAAAOApjJOAeZ86c0datW80y3RoyJ29blHoVmWGWZ5zvleZz3boldejwd3nx4lSM9ZKug5GZPf7443r11Vf19ddfS5J+/PFHNW7cWL1797Y2MACAZZKqn8QYvhZGhPSgmudkLnyBSSTgHjNnzjSXK1asaNfXGZmHhy1epbKdsSunVWystHatfTljDkZm99lnn2nr1q1mcrJ///6qXLmy6tevb3FkAAArJFk/MSwMCOlCNc/JXPgC07UB9/jtt9/M5Z49e8pms1kYDYDMzMfHRzNnzlTevHklSVFRUerSpYvOnz9vcWQAAABIKxIJsHP8+HH99ddfZrlnz54WRgPAHZQoUUKzZ8+Wl9fdRnAXLlxQly5dGHwRAAAgkyKRADuJuzVUrVpVlStXtjAaAO6iRYsWGj9+vFnevn27XnjhBRkG7VkBAAAyGxIJsPPPbg0A4Cj9+/fXgAEDzPL06dM1ZswYCyMCAABAWpBIgOnQoUPau3evWSaRAMDRvvrqK7Vs2dIsDxs2TPPmzbMwIgAAAKQWiQSYErdGqFWrlsqXL29hNADckbe3t2bNmqUyZcpIkgzDUK9evbRp0yaLIwMAAEBKkUiApLuV+cSJhCeeeMLCaAC4s7x582rRokXKlSuXJCkyMlIdO3bUkSNHrA0MAAAAKUIiAZKknTt36vDhw2aZRAIAZ6pcubIWLFggHx8fSdL169fVtm1bXbhwweLIAAAA8CAkEiBJmjZtmrncuHFjs9kxADhLs2bN9PPPP8tms0mSTp8+rfbt2+vmzZsWRwYAAID78bI6AFgvNjZWv/zyi1l+9tlnLYwGjmIYHroYVdCunFaenlKNGvbljDkY7u7xxx/XuXPn9Prrr0uSdu3apW7dumnRokXy8/OzODoAgKM5sn4C61HNczIXvsAkEqBly5bp8uXLkiQfHx+6NbiJaMNX/wt+2SHnypFD2r3bioORFbz22msKCQnRF198IUlasWKFnnjiCc2ZM0fe3t4WRwcAcCRH1k9gPap5TubCF5gUIDR16lRzuUOHDsqdO7eF0QDIisaMGaNevXqZ5UWLFunpp59WbGyshVEBAAAgKSQSsrgbN25owYIFZpluDQCs4OHhocmTJ6tLly7mulmzZqlfv36Kj4+3LjAAAADcg0RCFjdnzhxFRkZKkvLkyaN27dpZHBGArMrb21u//vqr2rZta66bOnWqBgwYIMMwLIwMAAAAiTFGQhaXeLaGJ5980pyKDZmfTfEq4HPJLF+OLnifve8vLk7at+/vcrVqqRjrJV0HI6vx9fXV3Llz1a5dO61Zs0aS9L///U82m00TJkyQhwf5bwDIzJKqnxh8t5lpUc1zMhe+wCQSsrATJ06YFXWJbg3uxscjSv1L/s8sf3piSJrPdfOmVKvW3+XQUClXrow4GFmRv7+/Fi5cqDZt2mjz5s2SpO+++04RERH6v/buPC6qcv8D+OcM24Aou+aSEmBaIu6Ka+p1weWikmaluebNay43NZVr3rQ0TZSrubRp6u3Gzdwwck2vgb4M0SwRrmgSLiQoqKSCDNvz+8MfkxPbAGfmzJz5vF8vXnKe55yH73leXzwP3zlzZvPmzbCzkAsoERFVX3nrE12Js4IRUW1wmWdiFjzBLP/ZsM8++0z//TPPPIMuXbooGA0R0e/q1q2L/fv3Izg4WN+2bds2jBkzBoWFhQpGRkREREQsJNiooqIibNmyRb/96quvQpIkBSMiIjLk7u6Ow4cP47nnntO3bd++HSNHjoROp1MwMiIiIiLbxkKCjdq3bx8yMjIAPHrA2bhx4xSOiIiorNI7EwYMGKBv+/rrrzF06FDcv39fwciIiIiIbBcLCTZq06ZN+u9HjBgBb29vBaMhIqqYi4sLvv76a4SGhurbjhw5gl69eukLokRERERkPiwk2KD09HTs379fvz1lyhQFoyEiqpqTkxN27tyJF198Ud/2008/ITg4GBcuXFAwMiIiIiLbw0KCDdqyZQtKSkoAAE899RT69u2rcERERFVzcHDAF198gTlz5ujbrl27hm7duuH48eMKRkZERERkW1hIsDHFxcXYvHmzfnvy5Mn8XHYishoajQarVq3CmjVr9A+IzcnJQf/+/fHvf/9b4eiIiIiIbAP/grQx33zzDa5evQoAsLOzw4QJE5QNiIioBmbNmoUdO3bAyckJAKDT6fDKK69g7ty5KCoqUjg6IiIiInVjIcHGrF27Vv99WFgYGjdurGA0REQ19/zzz+Po0aPw8vLSt61evRqDBw/GnTt3FIyMiIiISN1YSLAh58+fx7Fjx/TbM2fOVDAaIqLa6969O86cOYOgoCB927fffotOnTohKSlJwciIiIiI1Mte6QDIfNatW6f/vn379ujevbuC0ZCpFZY4IDpzmMF2Tbm4AFu2GG6b52Ciqvn6+uLkyZOYOHEiduzYAQD45Zdf0KVLF2zYsAHjx4/XP0+BiIiUJef6hJTHZZ6JWfAEs5BgI27fvm3wILKZM2dyYa1yJbDHufvtZBnL0RGo8eM0anUwkXHq1KmD7du3o127dli4cCGEEMjLy8PEiRNx9OhRbNy4EXXr1lU6TCIimyfn+oSUx2WeiVnwBPOtDTZi8+bNePjwIQDAx8cHo0ePVjgiIiJ5SZKE8PBwfPPNN/D09NS3//vf/0bHjh3x008/KRccERERkYqwkGADCgsLsX79ev32a6+9Bq1Wq2BERESmM3jwYPz0008Gb9+6dOkSgoODERkZieLiYgWjIyIiIrJ+LCTYgKioKFy/fh0AYG9vj6lTpyocERGRaT355JP47rvvsHDhQv3buHQ6HebMmYPevXsjNTVV4QiJiIiIrBefkaByxcXFWL58uX573Lhx/MhHG2EvFWBI/X367X23htR4rLw8YNq037c3bqzGs15qdTBRzdnb22Pp0qXo3bs3xo4di5s3bwIATpw4gaCgIKxcuRJ//etfodGwpk5EZC7lrU+KhKOCEVFtcJlnYhY8wSwkqFx0dDQuXrwI4NH7h+fPn69wRGQudlIx2tY7p98+mBVS47EKCoBt237fXrOmGv+H1epgotrr168fkpKSMH36dGzfvh0AkJeXh+nTp2Pnzp346KOP0KJFC4WjJCKyDeWtT4qEggFRrXCZZ2IWPMF8GUbFhBB477339NujRo3C008/rWBERETK8Pb2xpdffomvvvoKXl5e+vbvvvsOQUFBWLRokf6BtERERERUORYSVOzw4cM4e/asfjs8PFzBaIiIlDdq1CgkJydj+PDh+raCggIsXboUgYGBOHjwoHLBEREREVkJFhJUSgiBZcuW6bcHDx6Mtm3bKhcQEZGFaNCgAXbv3o1du3ahSZMm+vZffvkFgwYNQmhoKFJSUhSMkIiIiMiysZCgUocOHcLx48f12wsXLlQwGiIiyyJJEsLCwnDhwgXMmTMHdnZ2+r6YmBgEBgZi+vTpyMrKUjBKIiIiIsvEQoIKlZSUGDxUsV+/fujWrZuCERERWSZXV1esWrUKZ8+eRY8ePfTtxcXF2LBhAwICArBixQo8ePBAwSiJiIiILAsLCSoUFRWFxMRE/faKFSsUjIaIyPIFBQUhLi4OO3bsgJ+fn7793r17CA8Ph5+fH1atWoW8vDwFoyQiIiKyDCwkqIxOp8Nbb72l337xxRfRoUMHBSMiIrIOkiRh5MiR+N///ofIyEh4eHjo+7KysvDmm2/iqaeeQmRkJHJzcxWMlIiIiEhZLCSozIcffoirV68CAOzt7bF06VKFIyIisi5OTk544403cPnyZcyfPx8uj31e861btzBnzhw0bdoUixYtwq1btxSMlIiIiEgZLCSoSHZ2Nt5991399tSpU+Hv769gRERE1svT0xMrVqxAWloa5s6dC2dnZ33fnTt3sHTpUjRt2hSvvfYaLl68qGCkRERERObFQoKKzJs3D3fu3AHw6AFij7/FgWyRhPxiJ/0XINV8JAlwc/v9S6rOULU6mEh59evXR0REBNLS0jB79mzUqVNH36fT6fDJJ5+gZcuW6NevH3bt2oXCwkIFoyUisnTyrU9IeVzmmZgFT7C90gGQPGJjY7Flyxb99jvvvIMGDRooGBEpTVeixfu/hMsylpsbkJOjxMFElqNBgwZYvXo13nrrLXz88cdYu3YtMjMz9f1Hjx7F0aNH0bBhQ0yZMgUTJ06Er6+vcgETEVkgOdcnpDwu80zMgieYdySogE6nw9SpU/Xbbdu2xYwZMxSMiIhIvTw8PLBgwQJcuXIFmzdvRmBgoEF/RkYG3nnnHTz11FPo06cPtmzZgvv37ysULREREZH8WEhQgYiICKSkpAB49NTxjz/+GPb2vNmEiMiUnJycMGnSJCQmJuL48eN46aWX4ODgYLDPd999h0mTJuGJJ57Ayy+/jN27d/MjJImIiMjqsZBg5c6fP2/wgMVp06ahc+fOCkZERGRbJElCjx49EBUVhfT0dCxfvhzNmzc32CcvLw//+c9/8Pzzz8PHxwejRo3Cl19+yTsViIiIyCqxkGDF8vPz8fLLL6OgoAAA0LBhQyxbtkzhqMhyCDhpHuq/AFHzkcSjt2eVfonqDFWrg4msS/369bFgwQJcvHgR33//PaZOnQp3d3eDffLy8rBz50689NJL8PHxwdChQ7FhwwakpqYqEzQRkVnJtz4h5XGZZ2IWPMG8/92KzZ49G0lJSfrtLVu2wM3NTcGIyJI4afKxwP99/faK1Pk1Huu33wAPj9+3794F/vC3kYkOJrJOkiQhODgYwcHBWLNmDfbt24ddu3YhJibG4C4EnU6Hffv2Yd++fQAAf39/hISEYODAgejTpw9cXV2VOgUiIpMob32iK3Gu5AiyZFzmmZgFTzDvSLBSn3/+OT788EP99syZMzFw4EAFIyIiovI4OTkhLCwMX3zxBbKyshATE4MJEybA4/GFwf9LTU3Fhg0bEBoaCg8PD3Tp0gVz587F3r17cfv2bQWiJyIiIiqLdyRYofj4ePzlL3/Rb3fo0AHvv/9+JUcQEZElcHJywtChQzF06FAUFhYiNjYWBw8exMGDB5GcnGywb1FRERISEpCQkIDVq1cDAFq1aoXu3bujU6dO6NSpE5599tkyD3gkIiIiMjUWEqxMamoqQkNDkZ+fDwDw9PTErl27oNVqFY6MiIiqw8HBAf369UO/fv2watUqpKen49ChQzh06BC+/fZb5JTzudHJyclITk7GJ598AgDQarVo27YtOnXqhPbt26N169Z45pln4OLiYuazISIiIlui2kJCfn4+li9fjv/85z+4du0aPD09ERISgnfeeQdNmjSp1lg5OTlYvHgx9uzZg8zMTDzxxBMYPnw4lixZUuYhWqZ05coV9O3bF1lZWQAeLUJ37dqFZs2amS0GIiIyjSZNmmDy5MmYPHkyiouLcf78ecTFxeH48eM4fvw4bt68WeaY/Px8xMfHIz4+Xt8mSRL8/PwQGBiIVq1aITAwEIGBgQgICICzM9+HTERERLWnykJCfn4+/vSnP+HkyZNo2LAhhg0bhitXrmDLli345ptv8P3338Pf39+osW7fvo2uXbvi559/hp+fH4YPH47k5GR88MEH2L9/P+Lj4+Hl5WXiMwJSUlIQEhKCa9eu6ds2b96M3r17m/xnExGRednZ2aFt27Zo27YtZs6cCSEELl++jLi4OCQkJODMmTNITExEUVFRmWOFEEhNTUVqair27t1r0Ne4cWP4+/sjICAA/v7++i8/Pz94eHhAkiRznSIRERFZMVUWEt577z2cPHkSXbt2xeHDh/VPvY6MjMScOXMwadIkxMbGGjXWG2+8gZ9//hlhYWHYvn077O0fTdnMmTOxbt06zJ49G9u2bTPZuQDA0aNH8cILL+DOnTv6tvXr1+OVV14x6c8lIiLLIEkSmjdvjubNm2Py5MkAHhXNExMTcfr0aZw+fRrnz5/H//73P/1b38rz66+/4tdff0VcXFyZPhcXFzRp0qTCr0aNGsHb2xt2dnYmO08iIiKyDqorJBQWFmLdunUAgA0bNhh8dFbpH/1xcXH44Ycf0KFDh0rHyszMxBdffAEHBwds3LhRX0QAgIiICHz55Zf44osvsHLlSjRo0ED2c8nPz8fSpUvx3nvvQfz/Z4ZKkoS1a9fi9ddfl/3nERGR9dBqtejcuTM6d+6sbysuLkZaWhqSkpKQnJys/zclJQWFhYWVjpeXl4dLly7h0qVLFe4jSRI8PT1Rv359+Pj4wMfHx+B7Hx8feHh4wN3dHW5ubnB3d4e7uzucnJxkO28iIiJSnuoKCSdOnEBOTg78/f3Rrl27Mv0jR45EYmIiYmJiqiwkHDhwACUlJejTp0+ZQoGTkxP+/Oc/47PPPsOBAwcwYcIE2c6hqKgIX331Fd5++21cvnzZ4Gd+/vnnGDVqlGw/i4iI1MPOzg4BAQEICAjA8OHD9e3FxcW4fv06Ll++jNTUVP2/pd/n5eUZNb4QArdv38bt27dx4cIFo+PSarVligv16tWDq6srXF1dUbduXf33rq6uePjwIZ/nQEREZMFUV0g4d+4cAKB9+/bl9pe2l+5X27E+++wzo8aqSl5eHqKionDy5Ens3r0bGRkZBv0BAQH46quvyi2OEBERVcbOzg6+vr7w9fVFv379DPqEEMjOzsavv/6K9PT0cr+uX79udLGhPPn5+cjMzERmZqZR+3t4eLCQQEREZMFUV0gofRhhRZ/MUNr++EMLzTEW8Ojzv8uTkpKCkpISjBkzptx+T09P2NvbY+zYsUb9HCIAyM66ic8dH9su2IRtUXuh0WiqPVZJieF2166A0cPU6mAiUlppEaKkpARFRUUoLi4u99/S70tKSlBcXIzi4uIa/8x79+5V+VaMylR2vXVwcKiwn4hq7/79+5U+q0VCSZn1iUDF6wKtVouFCxfKGSLJiMs8EzPxBKempsLBwaFGx6qukPDgwQMAqPAztOvUqWOwn7nGqkxJSQk0Gg1atmxZq3FsQWpqKgAY/akbtkxAg4uZjx6K5unpWauxNBrg2WeVONi8mF/G41xVjxrmS6PRwNHRseodZZCSkoKHDx/KPq4kSTVeMClJDfljDTjP5iHn+oSqZuq8tqJlnkmZbJ5NPMEODg76v2mrS3WFhMcfSlhZv7nHAoDk5ORy20tfGamon37Huaoezlf1cL6Mx7mqHs5X9dT2jgG1zTPzxzw4z+bDuTYfzrV52OI8q+7Gk7p16wIAcnNzy+0vfY/n45/mYI6xiIiIiIiIiNRAdYWEpk2bAgDS09PL7S9tL93PXGMRERERERERqYHqCglt2rQBAJw9e7bc/tL2oKAgs45FREREREREpAaqKyR0794dbm5uSE1NxY8//limf+fOnQCAoUOHVjlWSEgINBoNjh8/jlu3bhn06XQ6xMTEQKPRYNCgQfIET0RERERERGThVFdIcHR0xPTp0wEA06dPN3i+QWRkJBITE9GjRw906tRJ375+/Xq0bNkS4eHhBmM1bNgQL730EgoKCjBt2jQUFRXp++bNm4esrCy8/PLLeOKJJ0x8VkRERERERESWQRLV/egBK5Cfn4/evXvj1KlTaNiwIXr27ImrV6/i1KlT8PLyQnx8PAICAvT7L168GEuWLMH48eOxdetWg7Gys7MRHByM1NRU+Pv7o2PHjkhOTkZSUhL8/f0RHx8Pb29vM58hERERERERkTJUd0cCAGi1Whw7dgyLFi2Ci4sLoqOjceXKFYwfPx4//vijQRGhKt7e3jh9+jRmzJiBgoIC7NmzB7/99humT5+OhIQEFhGIiIiIiIjIpqjyjgQiIiIiIiIiMg1V3pFARERERERERKbBQgIRERERERERGY2FBCIiIiIiIiIyGgsJRERERERERGQ0FhKIiIiIiIiIyGgsJJhAfn4+3n77bTz99NPQarVo1KgRJk2ahPT09GqPlZOTg7/97W9o1qwZnJyc0KxZM8yaNQs5OTnyB64AuebK19cXkiRV+JWSkmKiMzCfH374AStWrEBYWBgaN24MSZKg1WprPJ6ac0vOuVJ7buXl5SE6OhqTJ09GUFAQ6tWrhzp16qBNmzZ455138ODBg2qPqebcknu+1J5fABAZGYmwsDA0b94cbm5u+pwYP348kpOTqz2eteeXnGuEgwcPYtCgQfD29oaDgwPq16+PoUOH4ujRoyaI3PrIOdcHDhxA//794e7uDhcXF7Ru3RoREREoKioyQeTWhesT85BznmNjY7FkyRIMGTIEPj4+kCQJLVu2lDli6yXXXOfk5CAqKgovv/wynn32WdSpUwd169ZFly5dsHbtWhQWFpogejMSJKuHDx+Kbt26CQCiYcOG4oUXXhCdO3cWAISPj4+4fPmy0WNlZ2eL5s2bCwDCz89PvPDCC6JVq1YCgAgICBDZ2dkmPBPTk3OumjVrJgCI8ePHl/t148YNE56JeQwbNkwAMPhycnKq0Vhqzy0550rtufXpp5/q56hVq1Zi1KhRYuDAgaJu3boCgGjZsqW4efOm0eOpPbfkni+155cQQnh5eQmtVis6d+4sRowYIUaMGCGefvppAUA4OjqK/fv3Gz2WteeXnNe91atXCwBCkiTRo0cPMXr0aNGpUyd9fn744YcmPBPLJ+dcr1ixQgAQGo1GdO3aVYSGhor69esLAGLAgAGisLDQhGdi+bg+MQ8557lNmzZlxmrRooXMEVsvueZ64cKF+v87OnToIEaPHi369u0rnJycBADRo0cPkZuba4IzMA8WEmS2aNEiAUB07dpV3L9/X99eesHv1auX0WO98sorAoAICwszuEjNmDFDABDjxo2TNXZzk3OuShfjarZixQrxj3/8Q8TExIjMzMxaXUDUnltyzpXac2vbtm3ir3/9q7h06ZJB+40bN0S7du0EAPHSSy8ZPZ7ac0vu+VJ7fgkhxIkTJ8TDhw/LtG/cuFEAEI0aNRJFRUVGjWXt+SXXde/WrVvC0dFRODo6iuPHjxv07dy5U0iSJFxcXAx+hq2Ra64TEhKEJEnCwcFBHDp0SN+ek5MjevXqJQCIFStWyB6/NeH6xDzknOc333xTLFu2TBw+fFicPXuWhYQ/kGuuly9fLv7+97+L9PR0g/ZLly6Jpk2bCgAiPDxcrrDNTt2rFzMrKCgQ7u7uAoA4e/Zsmf6goCABQJw5c6bKsTIyMoRGoxEODg4iMzPToC8/P1/4+PgIOzu7Mn3WQs65EsI2FuN/VNP/1NSeW+VhIaFmTp48qZ87nU5X5f62mFuPq+58CWHb+SWEEAEBAQKASE5OrnJfa88vOa97MTExAoAICQkpt7/01cZTp07VOm5rJOdcT548WQAQU6ZMKdOXlJSkv8PB2GKYLeD6xDxqs7Z5XFpaGgsJVZBrrh8XFRUlAAhfX19ZxzUnPiNBRidOnEBOTg78/f3Rrl27Mv0jR44EAMTExFQ51oEDB1BSUoJevXqhQYMGBn1OTk7485//jOLiYhw4cECe4M1Mzrmi6lF7bpF82rRpAwDQ6XS4fft2lfvbem5Vd74IsLOzAwA4OjpWua+155ec1z0nJyejfqanp2f1glQJOef6hx9+AAD07t27TF+rVq3g7e2NrKwsnDx5snZBk9X/jhNVR+ma4caNGwpHUnMsJMjo3LlzAID27duX21/aXrqfucayRKY6v4iICEydOhWzZs3CJ598gqysrNoFqkJqzy1TscXc+uWXXwAADg4ORv1BYuu5Vd35epwt5te//vUvXLx4EU8//TT8/Pyq3N/a80vO+Dt16gQ3Nzf897//xYkTJwz6du/ejcTERHTr1g0BAQG1jNo6yTnXubm5AAAPD49y+0t/1y0176yJtf+OE1VH6ZrhiSeeUDiSmrNXOgA1uXbtGgCgSZMm5faXtpfuZ66xLJGpzm/evHkG22+88QY++OADTJ48uQZRqpPac8tUbDG31q5dCwAICQkx6hVQW8+t6s7X42whvyIiIpCcnIzc3FxcuHABycnJaNSoEaKioqDRVP26hrXnl5zxu7u7Y9OmTRgzZgx69eqF7t27o3HjxkhLS8Pp06cREhKCrVu3yha7tZFzrn18fPDzzz/j6tWrZfpKSkpw/fp1AMCVK1dqGC2VsvbfcaLqKF0zDBs2TOFIao53JMio9GO/XFxcyu2vU6eOwX7mGssSyX1+oaGh2L17N65evYq8vDwkJSVh9uzZ0Ol0ePXVVxEdHS1L3Gqg9tySm63m1v79+7F582Y4ODjg3XffNeoYW86tmswXYFv5dejQIWzbtg07d+5EcnIynnzySURFRaFDhw5GHW/t+SV3/CNHjsSBAwfg5eWFEydOYPv27UhISED9+vXRt29feHl5yRO4FZJzrp977jkAwLZt28r0bd++HQ8fPgQA3L9/v0ax0u+s/XecyFgfffQRjhw5And3dyxYsEDpcGqMhQQZCSEAAJIkVdpv7rEskdzn98EHH2DEiBFo2rQpnJ2d0apVK6xevRobN24EAMyfP792AauI2nNLbraYWxcuXMDYsWMhhEBERIT+fXxVsdXcqul8AbaVX0eOHIEQAnfv3kVcXBxatGiB3r17Y9myZUYdb+35JXf8q1evRv/+/dGrVy8kJibiwYMHSExMRNeuXfHmm29i9OjRtY7ZWsk516+//jrc3NwQHx+PCRMm4PLly8jJycH27dvx+uuvw97+0c29xtxVQ5Wz9t9xImPExsZi1qxZkCQJn332GRo1aqR0SDXG//VkVLduXQC/v5/uj/Ly8gAArq6uZh3LEpnr/F599VXUr18fly5dQlpaWq3GUgu155a5qDW30tPTERISgrt372L27NmYNWuW0cfaYm7VZr4qo9b8Ah7dlt+zZ0/s378fHTp0wKJFi3D69Okqj7P2/JIz/tjYWMydOxdt27bFjh070Lp1a9SpUwetW7fGzp070a5dO+zatQuHDx+W7wSsiJxz3bhxY+zZsweenp7Ytm0bmjdvDg8PD7z44ot48sknMWnSJAAVP0OBjGftv+NEVUlMTMTw4cNRUFCAtWvXYsSIEUqHVCssJMioadOmAB4tLMtT2l66n7nGskTmOj+NRgN/f38AQEZGRq3GUgu155a5qDG3srOz0b9/f1y7dg0TJ07EqlWrqnW8reVWbeerMmrMrz9ycHDA6NGjIYQw6un51p5fcsb/r3/9CwAQFhZW5pVwOzs7hIWFAQC+++67moZr1eTOlT59+iA1NRUfffQRpk2bhunTp+Pzzz9HQkICcnJyADz6BAeqHWv/HSeqTGpqKgYOHIicnBwsXrwYM2bMUDqkWuPDFmVUejvr2bNny+0vbQ8KCjLrWJbInOd39+5dAKxgl1J7bpmTmnLr/v37GDRoEFJSUhAWFoZPP/20wttLK2JLuSXHfFVFTflVEW9vbwAw6lMqrD2/5Iy/9A+qevXqldtf2n7nzp1qx6kGpsgVd3d3vPbaawZtRUVFiI2NhUajQa9evWoYLZWy9t9xoorcuHED/fv3R2ZmJmbNmoW3335b6ZDkIUg2Op1OuLm5CQDi7NmzZfqDgoIEAJGQkFDlWDdu3BAajUY4OjqKmzdvGvTl5+cLHx8fodFoREZGhmzxm5Occ1WZpKQkIUmScHFxETqdrlZjWRoAwsnJqdrHqT23ylPTuaqMmnIrPz9f9OnTRwAQAwcOrPH52EpuyTVflVFTflVm/PjxAoCIiIiocl9rzy85r3vjxo0TAMS4cePK7R87dqwAIJYvX17ruK2RudYYW7duFQDE4MGDazWO2nB9Yh5yrW3S0tIEANGiRQsZolKn2sz1nTt3RGBgoAAgJk6cKEpKSmSOTjksJMhs4cKFAoDo1q2bePDggb599erVAoDo0aOHwf7r1q0TLVq0EAsWLCgz1pgxYwQA8fzzz4vCwkJ9+8yZMwUAMXbsWNOdiBnINVcHDx4UZ86cKTP+uXPnxDPPPCMAiJkzZ5rmJBRU1X9qtpxbf1TTubKF3CoqKhIjRowQAETPnj1Fbm5ulcfYcm7JOV+2kF9xcXHiyy+/NMgFIYQoKCgQH3zwgdBoNMLZ2Vlcu3ZN36fm/JLrurd7924BQNjZ2Ymvv/7aoC86OlpoNBqh0WhESkqK6U7Gwsm5Hjtz5kyZxf/hw4dF3bp1hVartel5Lg/XJ+ZRm3l+HAsJVavpXOfm5org4GABQLzwwguiqKjI1KGaFd/aILO33noLR44cwcmTJ9G8eXP07NkTV69exalTp+Dl5YUtW7YY7J+dnY2LFy+W+x7YNWvWID4+Hrt27ULLli3RsWNHJCcnIykpCf7+/vjnP/9prtMyCbnm6vvvv8eSJUvQrFkz+Pv7w8fHB2lpaTh79iyKiorw3HPPYfny5eY8NZPYt29fmY+VKygoQHBwsH570aJFGDJkCADbzi255soWcmv9+vXYs2cPgEe3mU+bNq3c/VatWqW/Dd2Wc0vO+bKF/EpNTcXEiRPh7e2NDh06wMvLC9nZ2Th//jwyMjKg1WqxdetWPPnkk/pj1Jxfcl33hg8fjlGjRmHHjh0IDQ1Fx44d8dRTTyEtLQ1nzpwBACxbtgwtWrQw27lZGjnXY88//zyKi4vRunVruLm54eLFi/jxxx/h7OyMnTt32vQ8A1yfmIuc87xp0yZs2rQJAKDT6QAAV69eNRhr48aNaN++veznYQ3kmuuFCxciPj4ednZ2sLe3x+TJk8v9eVu3bpX3BMyEhQSZabVaHDt2DMuXL0dUVBSio6Ph4eGB8ePH49133zVYLFXF29sbp0+fxttvv43o6Gjs2bMHDRo0wPTp07FkyRJ4enqa8ExMT665GjhwIK5fv47Tp0/j3Llz+O2331CvXj306NEDY8aMwcSJE2FnZ2fiszG9rKwsnDp1yqBNCGHQZsz7jAH155Zcc2ULuVX6PnwA+j+Qy7N48WL9H8aVUXtuyTlftpBfzz33HP7+978jNjYWiYmJyM7OhqOjI3x9fTFy5EjMnDkTAQEBRo9n7fkl13VPkiRs374dISEh2LZtGxITE/HTTz/B3d0dgwcPxowZMxASEmLis7Fscq7Hpk6diujoaJw6dQoPHjxAw4YN8Ze//AXz58+Hn5+fCc/COnB9Yh5yznN6enqZsfLz8w3a7t27V4torZtcc126ZiguLkZUVFSF+1lrIUESgh/KSkRERERERETG4cc/EhEREREREZHRWEggIiIiIiIiIqOxkEBERERERERERmMhgYiIiIiIiIiMxkICERERERERERmNhQQiIiIiIiIiMhoLCURERERERERkNBYSiIiIiIiIiMhoLCQQERERERERkdFYSCAiIiIiIiIio7GQQERERERERERGYyGBiIiIiIiIiIzGQgIRERERERERGY2FBCJSrbZt20KSJBw9elTpUIiIiFSL11si2yMJIYTSQRARye3q1avw9fWFu7s7bt26BQcHB6VDIiIiUh1eb4lsE+9IICJV2rt3LwBg8ODBXNQQERGZCK+3RLaJhQQiUqXShc2wYcMUjoSIiEi9eL0lsk0sJBCRRbl27RokSYIkSTh27Fil+77xxhuQJAnt27fH4+/Sunv3LuLi4uDo6IiQkBBZxyYiIlIDXm+JqDZYSCAii9K0aVO4u7sDAJKTkyvcLy0tDRs3bgQArFq1CpIk6fv27duHoqIi9O3bF/Xq1ZN1bCIiIjXg9ZaIaoOFBCKyOK1btwZQ+eIjPDwcBQUFGDJkCPr27WvQV9ltlrUdm4iISC14vSWimmIhgYgsTlBQEICKFx8JCQn46quvYGdnh5UrVxr06XQ6HDx4EJIkITQ0VNaxiYiI1ITXWyKqKRYSiMjiVPUqxptvvgkhBF599VU8++yzBn3//e9/8eDBA3Ts2BGNGjWSdWwiIiI14fWWiGqKhQQisjilr2LcuXMHmZmZBn1ff/014uLi4OrqiiVLlpQ5Njo6GkDFT4+uzdhERERqwustEdUUCwlEZHFat26tf+DS469kFBcXY/78+QCA+fPno0GDBgbHCSEQExMDABg+fLisYxMREakNr7dEVFMsJBCRxXF1dYWvry8Aw8XHp59+ipSUFDRu3BizZ88uc1xCQgIyMjLg7++PVq1ayTo2ERGR2vB6S0Q1xUICEVmkPz6k6cGDB1i8eDEAYOnSpXBxcSlzTGVPj67t2Fu3boUkSThy5AjeeustNG7cGK6urhgyZAhu3LgBAIiMjISfnx+0Wi26d++OCxculDvGt99+iwULFqBRo0ZwdnZGz549cfr0aWOmhYiISFa83hJRTdgrHQARUXmCgoKwd+9e/eIjIiICN2/eRJs2bTBu3Lhyj6nq/Zq1GbvU/Pnz4ezsjAULFiA9PR2RkZEYNWoUBgwYgN27d2PGjBn47bffsHLlSowaNQrnz58v87nY8+bNQ0lJCebOnYt79+5h/fr16Nu3L06dOsUHThERkVnxektENcFCAhFZpMdfxcjIyMDq1asBAKtWrYJGU/ZmqsuXL+PChQvw9vZG9+7dZR37cY6OjoiNjYWdnR0AoKCgAGvWrEFmZiaSkpLg7OwMANBqtQgPD8f333+Pbt26GYxx7949nDt3Dq6urgCAkSNHok2bNggPD9e/ykNERGQOvN4SUU3wrQ1EZJFKPzYqJycHU6ZMQW5uLgYNGoR+/fqVu3/pqyNDhw7VLzrkGvtxU6ZMMRi/S5cuAICxY8fqFzUAEBwcDABITU0tM8Zrr72mX9QAQGBgIAYOHIhDhw6hsLCwyhiIiIjkwustEdUECwlEZJGaN2+uXyjs27cPdnZ2iIiIqHB/Y9+vWZOxH9esWTODbXd3dwBA06ZNy22/c+dOmTFatmxZpq1FixbQ6XT6938SERGZA6+3RFQTLCQQkUXSaDQGT4KeNGlShU+GzsrKwsmTJ+Hs7IwBAwbIOvYfVfTqS0XtQgijxiUiIlICr7dEVBN8RgIRWSxjn6wcExODkpIS9OvXr9wnQNdmbFNISUlBaGioQdvFixfh5OSEhg0bKhQVERHZKl5viai6eEcCEVm90tsshw8frmwgRvr444+Rm5ur305KSsKhQ4cwYMAAODo6KhgZERFRxXi9JaJSvCOBiKxe9+7d0a5dO6Per2kJ6tWrh27dumHChAm4d+8e1q1bB61Wi/fee0/p0IiIiCrE6y0RlWIhgYis3rx585QOoVref/99HD16FCtXrsTdu3fRoUMHREZGIjAwUOnQiIiIKsTrLRGVkgSfTEJEZBZbt27FxIkTcezYMfTu3VvpcIiIiFSJ11si0+MzEoiIiIiIiIjIaCwkEBEREREREZHRWEggIiIiIiIiIqPxGQlEREREREREZDTekUBERERERERERmMhgYiIiIiIiIiMxkICERERERERERmNhQQiIiIiIiIiMhoLCURERERERERkNBYSiIiIiIiIiMhoLCQQERERERERkdFYSCAiIiIiIiIio7GQQERERERERERGYyGBiIiIiIiIiIzGQgIRERERERERGY2FBCIiIiIiIiIyGgsJRERERERERGQ0FhKIiIiIiIiIyGgsJBARERERERGR0VhIICIiIiIiIiKjsZBAREREREREREb7P+7yTeUGjYmPAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np \n", + "import matplotlib.pyplot as plt \n", + "from scipy.integrate import simpson\n", + "\n", + "def Maxwell_speed(g):\n", + " #g = v/v_mp or v = g*v_mp\n", + " return 4/np.sqrt(np.pi)*g**2*np.exp(-g**2)\n", + "\n", + "v_rng = np.arange(0.99,1.01,0.0001)\n", + "prob = simpson(Maxwell_speed(v_rng),v_rng)\n", + "print(\"The fraction of molecules with speeds within 1 percent of v_mp is %1.4f.\" % prob)\n", + "\n", + "fig = plt.figure(figsize=(8,4),dpi=150)\n", + "ax1 = fig.add_subplot(121)\n", + "ax2 = fig.add_subplot(122)\n", + "ax_list = [ax1,ax2]\n", + "\n", + "g = np.arange(0, 3,0.01)\n", + "for i in range(0,2):\n", + " ax = ax_list[i]\n", + " ax.plot(g,Maxwell_speed(g),'k-',lw=1.5)\n", + " ax.axvline(2/np.sqrt(np.pi),0,Maxwell_speed(2/np.sqrt(np.pi)),color='b',linestyle='--',label='$\\\\overline{v}$')\n", + " ax.axvline(np.sqrt(1.5),0,Maxwell_speed(np.sqrt(1.5)),color='r',linestyle='--',label='$v_{\\\\rm rms}$')\n", + " ax.axvline(1,0,Maxwell_speed(1),color='orange',linestyle='--',label='$v_{\\\\rm mp}$')\n", + " ax.fill_between(v_rng,0,Maxwell_speed(v_rng),color='gray')\n", + "\n", + " ax.legend(loc='best',ncols=3,fontsize='large')\n", + " \n", + " ax.set_xlabel(\"$v/v_{\\\\rm mp}$\",fontsize='large')\n", + " ax.set_ylim(0.,1)\n", + "\n", + "ax1.set_ylabel(\"$F(v/v_{\\\\rm mp})$\")\n", + "ax1.set_xlim(0,3)\n", + "ax2.set_xlim(0.75,1.25)\n", + "ax2.set_title(\"Zoomed $x$\")\n", + "ax2.set_yticklabels([])\n", + "\n", + "fig.subplots_adjust(wspace=0.05);\n" ] }, { diff --git a/docs/objects.inv b/docs/objects.inv index db0176c..6098214 100644 Binary files a/docs/objects.inv and b/docs/objects.inv differ diff --git a/docs/searchindex.js b/docs/searchindex.js index 34224a1..3275897 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["Chapter_1/birth-of-modern-physics", "Chapter_10/semiconductors", "Chapter_11/nuclear-physics", "Chapter_12/particle-physics", "Chapter_2/special-theory-of-relativity", "Chapter_3/experimental-quantum-physics", "Chapter_4/structure-of-the-atom", "Chapter_5/quantum-mechanics-part1", "Chapter_6/quantum-mechanics-part2", "Chapter_7/hydrogen-atom", "Chapter_8/statistical-physics", "Chapter_9/molecules-and-lasers", "LICENSE", "Preamble/HW_template", "Preamble/Markdown-basics", "Preamble/Python-basics", "Preamble/who-for", "README", "home"], "filenames": ["Chapter_1/birth-of-modern-physics.ipynb", "Chapter_10/semiconductors.ipynb", "Chapter_11/nuclear-physics.ipynb", "Chapter_12/particle-physics.ipynb", "Chapter_2/special-theory-of-relativity.ipynb", "Chapter_3/experimental-quantum-physics.ipynb", "Chapter_4/structure-of-the-atom.ipynb", "Chapter_5/quantum-mechanics-part1.ipynb", "Chapter_6/quantum-mechanics-part2.ipynb", "Chapter_7/hydrogen-atom.ipynb", "Chapter_8/statistical-physics.ipynb", "Chapter_9/molecules-and-lasers.ipynb", "LICENSE.md", "Preamble/HW_template.ipynb", "Preamble/Markdown-basics.ipynb", "Preamble/Python-basics.ipynb", "Preamble/who-for.ipynb", "README.md", "home.md"], "titles": ["1. Birth of Modern Physics", "10. Semiconductors", "11. Nuclear Physics", "12. Particle Physics", "2. Special Theory of Relativity", "3. Experimental Quantum Physics", "4. Structure of the Atom", "5. Quantum Mechanics: Part I", "6. Quantum Mechanics: Part II", "7. The Hydrogen Atom and Atomic Physics", "8. Statistical Physics", "9. Molecules and Lasers", "<no title>", "Homework Assignments", "Introduction to Markdown", "Introduction to Python", "Who are these notes for?", "PHYS2700: Modern Physics", "PHYS2700: Modern Physics"], "terms": {"The": [0, 4, 5, 10, 12, 13, 14, 15, 16, 17, 18], "renaiss": 0, "brought": [0, 10], "greek": [0, 5, 6], "scholar": 0, "e": [0, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16], "g": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "aristotl": 0, "eratosthen": 0, "pythagora": 0, "etc": [0, 8, 14, 15, 16], "back": [0, 4, 5, 6, 8, 15], "forefront": 0, "knowledg": [0, 7, 8, 9, 10], "scientif": [0, 5, 13, 15, 16], "progress": [0, 5, 6, 7], "dure": [0, 4, 5, 9, 15], "ag": [0, 4, 5], "enlighten": 0, "idea": [0, 4, 5, 6, 7, 8, 10], "from": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18], "antiqu": 0, "further": [0, 5, 6, 9], "result": [0, 4, 6, 7, 8, 9, 10, 12, 13, 15], "print": [0, 4, 5, 6, 7, 8, 9, 10, 15], "competit": 0, "investig": [0, 5, 6, 7], "natur": [0, 4, 5, 6, 7, 8, 9, 10, 15, 16], "world": [0, 4, 7, 12], "within": [0, 4, 5, 6, 7, 8, 9, 12, 14, 15], "mathemat": [0, 4, 5, 7, 8, 9, 10, 13, 14], "framework": [0, 7], "characterist": [0, 4, 5, 7, 8, 9], "we": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "would": [0, 4, 5, 6, 7, 8, 9, 10, 15], "call": [0, 4, 5, 6, 7, 8, 9, 10, 15], "todai": [0, 5, 7], "practic": [0, 4, 5, 6, 10, 12, 15], "wa": [0, 4, 5, 6, 7, 8, 9, 10, 15], "us": [0, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 17, 18], "euclidean": [0, 4], "geometri": [0, 4], "calculu": [0, 4, 5, 8], "newton": [0, 4, 5, 6, 7, 8, 10, 13], "leibniz": 0, "For": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "physicist": [0, 4, 5, 6, 7, 9, 10], "refin": 0, "subject": [0, 4, 6, 9, 10, 12], "appear": [0, 4, 5, 6, 7, 8, 9], "reliabl": 0, "despit": [0, 6, 10], "consider": [0, 4, 5, 6, 7, 12], "chang": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "occur": [0, 4, 5, 6, 7, 8, 9, 15], "social": 0, "polit": 0, "intellectu": 0, "realm": [0, 7], "western": 0, "europ": [0, 4], "There": [0, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16], "noth": [0, 4, 5, 9, 10, 12, 15], "new": [0, 4, 5, 6, 7, 10, 15], "discov": [0, 4, 5, 6, 7], "now": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "all": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "remain": [0, 4, 5, 6, 7, 10, 12], "more": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "precis": [0, 4, 5, 6, 7, 8, 9, 10, 15], "measur": [0, 5, 6, 7, 8, 9, 10, 12], "william": [0, 7], "thomson": [0, 5, 7], "lord": [0, 5], "kelvin": [0, 5, 7], "scientist": [0, 4, 5, 6, 8, 10, 16, 17, 18], "engin": [0, 5, 16, 17, 18], "late": [0, 4, 6], "19th": [0, 4, 5, 6, 8, 10], "centuri": [0, 4, 5, 6, 8, 10], "believ": [0, 4, 5, 6, 10], "thei": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "had": [0, 4, 5, 6, 7, 9, 10], "everyth": [0, 5, 7, 10, 14, 15], "under": [0, 4, 5, 8, 9, 12, 13, 15, 16, 17, 18], "control": 0, "where": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18], "best": [0, 4, 5, 6, 7, 8, 9, 15], "dai": [0, 4, 5, 12], "were": [0, 4, 5, 6, 7, 8, 9, 10, 15], "highli": [0, 4, 10], "recogn": [0, 5], "reward": 0, "basic": [0, 4, 5, 6, 7, 15], "research": [0, 4, 5, 6], "import": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "becaus": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "commerci": [0, 4], "militari": 0, "applic": [0, 4, 5, 6, 7, 8, 12, 14, 17, 18], "those": [0, 4, 5, 6, 7, 8, 9, 12, 15], "visionari": 0, "nikola": 0, "tesla": [0, 5], "caus": [0, 5, 7, 9, 15], "mani": [0, 4, 5, 6, 7, 8, 10, 15, 16], "take": [0, 4, 5, 6, 7, 8, 9, 15], "note": [0, 4, 5, 7, 8, 9, 14, 15, 17, 18], "busi": [0, 15], "opportun": 0, "peopl": [0, 5, 10, 15], "began": [0, 5, 6], "travel": [0, 4, 5, 6, 7, 8], "quickli": [0, 4, 5, 8, 15], "one": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "countri": 0, "anoth": [0, 4, 5, 6, 8, 9, 10, 14, 15], "journal": 0, "becom": [0, 4, 5, 6, 7, 8, 9, 10, 15], "access": [0, 12], "some": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16], "most": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "principl": [0, 4, 5, 8, 9, 10], "still": [0, 4, 5, 6, 7, 8, 9, 10, 12], "form": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "describ": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "properti": [0, 4, 5, 6, 7, 9, 10], "initi": [0, 4, 5, 6, 7, 15], "final": [0, 4, 5, 6, 7, 9, 10, 13, 14, 15], "quantiti": [0, 4, 5, 7, 8, 9], "must": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "equal": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "total": [0, 5, 6, 7, 8, 10, 15], "volum": [0, 5, 6, 7, 9, 10], "water": [0, 5, 6, 7, 10], "gallon": 0, "independ": [0, 4, 5, 6, 7, 9, 10, 12, 14], "how": [0, 4, 5, 6, 7, 8, 10, 12, 14, 15], "contain": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "fill": [0, 6, 9, 15], "x": [0, 4, 8, 9, 10, 13, 14, 15], "held": [0, 4, 10, 12], "j": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "sum_j": 0, "x_": [0, 8], "i": [0, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15], "f_": [0, 5, 6], "superscript": [0, 4], "f": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "repres": [0, 4, 5, 6, 7, 8, 9, 13], "state": [0, 6, 7, 8, 10, 12, 17, 18], "respect": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14], "four": [0, 4, 5, 6, 8, 9, 14, 15], "main": [0, 5, 6, 15], "ar": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "sum": [0, 4, 5, 7, 8, 9, 10], "its": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16], "interact": [0, 4, 5, 6, 7, 9], "linear": [0, 4, 5, 6, 8, 9], "momentum": [0, 5, 6, 7, 8], "In": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "absenc": [0, 9, 12], "extern": [0, 4, 5, 6, 8, 9], "angular": [0, 4, 5, 6, 7, 8, 10], "torqu": [0, 9], "charg": [0, 4, 6, 9], "electr": [0, 4, 5, 6, 7, 8], "A": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "might": [0, 4, 5, 6, 7, 8, 9, 14, 15], "have": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "ad": [0, 4, 5, 6, 7, 10, 15], "mass": [0, 5, 7, 8, 9, 10, 13], "list": [0, 5, 9, 15], "einstein": [0, 6, 7], "s": [0, 6, 8, 9, 10, 12, 13, 14, 15], "special": [0, 5, 6, 7, 8, 9, 10, 12, 15], "rel": [0, 5, 6, 7, 9, 10, 15], "show": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "intim": [0, 6], "connect": [0, 4, 6, 10, 12], "few": [0, 5, 6, 7, 8, 9, 15], "dualiti": [0, 7], "codifi": 0, "famous": 0, "isaac": 0, "postul": [0, 8], "associ": [0, 4, 5, 6, 7, 8, 9, 10], "deriv": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "other": [0, 4, 5, 7, 8, 9, 10, 12, 14, 15], "over": [0, 4, 5, 6, 7, 8, 10, 14, 15], "galileo": 0, "great": [0, 5, 6], "experiment": [0, 6, 7, 9, 10], "he": [0, 4, 5, 6, 7, 8, 9, 10], "concept": [0, 4, 5, 6, 7, 10], "inertia": [0, 10], "galilean": [0, 4, 13], "built": [0, 4, 15], "first": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "telescop": [0, 4], "base": [0, 4, 5, 6, 7, 8, 9, 12], "onli": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16], "see": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16], "design": [0, 4, 7, 9, 12, 15, 17, 18], "spyglass": 0, "han": [0, 6], "lipperhei": 0, "also": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "pendulum": [0, 8], "least": [0, 4, 5, 6, 9, 10, 15], "small": [0, 4, 5, 6, 7, 8, 9], "amplitud": [0, 7], "relationship": [0, 6, 7, 9, 12, 15], "fall": [0, 5, 6, 7, 10, 15], "object": [0, 4, 5, 7, 8, 9, 13, 15], "hammer": 0, "feather": 0, "though": [0, 5, 6, 7, 8], "experi": [0, 5, 6, 8, 9, 10, 15], "expand": [0, 4, 10, 15], "our": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "present": [0, 4, 5, 7, 8, 10], "understand": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "astronomi": [0, 9, 16], "field": [0, 4, 5, 6, 7, 8], "motion": [0, 4, 5, 6, 8, 9, 10], "gravit": [0, 4, 5, 6, 9], "optic": [0, 4, 5, 6, 7, 8, 9], "understood": [0, 4, 5, 8], "between": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "posit": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "displac": [0, 5, 7, 9], "veloc": [0, 5, 6, 7, 8, 9, 13], "rate": [0, 5, 8], "time": [0, 5, 6, 9, 10, 12, 13, 14, 15], "which": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "could": [0, 4, 5, 6, 7, 8, 10, 12, 15], "appli": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "determin": [0, 4, 6, 7, 8, 9, 10, 15], "bodi": [0, 4, 5, 6, 9, 10], "acceler": [0, 4, 5, 6, 8, 13], "simpli": [0, 4, 5, 6, 8, 9, 12, 13, 14, 15], "being": [0, 6, 7, 8, 9, 15], "rest": [0, 5, 6, 7, 8, 9, 15], "case": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "move": [0, 4, 5, 6, 7, 8, 9, 12, 13, 15], "constant": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "univers": [0, 4, 5, 6, 7, 9, 10, 17, 18], "huge": 0, "hi": [0, 4, 5, 6, 7, 9, 10], "heaven": 0, "obei": [0, 4, 9], "same": [0, 4, 5, 6, 7, 8, 9, 10, 15], "rule": [0, 4, 5, 6, 7, 8], "mortal": 0, "appl": 0, "earth": [0, 4, 5, 6, 8, 9], "net": [0, 4, 7, 8, 9, 10], "three": [0, 4, 5, 6, 7, 9, 10, 15, 17, 18], "bear": [0, 6, 10], "name": [0, 5, 6, 9, 15], "an": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "continu": [0, 5, 6, 7, 8, 15, 16], "unless": [0, 4, 5, 9, 12], "act": [0, 4, 5, 6, 7, 9, 15], "upon": [0, 4, 5, 6, 7, 12, 15], "thi": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18], "restat": 0, "inclin": 0, "plane": [0, 5, 6, 7, 9], "inerti": [0, 4], "refer": [0, 4, 6, 9, 12, 13, 14, 15], "frame": [0, 4, 5, 6, 9, 13], "second": [0, 4, 5, 6, 7, 8, 9, 13, 14, 15], "vec": [0, 4, 5, 6, 7, 8, 10, 13], "proport": [0, 5, 6, 7, 9, 10], "invers": [0, 4, 5, 6, 9], "m": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14], "begin": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "align": [0, 4, 5, 6, 7, 8, 9, 10, 14], "frac": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14], "d": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "p": [0, 4, 5, 6, 7, 8, 9, 14], "dt": [0, 4, 6, 8, 9, 10, 13, 14], "end": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "third": [0, 7, 14, 15], "exert": 0, "magnitud": [0, 4, 5, 6, 7, 9], "direct": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "let": [0, 4, 5, 6, 7, 8, 9, 10, 15], "defin": [0, 4, 5, 6, 7, 8, 9, 10, 12], "_": [0, 6, 8, 9], "21": [0, 4, 5, 6, 7, 9, 10, 15], "written": [0, 4, 5, 7, 8, 9, 10, 12, 13, 16], "12": [0, 4, 5, 6, 7, 8, 9, 10, 15], "often": [0, 4, 7, 8, 9, 10, 15], "action": [0, 15], "reaction": [0, 4, 5], "requir": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "alter": [0, 12], "v": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "can": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "rotat": [0, 4, 7, 9, 10], "get": [0, 4, 5, 6, 7, 8, 9, 13, 14, 15], "omega": [0, 6, 7, 8], "alpha": [0, 4, 6, 7, 9, 15], "l": [0, 4, 5, 6, 7, 8, 9, 15], "magnet": [0, 4, 5, 6, 7, 8], "long": [0, 4, 5, 6, 7, 8, 9, 15], "period": [0, 4, 5, 6, 7, 9, 14], "contribut": [0, 10, 12], "charl": [0, 7], "coulomb": [0, 4, 6, 8, 9], "christian": 0, "\u00f8erst": 0, "thoma": [0, 4], "young": [0, 4, 6, 7], "andr": 0, "amp\u00e9r": 0, "michael": [0, 14], "faradai": 0, "joseph": [0, 4, 10], "henri": [0, 5, 6, 7], "jame": [0, 4, 5, 6, 10], "clerk": [0, 10], "heinrich": 0, "hertz": [0, 5, 6], "each": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18], "separ": [0, 4, 5, 7, 8, 10, 12, 14, 15], "until": [0, 5, 6, 8, 15], "relat": [0, 4, 5, 6, 7, 8, 9, 10, 12], "through": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16], "work": [0, 4, 6, 7, 9, 10, 12, 15, 17, 18], "led": [0, 4, 7, 10], "behavior": [0, 6, 7, 8, 10, 15], "light": [0, 4, 5, 6, 8, 9], "combin": [0, 4, 6, 7, 8, 9], "equat": [0, 4, 5, 6, 7, 10, 13, 14], "text": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "gauss": 0, "quad": [0, 4, 5, 7, 8, 9], "oint": 0, "cdot": [0, 4, 5, 6, 7, 8, 9], "q": [0, 4, 5, 8, 9], "epsilon_o": [0, 4, 6, 7, 9], "b": [0, 4, 5, 6, 7, 8, 10, 12, 14, 15], "0": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18], "induct": 0, "phi_b": 0, "gener": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "amper": 0, "mu_o": [0, 4], "phi_e": 0, "1865": 0, "hurai": 0, "2010": 0, "yaghjian": 0, "2019": 0, "treatis": [0, 10], "hendrik": 0, "lorentz": 0, "arriv": [0, 5, 7, 13], "complet": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "1895": [0, 5], "symmetri": [0, 4, 7, 8], "current": [0, 4, 5, 6, 9], "creat": [0, 4, 5, 7, 10, 12, 13, 14, 15], "turn": [0, 4, 5, 7, 10], "deal": [0, 8, 12], "flow": [0, 5, 10, 15], "temperatur": [0, 5, 7, 9, 10], "t": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "heat": [0, 4, 5, 6, 7], "w": [0, 4, 5], "intern": [0, 4, 6, 7, 9, 10, 12, 16, 17, 18], "system": [0, 4, 5, 6, 7, 8, 9, 10], "u": [0, 4, 6, 7, 8, 10], "These": [0, 4, 5, 6, 7, 8, 9, 10, 15], "come": [0, 4, 5, 6, 7, 8, 9, 15], "togeth": [0, 4, 5, 6, 9, 15], "pressur": [0, 5, 10], "entropi": 0, "made": [0, 5, 6, 7, 8, 12], "benjamin": [0, 10], "thompson": [0, 10], "count": [0, 4, 5, 7, 10, 15], "rumford": 0, "sadi": 0, "carnot": 0, "joul": [0, 4, 10], "rudolf": 0, "clausiu": 0, "primari": [0, 5], "two": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "delta": [0, 4, 5, 6, 7, 8, 9], "plu": [0, 9], "done": [0, 4, 7, 10, 15], "includ": [0, 4, 5, 7, 8, 9, 12, 14, 15, 17, 18], "It": [0, 4, 5, 6, 7, 8, 9, 10, 15], "possibl": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "convert": [0, 4, 5, 6, 7, 8, 10, 14, 15], "without": [0, 4, 5, 6, 9, 12, 15], "place": [0, 4, 5, 6, 9, 12, 13, 15], "word": [0, 5, 14, 15], "thing": [0, 4, 9, 15], "free": [0, 4, 5, 6, 8, 10, 12, 16], "lunch": [0, 15], "doe": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "spontan": 0, "colder": 0, "hotter": 0, "addit": [0, 5, 6, 7, 8, 9, 10, 12, 15], "sometim": [0, 4, 5, 7, 8, 10, 14, 15], "express": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "zeroth": 0, "If": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "thermal": [0, 5, 7, 10], "equilibrium": [0, 5, 6, 7, 8, 10], "achiev": [0, 5], "absolut": [0, 4, 8, 9, 10, 12], "zero": [0, 4, 5, 6, 7, 8, 9, 13, 15], "compos": [0, 5, 15], "molecul": [0, 5, 6, 7, 8, 10], "rapid": 0, "bounc": [0, 7], "off": [0, 4, 5, 6, 7], "wall": [0, 5, 7, 8], "just": [0, 4, 5, 6, 7, 8, 9, 13, 14, 15], "gain": [0, 4, 5, 6, 8, 9], "accept": [0, 4, 5, 6, 7, 8, 9, 10, 12], "realiz": [0, 4, 5, 6, 8], "came": [0, 7], "robert": [0, 5], "boyl": 0, "1862": 0, "product": [0, 7, 9, 10, 15], "pv": 0, "later": [0, 4, 5, 6, 10, 15], "jacqu": 0, "found": [0, 4, 5, 6, 7, 8, 9, 13], "ratio": [0, 4, 5, 6, 7, 8, 9], "loui": [0, 7], "gai": 0, "lussac": 0, "produc": [0, 4, 5, 6, 7, 8, 9, 10, 12], "around": [0, 4, 5, 6, 7, 9, 15], "obtain": [0, 4, 5, 6, 7, 8, 9, 15], "nrt": 0, "depend": [0, 4, 5, 6, 7, 8, 9, 10, 15], "number": [0, 4, 5, 7, 8, 10, 13, 14, 15], "mole": [0, 10], "n": [0, 4, 5, 6, 7, 8, 10, 15], "r": [0, 4, 5, 6, 7, 8, 9, 10], "8": [0, 8, 9, 10, 12, 15], "31": [0, 4, 5, 6, 7, 8, 10, 15], "rm": [0, 4, 5, 6, 7, 8, 9], "mol": [0, 4, 5, 6, 7], "k": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "amedeo": 0, "avogadro": [0, 4, 5, 6, 7, 10], "propos": [0, 4, 5, 6, 7, 9], "daniel": 0, "bernoulli": 0, "origin": [0, 4, 5, 6, 7, 8, 9, 12, 15, 16], "1738": 0, "ignor": [0, 4, 5, 8, 15], "howev": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "wide": [0, 7, 8], "interpret": [0, 4, 6, 9, 12, 15], "maxel": 0, "ludwig": 0, "josiah": 0, "willard": 0, "gibb": 0, "simpl": [0, 4, 5, 6, 9, 14], "averag": [0, 5, 6, 7, 8, 9, 10], "collis": [0, 4, 5, 6, 7, 9], "reveal": [0, 5, 16], "langl": [0, 6, 7, 8, 9], "rangl": [0, 6, 7, 8, 9], "linearli": [0, 5], "nn_a": 0, "avagadro": 0, "n_a": [0, 5, 6, 7], "02214076": [0, 10], "10": [0, 6, 7, 8, 9, 10, 15], "23": [0, 4, 5, 6, 7, 9, 10, 15], "vibrat": [0, 4, 6, 8, 10], "molecular": [0, 5, 6, 10], "translat": [0, 4, 5, 10, 12, 13], "becam": [0, 4, 7], "clear": [0, 4, 5, 6, 7, 9, 15], "degre": [0, 5, 10], "freedom": [0, 10, 15], "capabl": [0, 7], "carri": [0, 4, 5, 7, 9, 15], "equipartit": 0, "theorem": [0, 4, 5, 7, 8], "ha": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16], "kt": [0, 5, 7, 10], "3d": [0, 4, 9], "space": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "introduc": [0, 5, 6, 7, 8, 9, 15], "mode": [0, 4, 5, 10, 13], "higher": [0, 4, 5, 6, 8, 9, 10, 15], "therefor": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "eqn": [0, 4, 5, 6, 7, 8], "7": [0, 9, 10, 12, 15], "molar": [0, 4, 5, 6, 7], "capac": 0, "c_v": 0, "du": [0, 8, 10], "specif": [0, 6, 10, 15], "function": [0, 4, 6], "hydrogen": [0, 4, 5, 7], "h_2": [0, 10], "shown": [0, 4, 5, 7, 8, 9, 16], "below": [0, 4, 5, 6, 7, 12, 16], "lowest": [0, 5, 6, 7, 8, 9], "level": [0, 4, 6, 7, 8, 13, 14, 15], "correspond": [0, 4, 5, 7, 8, 9, 10, 12, 14], "At": [0, 4, 5, 7, 10, 15], "200": 0, "rise": [0, 5, 8, 9], "Near": 0, "3200": 0, "bring": 0, "befor": [0, 4, 5, 6, 7, 8, 9, 12, 14, 15], "dissoci": [0, 6], "imag": [0, 4, 5, 6, 7, 8, 9, 12], "credit": [0, 4, 5, 6, 7, 8, 9, 13, 16], "hyperphys": [0, 5, 6, 7, 8], "section": [0, 4, 6, 7, 8, 9, 10, 12, 13, 17, 18], "1850": 0, "speed": [0, 4, 5, 6, 7, 8, 9, 15], "given": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "4": [0, 10, 12, 14, 15, 16, 17, 18], "pi": [0, 4, 5, 6, 7, 8, 9, 10, 15], "left": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "right": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "mv": [0, 4, 5, 7, 10], "2kt": [0, 10], "python": [0, 4, 5, 7, 8, 13, 14, 16], "code": [0, 4, 5, 7, 9, 13, 14, 15, 16, 17, 18], "comput": [0, 6, 8, 9, 10, 15], "n_2": [0, 8, 10], "300": [0, 5, 7, 8, 10], "1000": [0, 4, 5], "4000": 0, "peak": [0, 5, 7], "probabl": [0, 5, 6], "confirm": [0, 4, 5, 6, 10], "1921": 0, "nitrogen": [0, 7], "numpi": [0, 4, 5, 6, 7, 8, 9, 10, 15, 16], "np": [0, 4, 5, 6, 7, 8, 9, 10, 15], "http": [0, 5, 14], "org": [0, 5, 12], "doc": 0, "stabl": [0, 6, 7], "user": [0, 14, 15], "whatisnumpi": 0, "html": [0, 14], "scipi": [0, 4, 5, 6, 7, 8, 9, 10, 15, 16], "physical_const": [0, 4, 6, 7, 9, 10], "matplotlib": [0, 4, 5, 7, 8, 9, 15], "pyplot": [0, 4, 5, 7, 8, 9, 15], "plt": [0, 4, 5, 7, 8, 9, 15], "def": [0, 4, 5, 6, 7, 8, 15], "f_v": 0, "kg": [0, 4, 5, 6, 7, 8, 10], "return": [0, 4, 5, 6, 7, 8, 9, 14, 15], "exp": [0, 4, 5, 7, 8], "amu": [0, 4], "m_n2": 0, "28": [0, 4, 5, 6, 7, 9, 10, 15], "t_low": 0, "t_mid": 0, "t_hi": 0, "v_n2": 0, "arang": [0, 4, 5, 7, 8, 9, 15], "rang": [0, 5, 6, 7, 8, 9, 10, 15], "fs": [0, 4, 5, 7, 8, 9], "larg": [0, 4, 5, 6, 7, 8, 9, 10, 15], "fig": [0, 4, 5, 6, 7, 8, 9, 15], "figur": [0, 4, 5, 6, 7, 8, 9, 10, 15], "figsiz": [0, 4, 5, 7, 8, 9], "dpi": [0, 4, 5, 7, 8, 9], "150": [0, 4, 5, 7, 8, 9], "ax": [0, 4, 5, 7, 8, 9, 10, 15], "add_subplot": [0, 4, 5, 7, 8, 9, 15], "111": [0, 4, 5, 7, 8, 9, 15], "plot": [0, 4, 5, 7, 8, 15], "lw": [0, 4, 5, 7, 8, 9, 15], "label": [0, 4, 7, 8, 9, 12, 15], "legend": [0, 4, 7, 8], "loc": [0, 4, 7, 8], "fontsiz": [0, 4, 5, 7, 8, 9], "set_xlabel": [0, 4, 5, 7, 8], "set_ylabel": [0, 4, 5, 7, 9], "set_ylim": [0, 4, 7, 8, 9, 15], "set_xlim": [0, 4, 5, 7, 8, 9, 15], "By": [0, 5, 6, 7, 8, 9, 12], "calcul": [0, 4, 5, 6, 7, 8, 9, 10, 15], "rigor": [0, 4], "known": [0, 4, 5, 6, 7, 8, 9, 12], "find": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "root": [0, 5, 8, 15], "mean": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "squar": [0, 4, 5, 6, 7, 9, 10, 15], "v_": [0, 4, 6, 7, 8, 9], "sqrt": [0, 4, 5, 6, 7, 8, 9, 10, 15], "3kt": [0, 7, 10], "point": [0, 4, 5, 6, 7, 8, 9, 10, 15], "good": [0, 5, 7, 8, 9, 10, 14, 15], "model": [0, 5, 7, 9, 10], "when": [0, 4, 5, 6, 7, 8, 9, 10, 15], "learn": [0, 6, 9], "isn": [0, 7, 15], "alwai": [0, 4, 5, 7, 8, 9, 12, 15], "dimension": [0, 7, 15], "necessari": [0, 4, 6, 7, 8, 9, 10, 12, 14], "phenomena": [0, 5, 6, 7, 8, 10], "explain": [0, 5, 6, 7, 8, 9], "disturb": [0, 5], "stand": [0, 4, 5, 7, 8, 14], "superposit": [0, 5, 7, 8], "sound": [0, 4, 5, 7, 12], "need": [0, 5, 6, 7, 8, 9, 10, 12, 14, 15], "elast": [0, 4, 5, 6], "doesn": [0, 5, 6, 9, 15], "actual": [0, 5, 6, 7, 8, 15], "propag": [0, 4, 7], "along": [0, 4, 6, 7, 8, 9, 10, 13, 15], "respons": [0, 7, 8, 15], "pass": [0, 4, 5, 6, 7, 8, 9], "consid": [0, 4, 5, 6, 7, 8, 9, 10, 12], "follow": [0, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15], "exampl": [0, 4, 5, 6, 7, 8, 9, 12, 14, 15], "buoi": [0, 5], "As": [0, 4, 5, 6, 7, 8, 9, 10, 15], "potenti": [0, 4, 5, 6, 7, 9, 10], "up": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "releas": [0, 4], "graviti": [0, 8, 9], "pull": [0, 4, 5, 8], "down": [0, 4, 5, 7, 9, 15], "help": [0, 4, 5, 6, 8, 9, 10, 13, 15], "nearbi": [0, 5], "cycl": [0, 7, 8], "fan": 0, "basebal": 0, "game": 0, "stadium": 0, "column": [0, 9, 15], "sit": 0, "singl": [0, 4, 5, 6, 7, 8, 10, 13, 14, 15], "run": [0, 4, 7, 9, 15], "whole": [0, 5, 6, 7, 10, 12], "17th": 0, "disagr": 0, "especi": [0, 5, 9, 15], "talk": 0, "about": [0, 4, 5, 6, 7, 8, 9, 10, 15], "support": [0, 4, 7, 10, 15], "corpuscl": 0, "geometr": [0, 8], "straight": [0, 4, 5, 6, 15], "line": [0, 4, 6, 7, 8, 9, 13], "like": [0, 4, 5, 6, 7, 8, 9, 14, 15], "trajectori": [0, 6, 7], "rai": [0, 4, 8, 9], "observ": [0, 5, 6, 8, 9, 10], "reflect": [0, 4, 5, 7, 8], "refract": [0, 7], "sharp": 0, "shadow": 0, "christiaan": 0, "huygen": 0, "phenomenon": [0, 5, 7, 8, 9], "poor": 0, "health": 0, "prevent": [0, 5, 8, 10, 12], "him": [0, 4], "reput": 0, "forward": [0, 4, 5, 6, 15], "perform": [0, 4, 5, 6, 7, 8, 9, 12, 15], "doubl": [0, 13, 14, 15], "slit": 0, "interfer": [0, 4, 7, 8], "indic": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "behav": [0, 4, 5, 7, 8, 9], "illustr": [0, 4, 5, 6, 7, 9, 15], "encount": [0, 6], "diffract": [0, 4, 5, 6, 7, 8], "pattern": [0, 4, 5, 7], "side": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "wikipedia": [0, 4, 5, 6, 7], "1860": 0, "em": [0, 5, 6, 7, 9], "consist": [0, 4, 5, 6, 7, 8, 9, 10, 14], "oscil": [0, 5, 7, 9, 10], "visibl": [0, 4, 5, 6, 7], "cover": [0, 4, 6, 7, 17, 18], "narrow": [0, 7], "spectrum": [0, 5, 6], "c": [0, 4, 5, 6, 7, 8, 9, 12, 15], "lambda": [0, 4, 5, 6, 7, 8, 9], "wavelength": [0, 4, 5, 6, 7, 8, 9], "frequenc": [0, 4, 5, 6, 7, 8], "ani": [0, 4, 5, 6, 7, 8, 9, 12, 15], "permeabl": [0, 4], "permitt": [0, 4], "1887": [0, 4], "succeed": [0, 5, 7, 12], "detect": [0, 4, 5, 7, 8, 9], "far": [0, 4, 5, 6, 8, 9, 15], "outsid": [0, 4, 5, 6, 7, 8, 9, 15], "approx": [0, 4, 5, 6, 7, 8], "guid": [0, 5, 7, 13, 14, 16], "deduct": 0, "swath": 0, "what": [0, 4, 5, 6, 7, 8, 9, 10], "last": [0, 4, 8, 15], "100": [0, 4, 5, 7, 8, 15], "year": [0, 4, 5, 6, 7, 15], "prior": [0, 4, 9, 12], "distinctli": 0, "differ": [0, 5, 6, 7, 8, 9, 10, 12, 14, 15], "seem": [0, 4, 6, 7], "them": [0, 4, 5, 6, 7, 9, 12, 14, 15], "studi": [0, 4, 5, 6, 7, 8, 9, 10], "subatom": [0, 10], "even": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "elementari": [0, 5, 6], "baryon": 0, "lepton": 0, "close": [0, 4, 5, 6, 7, 9, 12, 14, 15], "invari": [0, 4, 13], "unchang": [0, 8], "transform": [0, 5, 6, 7, 8, 12, 13], "distanc": [0, 4, 5, 6, 7, 8, 9, 15], "you": [0, 4, 5, 8, 12, 13, 14, 15, 16], "coordin": [0, 4, 8, 9, 10], "descript": [0, 7, 8, 9, 10, 15], "weak": [0, 5, 9], "strong": [0, 4, 5, 8, 9], "your": [0, 12, 13, 14, 15, 16], "introductori": [0, 8, 16], "cours": [0, 15, 17, 18], "veri": [0, 4, 5, 6, 7, 8, 9, 15], "high": [0, 4, 5, 6, 7, 15], "unifi": 0, "electroweak": 0, "strength": [0, 5, 9, 15], "scale": [0, 4, 5, 8], "hold": [0, 4, 6, 15], "nucleu": [0, 4, 5, 6, 7, 8, 9], "mutual": [0, 5, 6, 9], "attract": [0, 5, 6, 8], "m_1": [0, 4], "m_2": [0, 4], "vector": [0, 4, 6, 7, 9], "compon": [0, 4, 5, 6, 7, 9, 10], "cartesian": [0, 4, 9], "radial": [0, 4, 6, 10], "hat": [0, 6, 8], "6743": 0, "11": [0, 6, 7, 8, 9, 12, 15], "si": [0, 4], "unit": [0, 4, 5, 6, 7, 8, 9], "_g": 0, "gm_1m_2": 0, "q_1": 0, "q_2": 0, "similar": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "electrostat": [0, 6, 9], "cross": [0, 5, 6], "chemic": [0, 5, 6], "biolog": [0, 4], "process": [0, 5, 6, 7, 8, 9, 10, 12, 13, 15], "nongravit": 0, "_c": 0, "q_1q_2": 0, "beta": [0, 4, 5, 6, 7, 8, 10], "decai": [0, 6], "nuclei": [0, 4, 6, 8], "among": [0, 4], "sheldon": 0, "glashow": 0, "steven": 0, "weinberg": 0, "abdu": 0, "salam": 0, "wrote": [0, 6, 7], "paper": [0, 4, 5, 6, 7], "1960": 0, "predict": [0, 5, 6, 7, 8, 9, 10], "facet": 0, "share": [0, 4, 7, 12, 16], "nobel": [0, 5, 7], "prize": [0, 5, 7], "1979": 0, "Their": [0, 5, 6, 8], "exist": [0, 4, 5, 6, 7, 8, 9, 15], "z": [0, 4, 5, 6, 7, 8, 9, 10], "boson": 0, "1983": 0, "purpos": [0, 7, 12, 15], "effect": [0, 6, 7, 8, 10, 12], "15": [0, 4, 5, 7, 8, 9, 15], "strongest": 0, "easili": [0, 4, 5, 7, 10, 15], "bind": [0, 5, 6, 9], "proton": [0, 4, 5, 6, 7, 9], "insid": [0, 4, 5, 6, 8, 15], "repuls": [0, 6, 8], "allow": [0, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16], "fusion": 0, "star": [0, 4, 5], "strive": 0, "wai": [0, 4, 5, 7, 8, 9, 10, 12, 15], "seemingli": 0, "dispar": 0, "friction": [0, 5], "contact": [0, 12], "tension": 0, "know": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "part": [0, 4, 5, 6, 10, 12, 15], "ago": 0, "thought": [0, 4, 5, 6], "seri": [0, 4, 5, 6, 7, 8, 9], "grand": 0, "openstax": [0, 4, 5, 6, 7, 16, 17, 18], "vol": [0, 4, 5, 6, 7, 17, 18], "activ": [0, 15], "area": [0, 5, 6, 7, 8, 9], "effort": [0, 7], "underwai": [0, 4], "gut": 0, "fashion": 0, "complex": [0, 5, 7, 8, 9, 10, 14, 15], "string": [0, 7, 8, 15], "sever": [0, 4, 5, 6, 7, 8, 12, 14], "yet": [0, 6, 7], "been": [0, 4, 5, 6, 7, 9, 10, 12, 15], "verifi": [0, 4, 5, 6], "step": [0, 4, 5, 6, 7, 9, 15], "beyond": [0, 7, 8, 10], "toe": 0, "gev": [0, 4], "earlier": [0, 5, 6, 7, 15], "common": [0, 4, 5, 6, 7, 9, 12, 15, 16, 17, 18], "tini": [0, 5], "told": 0, "philosoph": [0, 5, 6], "democritu": 0, "leucippu": 0, "450": 0, "atomo": 0, "indivis": [0, 5, 6], "peel": 0, "layer": [0, 5, 6, 14], "inde": [0, 9, 15], "divis": [0, 5, 15], "sign": [0, 4, 5, 6, 8, 14], "past": [0, 4, 5, 7, 15], "mostli": [0, 6], "dormant": 0, "branch": 0, "scienc": 0, "chemistri": [0, 6, 9], "proust": 0, "definit": [0, 4, 5, 6, 8, 12, 15], "element": [0, 4, 5, 6, 7, 9, 10, 14, 15], "compound": 0, "weight": [0, 5, 6, 10], "john": [0, 5], "dalton": 0, "1803": 0, "kei": [0, 5, 15], "1811": 0, "individu": [0, 4, 6, 7, 8, 9, 10, 12, 15], "dismiss": 0, "rather": [0, 4, 7, 8, 9, 10, 15], "harshli": 0, "who": [0, 4, 5, 6, 7, 9], "imagin": [0, 4, 6, 15], "stanislao": 0, "cannizzaro": 0, "solv": [0, 4, 5, 6, 7, 8, 9, 10], "1858": 0, "gram": [0, 5], "particular": [0, 4, 5, 6, 7, 8, 9, 12, 14], "ma": 0, "while": [0, 4, 5, 6, 7, 8, 9, 15], "carbon": [0, 4, 5], "estim": [0, 4, 5, 6, 7, 8, 10], "brown": 0, "microscop": [0, 5, 7], "pollen": 0, "grain": 0, "suspend": [0, 5], "brownian": [0, 10], "danc": 0, "randomli": [0, 7], "ascrib": 0, "convect": 0, "organ": [0, 5, 9], "eventu": [0, 4, 5, 6, 7, 8], "liquid": [0, 5, 7], "explan": [0, 4, 5, 6, 7, 13], "constantli": 0, "push": 0, "adopt": [0, 6, 12], "ernst": 0, "mach": [0, 4], "princip": [0, 6, 10], "leader": 0, "anti": [0, 9], "movement": [0, 4, 9], "positivist": 0, "reason": [0, 4, 5, 7, 8, 9, 10, 12, 14, 15], "never": [0, 4, 6, 7, 9, 12], "seen": [0, 5, 6, 7, 15], "cannot": [0, 4, 5, 6, 7, 8, 9, 12, 15], "sai": [0, 4, 8, 10], "anyth": [0, 9, 10, 15], "realiti": [0, 7, 10], "wilhelm": [0, 5], "ostwald": 0, "face": [0, 4, 7], "difficulti": [0, 7, 9, 10], "radioact": [0, 4, 5, 6, 8], "discret": [0, 5, 7, 8], "spectral": [0, 5, 6, 9], "contend": 0, "should": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "hypothet": 0, "construct": [0, 4, 5, 7, 8, 9, 15], "bookkeep": 0, "max": [0, 5, 6, 7, 9], "planck": [0, 5, 6, 7, 9], "grudgingli": 0, "submicroscop": 0, "quanta": [0, 5, 6], "convinc": [0, 4, 7], "overwhelm": 0, "decad": [0, 4, 7], "20th": [0, 5, 6, 10], "albert": [0, 4, 5], "1905": [0, 4, 5], "provid": [0, 5, 6, 9, 10, 12, 13, 15], "almost": [0, 4, 5, 7, 10, 15], "80": [0, 4, 15], "term": [0, 4, 5, 6, 7, 8, 9, 10, 12], "theoret": [0, 5, 6, 7], "random": [0, 6, 7, 9, 10], "walk": [0, 15], "drunkard": 0, "mai": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "after": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "abl": [0, 4, 5, 6, 8], "approxim": [0, 4, 5, 6, 7, 8, 9, 10, 12], "size": [0, 5, 6, 7, 8], "data": [0, 5, 6, 7, 8, 9, 15], "scan": 0, "tunnel": 0, "photo": 0, "76": [0, 5, 10, 15], "iron": [0, 6], "copper": [0, 7, 10], "surfac": [0, 4, 5, 7, 9], "ibm": 0, "try": [0, 4, 5, 7, 8, 9, 15], "modifi": [0, 4, 5, 7, 8, 12, 15, 16], "electron": [0, 4, 8], "densiti": [0, 4, 5, 6, 7, 8, 10], "surround": [0, 5, 6, 7, 15], "quantum": [0, 4, 6, 17, 18], "corral": 0, "crommi": 0, "lutz": 0, "eigler": 0, "almaden": 0, "center": [0, 4, 5, 6, 7, 8, 14], "jean": [0, 5, 10], "perrin": [0, 10], "1908": [0, 4, 5], "agre": [0, 4, 6, 8, 9, 12, 14], "util": 0, "type": [0, 5, 6, 9, 10], "gave": [0, 15], "quantit": [0, 10], "sinc": [0, 4, 5, 6, 7, 8, 9, 13, 15], "nearli": [0, 6, 7], "foundat": 0, "method": [0, 5, 7, 8, 15], "shape": [0, 4, 5, 7, 8], "success": [0, 4, 5, 8, 10], "pervas": 0, "feel": [0, 4, 5, 6, 8, 9], "techniqu": [0, 5, 6, 7], "structur": [0, 5, 7, 10], "unknown": [0, 5, 6, 7], "clearli": [0, 4, 7, 9, 12], "resolv": [0, 6], "cloud": [0, 9], "horizon": 0, "speak": [0, 4, 7], "royal": [0, 7], "institut": [0, 7], "materi": [0, 5, 6, 7, 12, 17, 18], "luminifer": [0, 4], "aether": [0, 4], "ether": 0, "deduc": [0, 4, 5, 7, 9], "fluid": [0, 10], "rigid": [0, 10], "than": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "steel": [0, 5, 6], "massless": [0, 7, 10], "viscos": [0, 5], "otherwis": [0, 4, 8, 9, 12, 15], "affect": [0, 4, 6, 7, 8, 9, 10, 12, 15], "orbit": [0, 4, 5, 6, 7, 8], "planet": [0, 4, 6, 9], "transpar": 0, "non": [0, 5, 7, 8, 9, 10, 12, 13, 14, 15], "dispers": [0, 7], "incompress": 0, "michelson": [0, 5], "unabl": [0, 5, 6], "edward": [0, 4], "morlei": [0, 5], "extrem": [0, 4, 5, 6, 14], "care": [0, 5, 9, 15], "famou": [0, 4, 6, 7, 9], "subsequ": 0, "neg": [0, 4, 5, 6, 7, 8, 9, 15], "concern": [0, 4, 5, 12], "keep": [0, 4, 5, 6, 14], "shift": [0, 4, 5, 7], "contract": [0, 12], "georg": [0, 7, 9], "fitzgerald": [0, 4], "hypothesi": [0, 4, 5, 6, 7, 9], "1892": 0, "interest": [0, 4, 5, 7, 8, 16], "absorb": [0, 4, 5, 6, 9], "entir": [0, 4, 5, 7, 10, 15], "incid": [0, 5, 6, 7, 8], "emit": [0, 4, 5, 6, 7, 9], "emiss": [0, 4, 5, 6, 8, 9], "power": [0, 4, 5, 6, 7, 10, 15], "per": [0, 4, 5, 6, 7, 10], "issu": 0, "itself": [0, 5, 6, 7, 9, 10], "decreas": [0, 5, 6, 8], "intens": [0, 5, 6, 7], "longer": [0, 4, 5, 8], "darth": 0, "kule": 0, "both": [0, 4, 5, 6, 7, 8, 9, 10, 14], "low": [0, 4, 5, 6, 7], "But": [0, 4, 5, 6, 7, 8, 9, 14, 15], "account": [0, 4, 5, 6, 9], "caviti": [0, 5], "infinit": [0, 5, 6, 15], "short": [0, 4, 5, 6, 7, 8, 13, 15], "failur": [0, 12], "ultraviolet": [0, 5], "catastroph": [0, 5], "demonstr": [0, 5, 6, 7, 10, 15], "deeper": 0, "r\u00f6ntgen": [0, 5, 7], "novemb": [0, 8], "becquerel": 0, "accident": 0, "februari": 0, "1896": [0, 9], "uranium": [0, 6], "salt": [0, 7], "next": [0, 4, 7, 9, 13, 15], "carefulli": 0, "wrap": 0, "photograph": [0, 6, 7], "plate": [0, 4, 5, 7], "silhouett": 0, "discharg": [0, 5, 6], "glow": [0, 5, 6], "cathod": [0, 5, 6], "isol": [0, 4, 5], "prove": [0, 5, 6, 7, 8, 10], "pieter": [0, 9], "zeeman": [0, 6, 8], "sampl": 0, "normal": [0, 4, 6, 7, 10, 13, 15], "quantiz": [0, 6, 8, 9], "packet": [0, 5, 6, 7, 8], "photoelectr": [0, 6, 7], "summar": [0, 6, 10], "major": [0, 7, 10], "accomplish": [0, 4, 7, 15], "did": [0, 4, 6, 10], "influenc": [0, 4, 5, 6, 8], "prevail": [0, 4, 6], "sentiment": 0, "character": [0, 6, 8], "compar": [0, 4, 5, 6, 7, 8, 9, 10], "contrast": [0, 8, 9, 15], "either": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "regim": 0, "tell": [4, 5, 7, 8], "fast": [4, 7], "enough": [4, 5, 6, 7, 8, 9, 10], "thu": [4, 5, 6, 7, 8, 9, 15], "newtonian": [4, 10], "law": [4, 5, 6, 7, 8, 9, 10, 12, 13], "valid": [4, 5, 6, 15], "forc": [4, 5, 6, 7, 8, 9, 10, 13, 15], "attach": 4, "uniform": [4, 6], "prime": [4, 5, 6, 10, 13, 15], "standard": [4, 5, 7, 10, 12, 14], "configur": [4, 5], "unprim": 4, "axi": [4, 6, 7, 8, 9, 10, 13, 15], "krea": 4, "vt": [4, 7, 13, 14], "y": [4, 5, 7, 8, 10, 14, 15], "algebra": [4, 8, 9], "1802": 4, "augustin": 4, "fresnel": 4, "detail": [4, 5, 6, 7, 8, 13, 14, 15], "polar": [4, 5, 7, 9, 10], "discoveri": [4, 6, 7, 12], "wave": [4, 5, 6], "classic": [4, 7, 9], "knew": [4, 6, 8], "medium": [4, 5, 7, 8, 12], "appar": [4, 5, 8], "Its": [4, 6, 8, 15], "incred": 4, "too": [4, 5, 6, 7, 8, 14, 15], "maxwel": [4, 9], "media": [4, 12], "matter": [4, 5, 6, 7, 10], "vacuum": [4, 5, 6, 7], "sensit": [4, 6], "consensu": 4, "1880": 4, "eleg": [4, 14], "make": [4, 5, 6, 8, 9, 10, 12, 14, 15], "testabl": 4, "suppos": [4, 5, 6, 13, 15], "flash": [4, 7], "pm": [4, 5, 8, 9], "don": [4, 6, 14, 15], "differenti": [4, 8, 9, 10], "unclear": 4, "taken": [4, 6, 15], "prefer": [4, 9, 15], "No": [4, 5, 7, 9, 10, 12, 15], "discern": 4, "due": [4, 5, 6, 7, 8, 10, 15], "sun": [4, 5, 6, 9], "sim": [4, 5, 6, 7, 9, 10], "30": [4, 5, 7, 9, 12, 15], "km": 4, "so": [4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "obviou": 4, "devic": [4, 6, 8], "phase": [4, 7, 8, 9, 10], "setup": [4, 5], "extend": [4, 7], "sourc": [4, 5, 7, 10, 13, 15, 16], "ground": [4, 6, 7, 8, 9], "glass": [4, 5, 6, 7], "diffus": [4, 8], "laser": [4, 7], "planar": 4, "view": [4, 5, 6, 7, 10], "assum": [4, 5, 6, 7, 8, 9, 15], "arm": 4, "d_1": 4, "d_2": 4, "parallel": [4, 7, 8, 9], "leav": [4, 5, 8, 13, 15], "go": [4, 7, 9, 15], "mirror": 4, "partial": [4, 7, 8, 9], "silver": [4, 5, 7, 9], "path": [4, 6, 7, 8], "detector": [4, 6, 7], "compens": 4, "sure": [4, 14, 15], "thick": [4, 5, 6], "anim": 4, "sodium": [4, 5, 9], "bright": [4, 5, 7], "re": [4, 5, 7, 9, 15, 16], "fring": [4, 7], "apparatu": [4, 5, 7], "90": [4, 6, 7, 15], "circ": [4, 5, 6, 7], "perpendicular": [4, 5, 6, 9], "dark": [4, 5, 6, 7], "band": [4, 5, 7], "destruct": [4, 7], "integ": [4, 5, 6, 7, 8, 9, 15], "expect": [4, 5, 6, 9, 10, 12], "accord": [4, 5, 6, 7, 8, 9, 10, 12], "On": [4, 6], "journei": 4, "against": [4, 5], "round": [4, 5, 6, 7, 10], "trip": 4, "t_2": 4, "2cd_2": 4, "2d_2": 4, "across": [4, 5, 6, 8], "upriv": 4, "downstream": [4, 12], "triangl": [4, 6], "diagon": 4, "instead": [4, 6, 7, 8, 9, 10, 14, 15], "t_1": 4, "2d_1": 4, "look": [4, 5, 6, 7, 9, 14, 15], "ll": [4, 5, 7, 8, 9], "binomi": 4, "expans": 4, "involv": [4, 5, 9, 15], "order": [4, 5, 6, 7, 8, 9, 10, 15], "neglig": [4, 5, 7, 8, 12], "To": [4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "17": [4, 5, 7, 8, 15], "600": [4, 5, 6], "nm": [4, 5, 6, 7, 8, 9], "amount": [4, 5, 6, 10, 15], "04": [4, 5, 15], "02": [4, 5, 6, 7, 15], "conclud": [4, 5, 6, 7], "stationari": [4, 5, 6, 7, 8], "incorrect": [4, 5], "surpris": [4, 8, 9], "ask": [4, 12, 15], "well": [4, 5, 6, 7, 9, 10, 12, 14, 15], "repeat": [4, 6, 15], "put": [4, 6, 14], "sophist": [4, 6], "adjust": [4, 5], "eight": 4, "mount": [4, 7], "soapston": 4, "float": [4, 15], "mercuri": [4, 6], "elimin": [4, 5, 8], "005": 4, "report": [4, 5, 7, 9, 13], "null": 4, "inabl": [4, 7], "seriou": [4, 5, 9, 10], "blow": 4, "reconcil": [4, 6], "suggest": [4, 5, 6, 7, 8, 9, 10], "factor": [4, 5, 6, 7, 8, 9, 10], "gamma": [4, 5], "situat": [4, 5, 7, 8], "wherea": [4, 5, 6], "proven": 4, "true": [4, 5, 7, 9, 10, 15], "signific": [4, 6, 7, 8, 10], "expos": [4, 5, 6], "fals": [4, 7, 8, 9, 15], "invalid": 4, "mechan": [4, 6, 9, 10, 17, 18], "formal": [4, 5, 8], "manner": [4, 12], "develop": [4, 6, 7, 9, 10, 14, 15], "constanc": 4, "valu": [4, 5, 6, 7, 9, 10, 15], "evalu": [4, 5, 7, 8, 9, 10, 13, 15], "previou": [4, 5, 8, 10, 12, 15], "clearer": [4, 15], "out": [4, 5, 6, 7, 8, 9, 12, 14, 15], "real": [4, 7, 8, 9], "life": 4, "recal": [4, 5, 7, 8, 9, 10, 15], "sect": [4, 7, 8, 9], "event": [4, 7, 12], "synchron": 4, "own": [4, 7, 8, 15], "meterstick": 4, "interv": [4, 7, 8, 10], "lamp": 4, "apart": [4, 5, 9, 14], "puls": [4, 7], "simultan": [4, 5, 7, 8, 9], "reach": [4, 5, 6, 15], "she": 4, "bulb": 4, "conclus": 4, "correct": [4, 5, 8], "seat": 4, "midwai": 4, "rail": 4, "car": 4, "opposit": [4, 5], "equidist": 4, "her": [4, 5], "toward": [4, 5, 8, 15], "rapidli": [4, 8], "platform": [4, 14], "saw": [4, 15], "railcar": 4, "necessarili": [4, 7, 9], "comparison": [4, 5], "send": [4, 5], "signal": 4, "inform": [4, 12], "finit": [4, 5, 6, 9], "awai": [4, 5, 9], "colleagu": 4, "fix": [4, 5, 8, 9, 13], "coincid": 4, "vx": 4, "commonli": [4, 5, 8, 9], "substitut": [4, 5, 6, 7, 8, 9, 10, 13], "write": [4, 7, 8, 9, 10, 14, 15], "compact": [4, 9], "ultim": [4, 10], "want": [4, 6, 7, 9, 14, 15], "goe": [4, 8, 9], "wavefront": 4, "spheric": [4, 7], "inconsist": [4, 5], "break": [4, 5, 15], "map": 4, "uniqu": [4, 5, 7, 8], "simplest": [4, 5, 6, 7, 8, 9, 15], "reduc": [4, 7, 8, 9, 10, 12, 15], "demand": 4, "ct": 4, "un": 4, "abov": [4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "directli": [4, 5, 6, 8, 12, 15], "replac": [4, 6, 7, 8, 9, 12, 13, 15], "exchang": 4, "rightarrow": [4, 5, 6, 7, 8, 9, 10, 13], "notic": [4, 5, 6, 7, 8, 12, 15], "significantli": [4, 6], "001": [4, 6, 7], "grid": [4, 6], "implic": 4, "imaginari": [4, 7, 8], "lit": 4, "read": [4, 12, 15], "extinguish": 4, "t_o": 4, "proper": [4, 12, 15], "x_2": [4, 7, 8], "x_1": [4, 7, 8], "Then": [4, 5, 6, 7, 8, 9, 10, 13, 15], "durat": 4, "slow": [4, 5], "2150": 4, "feder": 4, "perfect": [4, 10], "storag": 4, "antiproton": 4, "fuel": 4, "spaceship": 4, "prepar": 4, "man": [4, 15], "spacecraft": 4, "visit": [4, 14], "proxima": 4, "centauri": 4, "25": [4, 5, 6, 7, 8, 10, 15], "lightyear": 4, "strict": 4, "regul": [4, 10, 12], "16": [4, 5, 6, 7, 8, 9, 15], "provis": [4, 12], "avail": [4, 5, 9, 12, 14, 16], "crew": 4, "neglect": [4, 5], "turnaround": 4, "deceler": [4, 6], "limit": [4, 5, 7, 8, 10, 12, 13, 15, 16], "constrain": [4, 7, 8, 9], "unlik": [4, 5], "buc": 4, "ee": 4, "restock": 4, "2l": [4, 8], "subsum": 4, "alreadi": [4, 6, 8, 9, 14, 16], "4l": 4, "2c": [4, 5, 7, 10], "41": [4, 5, 15], "469c": 4, "realli": [4, 14], "mission": 4, "18": [4, 5, 6, 7, 8, 9, 15], "friend": 4, "light_year": 4, "yr_in_sec": 4, "3600": [4, 5], "24": [4, 5, 6, 7, 8, 10, 15], "365": [4, 5], "sec": 4, "ly": 4, "2e": [4, 5, 6, 7, 8], "librari": 4, "meter": [4, 7], "to_prim": 4, "v_req": 4, "3f": [4, 5, 7], "46e": 4, "41e": [4, 7], "08": [4, 5, 7, 8, 15], "469": 4, "happen": [4, 6, 7, 15], "l_o": 4, "x_r": 4, "x_l": 4, "subscript": [4, 6, 7, 8, 9], "denot": [4, 5, 6, 8, 10], "stick": 4, "t_r": 4, "t_l": 4, "insist": 4, "lesssim": [4, 5, 6], "shrink": 4, "electrodynam": [4, 6, 7], "switch": [4, 15], "shorter": [4, 5, 7, 8], "perspect": 4, "approach": [4, 6, 7, 8, 10, 15], "2l_o": 4, "2t": 4, "give": [4, 5, 6, 7, 8, 9, 12, 14, 15, 16], "ident": [4, 5, 7, 8, 10], "2f": [4, 5, 6, 7, 8, 15], "75": [4, 6, 8, 15], "futur": [4, 15], "navig": 4, "outer": [4, 5, 6, 8], "identifi": [4, 6, 7, 9, 10], "hazard": 4, "avoid": [4, 5, 8, 10, 12], "asteroid": 4, "iceberg": 4, "add": [4, 7, 8, 9, 10, 14, 15], "reserv": [4, 12, 15], "letter": [4, 6, 8, 9, 15], "variou": [4, 5, 6, 7, 9, 13], "correctli": [4, 6], "start": [4, 5, 6, 7, 8, 9, 10, 14, 15], "u_x": 4, "dx": [4, 7, 8, 9, 10], "vdt": 4, "dy": [4, 7, 9, 10], "dz": [4, 9], "u_i": 4, "u_z": 4, "divid": [4, 5, 6, 8, 9, 17, 18], "although": [4, 5, 6, 8, 9, 12, 15], "variabl": [4, 7, 8, 13], "command": [4, 13, 14, 15], "target": [4, 5, 6, 7, 9], "junior": 4, "offic": 4, "shoot": 4, "99c": 4, "6c": 4, "36": [4, 5, 6, 7, 15], "0c": 4, "99": [4, 15], "792": 4, "792c": 4, "994c": 4, "cosmic": [4, 5], "enter": [4, 5, 8], "atmospher": [4, 5, 6], "upper": [4, 6, 7, 10], "shower": [4, 15], "meson": 4, "pion": 4, "unstabl": 4, "n_oe": 4, "n_o": 4, "half": [4, 5, 7, 8, 9, 10], "tau_": 4, "ln": [4, 8], "52": [4, 15], "mu": [4, 5, 6, 7, 8, 9], "surviv": [4, 8, 12], "top": [4, 9, 13, 16], "mountain": [4, 8], "sea": 4, "98c": 4, "540": 4, "remov": [4, 8, 9, 12, 15], "81": [4, 9, 15], "45": [4, 6, 7, 8, 10, 15], "obvious": 4, "someth": [4, 5, 7, 15], "wrong": 4, "v_mu": 4, "98": [4, 10, 15], "d_mnt": 4, "2000": 4, "height": [4, 7, 8], "mu_halflif": 4, "52e": 4, "no_mu": 4, "t_half": 4, "lamb": 4, "log": 4, "t_mu": 4, "n_mu": 4, "81e": 4, "06": [4, 6, 7, 10, 15], "dramat": [4, 5, 6, 15], "35": [4, 5, 6, 7, 8, 9, 15], "539": [4, 5], "agreement": [4, 5, 6, 7, 8, 10, 12], "1963": 4, "washington": 4, "hampshir": 4, "frisch": 4, "smith": 4, "gamma_mu": 4, "t_mu_rel": 4, "n_mu_rel": 4, "35e": 4, "examin": [4, 5, 6, 7, 8, 9], "400": [4, 5], "l_mu": 4, "accur": [4, 5, 6, 7, 8], "transit": [4, 6, 9], "133": 4, "cs": [4, 5], "192631770": 4, "hz": [4, 5, 7, 9], "1971": 4, "hafel": 4, "richard": 4, "cesium": 4, "test": [4, 7, 10, 15], "flew": 4, "eastward": 4, "westward": 4, "regularli": 4, "schedul": 4, "airplan": 4, "naval": 4, "observatori": 4, "took": [4, 5], "65": [4, 5, 7, 15], "hour": [4, 5], "flight": 4, "week": [4, 8], "48": [4, 5, 15], "complic": [4, 9], "corioli": 4, "tabl": [4, 5, 6, 8, 9, 10, 15], "ns": 4, "40": [4, 5, 7, 8, 10, 15], "59": [4, 5, 15], "275": 4, "273": [4, 5], "less": [4, 5, 6, 7, 8, 9, 10, 15], "lost": [4, 5, 6], "ran": 4, "slower": [4, 15], "faster": 4, "uncertainti": [4, 6, 8, 9, 10], "1985": 4, "challeng": 4, "shuttl": 4, "330": 4, "295": 4, "29": [4, 5, 6, 7, 15], "ps": 4, "straightforward": [4, 6, 8], "simplifi": [4, 5, 7, 8, 9], "assumpt": [4, 6, 7, 9, 10, 15], "noninerti": 4, "launch": [4, 16], "land": 4, "much": [4, 5, 6, 7, 8, 9, 10, 15], "3092": 4, "92": [4, 10, 15], "fraction": [4, 5, 6, 8], "loss": [4, 12], "27": [4, 5, 6, 7, 9, 10, 15], "lose": [4, 5, 6], "alon": [4, 9], "seven": [4, 10], "048": 4, "t_": [4, 5], "ms": [4, 5, 8, 14], "m_earth": 4, "9722e24": 4, "r_earth": [4, 5], "6371e3": 4, "radiu": [4, 5, 6, 7, 9], "h_shuttl": 4, "330e3": 4, "v_shuttl": 4, "gamma_shuttl": 4, "dt_t": 4, "4e": [4, 5, 8], "dt_t_mea": 4, "9502e": 4, "gr": [4, 7], "dt_t_gr": 4, "5e": [4, 5, 6], "dt_t_meas_nogr": 4, "ab": [4, 5, 8, 9], "pct_err": 4, "percent": [4, 5], "error": [4, 5, 12, 15], "mission_dur": 4, "tlost_miss": 4, "1e": [4, 5, 6, 7, 8, 9], "3092e": 4, "3002e": 4, "0e": [4, 6, 7], "alv\u00e4ger": 4, "et": 4, "al": [4, 5, 6], "1964": 4, "beam": [4, 5, 6, 7, 9], "strike": [4, 5, 7], "neutral": [4, 6], "cern": 4, "nuclear": [4, 6, 8, 9], "facil": 4, "border": 4, "switzerland": 4, "franc": 4, "99975c": 4, "exit": [4, 5, 6], "laboratori": [4, 5, 6], "excel": [4, 5], "again": [4, 6], "evid": [4, 5, 6, 7, 9], "One": [4, 5, 6, 7, 9, 15], "topic": 4, "pair": [4, 8], "set": [4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "37": [4, 5, 7, 15], "ov": 4, "tick": 4, "slowli": 4, "ix": 4, "scenario": [4, 8], "younger": 4, "moreov": 4, "argu": [4, 7, 8], "answer": [4, 10, 13, 15], "option": [4, 15], "8c": 4, "46": [4, 5, 15], "old": 4, "departur": 4, "yr": 4, "fact": [4, 5, 6, 9, 15], "here": [4, 8, 12, 13, 15], "conveni": [4, 9, 14], "diagram": [4, 5, 6, 7, 9], "simplic": [4, 13], "spatial": [4, 7, 8], "horizont": [4, 8], "vertic": [4, 8, 9], "dimens": [4, 7, 8, 9, 13], "yellow": [4, 5], "photon": [4, 5, 6, 7, 9], "locat": [4, 7, 8], "hermann": 4, "minkowski": 4, "specifi": [4, 7, 9, 12, 15], "coordiant": 4, "fourth": [4, 9], "x_a": [4, 8], "ct_a": 4, "x_b": [4, 8], "ct_b": 4, "worldlin": 4, "slope": [4, 5], "do": [4, 5, 6, 7, 8, 9, 12, 15], "cone": 4, "causal": [4, 10], "li": [4, 5, 6, 8, 9, 10], "link": [4, 6, 9], "vertex": 4, "serv": [4, 7], "role": [4, 7, 10], "mathbf": [4, 5, 9, 10, 14], "lightlik": 4, "sepeart": 4, "spacelik": 4, "timelik": 4, "ell": [4, 5, 7], "1d": [4, 15], "suffic": 4, "union": 4, "ict": 4, "ds": 4, "2dt": 4, "appropri": [4, 5, 7, 8, 9, 13, 14, 16], "somewhat": 4, "easier": [4, 5, 15], "penalti": 4, "matrix": [4, 15], "tensor": 4, "spinor": 4, "disadvantag": 4, "author": [4, 12, 16], "regard": [4, 6, 7, 9, 12], "inclus": 4, "pitch": 4, "ambul": 4, "receiv": [4, 5, 6, 7, 12, 13], "astronom": [4, 5], "front": 4, "rear": [4, 5], "train": 4, "exactli": [4, 5, 8, 9, 10, 15], "cn": 4, "f_o": [4, 5], "compactli": 4, "reced": 4, "wth": 4, "distinguish": [4, 5, 15], "convent": [4, 7, 14, 15], "starlight": 4, "redshift": [4, 6], "distant": [4, 6], "galaxi": [4, 6], "farther": 4, "harlow": 4, "edwin": 4, "hubbl": 4, "maxim": [4, 5, 9], "angl": [4, 5, 6, 7, 9], "theta": [4, 5, 6, 7, 8, 10], "co": [4, 5, 6, 7, 8, 9, 10, 15], "sin": [4, 5, 6, 7, 8, 9, 15], "33": [4, 5, 8, 15], "180": [4, 5], "pure": [4, 9], "transvers": 4, "analyz": [4, 6, 15], "sent": 4, "outbound": 4, "annual": 4, "everi": [4, 7, 9, 10, 12, 15], "3f_o": 4, "lead": [4, 6, 7, 8, 9, 10], "That": 4, "conflict": [4, 6], "modif": [4, 5, 12], "ball": [4, 5, 6, 7, 8], "collid": [4, 5, 6], "perfectli": 4, "u_o": [4, 8], "p_y": [4, 5, 7], "ff": [4, 5], "2mu_o": 4, "conserv": [4, 5, 6, 8, 9], "insert": [4, 5, 7, 8, 9], "gather": 4, "p_x": [4, 5, 7], "mf": 4, "neq": [4, 9], "preserv": [4, 15], "multipli": [4, 7, 8, 9, 10, 15], "trial": [4, 5, 8, 9], "rememb": [4, 6, 7, 15], "distinct": [4, 6, 8, 9, 14, 15], "plausibl": [4, 6, 7], "tau": [4, 7, 9], "goo": 4, "accuraci": [4, 12], "14c": 4, "mc": 4, "resist": [4, 8, 10], "42": [4, 5, 10, 15], "kinet": [4, 5, 6, 7, 8, 10], "w_": 4, "int_1": 4, "k_2": [4, 7, 8], "k_1": [4, 7, 8], "int": [4, 6, 8, 9, 15], "integr": [4, 5, 6, 7, 9, 12], "greater": [4, 6, 7, 8, 9, 15], "diverg": [4, 8], "Be": [4, 8], "mistak": 4, "student": [4, 5, 6, 7], "medic": [4, 5], "000": [4, 6], "volt": [4, 5, 6], "metal": [4, 5, 6, 7, 8], "qv": 4, "602": [4, 5, 7, 8], "19": [4, 5, 6, 7, 8, 15], "049": 4, "rearrang": [4, 5, 8, 9], "091": 4, "nonrelativist": [4, 5, 6, 7, 8], "2k": [4, 5, 6, 8], "Such": [4, 5, 7, 9], "equip": [4, 7], "particularli": [4, 7], "m_e": [4, 5, 6, 7, 8], "v_el": 4, "5e4": [4, 5, 7], "k_el": 4, "e_o": [4, 6, 7, 8, 9], "1f": [4, 5, 7, 9], "05e": 4, "07": [4, 5, 6, 7], "38e": [4, 5], "rewritten": [4, 5, 6], "certain": [4, 5, 6, 7, 8, 9, 12], "proof": 4, "establish": [4, 7, 9], "merg": 4, "interchang": 4, "18th": [4, 8], "block": [4, 5, 6, 14, 15], "wood": [4, 6], "spring": [4, 8, 10], "compress": 4, "lock": 4, "thornton": [4, 6, 17, 18], "rex": [4, 6, 17, 18], "2012": [4, 6, 17, 18], "e_": [4, 5, 6, 7, 8], "2mc": [4, 5], "2m": [4, 7, 8, 9], "went": [4, 7, 15], "increas": [4, 5, 6, 7, 8, 10], "head": [4, 6], "f_r": 4, "quit": [4, 5, 9, 15], "typic": [4, 5, 6, 7, 14, 15], "numer": [4, 5, 8, 15], "inappropri": 4, "macroscop": [4, 8, 10], "essenti": [4, 5, 6, 12], "m_wb": 4, "v_wb": 4, "k_wb": 4, "k_wb_rel": 4, "ke": 4, "6e": 4, "7e": 4, "fundament": [4, 5, 6, 7, 8], "inviol": 4, "56": [4, 5, 7, 15], "pc": [4, 7, 14], "muc": 4, "astrophys": [4, 14], "neutron": [4, 6, 7, 9], "th": [4, 7], "ev": [4, 5, 6, 7, 8, 9, 10], "prefix": 4, "mev": [4, 5, 6, 8], "mega": 4, "6726": 4, "26": [4, 5, 6, 7, 8, 9, 15], "67": [4, 5, 15], "38": [4, 5, 7, 15], "938": 4, "five": [4, 5, 9], "font": [4, 7, 8], "convers": [4, 5, 7, 8, 15], "66054": [4, 10], "931": 4, "494": 4, "languag": [4, 14, 15, 16], "modul": [4, 7, 8, 10, 15], "hit": [4, 6, 7, 15], "78": [4, 15], "aris": [4, 5, 6, 7, 9, 12], "51": [4, 10, 15], "13": [4, 5, 6, 8, 9, 15], "948": 4, "95c": 4, "similarli": [4, 6, 8, 9, 10], "tow": [4, 9], "momentarili": 4, "stop": [4, 5, 12, 15], "excit": [4, 5, 7, 8, 9, 10], "outcom": [4, 7, 10], "disappear": [4, 7, 8], "overlin": [4, 10], "symbol": [4, 8, 9, 14, 15], "deuteron": [4, 6, 7], "k_p": 4, "p_p": 4, "gamma_p": 4, "beta_p": 4, "3fc": 4, "948c": 4, "84e": 4, "h": [4, 5, 6, 7, 8, 9, 12], "bound": [4, 5, 6, 8, 9, 12], "e_b": 4, "m_": [4, 6], "sum_i": [4, 7, 8, 9], "m_i": 4, "007275c": 4, "008665c": 4, "939": 4, "57": [4, 5, 7, 10, 15], "01355c": 4, "1875": [4, 5, 6], "61": [4, 6, 15], "minimum": [4, 5, 6, 7, 8, 12], "139": [4, 5], "m_pc": 4, "m_d": [4, 6], "m_p": [4, 6], "69": [4, 15], "m_pi": 4, "57039": 4, "6f": 4, "319578": 4, "me": 4, "convict": 4, "els": [4, 5, 7, 8, 10, 15, 16], "said": [4, 10], "bit": [4, 15], "patchwork": 4, "publish": [4, 6, 10, 12], "titl": [4, 12, 13, 15], "zur": 4, "elektrodynamik": 4, "bewegt": 4, "k\u00f6rper": 4, "german": [4, 5], "fulli": [4, 5, 6, 7, 15], "q_o": [4, 5], "conduct": 4, "wire": [4, 6], "lorenz": 4, "page": [4, 5, 14], "hand": [4, 5, 8, 9, 13, 15], "repel": [4, 5, 6], "upward": [4, 5], "ion": [4, 6], "closer": [4, 5], "presenc": [4, 5, 9, 12], "themselv": [4, 9, 15], "95": [4, 5, 15], "jet": 4, "airlin": 4, "240": 4, "superson": 4, "station": 4, "cm": [4, 5, 6, 7, 8, 9], "14": [4, 5, 7, 8, 15], "20": [4, 5, 6, 7, 8, 10, 12, 15], "rocket": [4, 16], "ship": 4, "astronaut": 4, "aboard": 4, "middl": [4, 7, 8], "60c": 4, "someon": 4, "group": [4, 6, 7, 9], "decid": [4, 6, 8], "mauna": 4, "kea": 4, "site": [4, 15], "hawaii": 4, "4205": 4, "why": [4, 5, 6, 9, 15], "solar": [4, 5, 6], "1400": 4, "khz": 4, "92c": 4, "5c": 4, "hadron": 4, "tev": 4, "kaon": 4, "498": 4, "135": 4, "1900": [5, 6, 7], "1930": 5, "partli": 5, "motiv": 5, "advanc": [5, 8], "1890": 5, "evacu": 5, "tube": [5, 6, 7], "constitut": [5, 12], "atom": [5, 7, 8, 10], "substructur": 5, "penetr": [5, 7, 8], "phosphoresc": 5, "screen": [5, 7, 16], "vividli": 5, "darken": 5, "room": [5, 7, 10], "kind": [5, 6, 12], "unaffect": 5, "better": [5, 7, 9, 10], "bombard": [5, 6, 7, 9], "bone": 5, "1901": 5, "youtub": [5, 6, 16], "video": [5, 6, 7], "tede": 5, "gase": [5, 6], "particl": [5, 6, 9, 10], "earli": [5, 6, 7, 8, 9, 10], "invent": 5, "1897": 5, "ferdinand": 5, "braun": 5, "anod": [5, 6], "fluoresc": [5, 7], "deflect": [5, 6, 9], "permit": [5, 8, 12], "collim": [5, 7], "voltag": [5, 6], "convincingli": [5, 6], "1906": 5, "poorer": 5, "ioniz": [5, 6], "residu": 5, "ga": [5, 6, 7, 9, 10], "improv": [5, 7, 8, 15], "With": [5, 6, 7, 9, 10], "region": [5, 6, 7, 8], "f_y": 5, "ma_i": 5, "qe": 5, "a_i": [5, 7], "travers": [5, 7], "length": [5, 6, 7, 8, 9, 15], "v_o": [5, 6], "tan": [5, 6, 7, 8, 15], "v_y": [5, 10], "v_x": [5, 7, 10], "condit": [5, 8, 9, 12, 15, 16], "extract": [5, 12, 15], "undergradu": [5, 16], "reproduc": [5, 12], "cancel": [5, 8, 9, 10], "05": [5, 6, 7, 8, 9], "e_mag": 5, "2e4": 5, "b_mag": 5, "8e": [5, 8, 15], "l_plate": 5, "deflect_ang": 5, "radian": [5, 6], "q_m": 5, "lower": [5, 6, 7, 9, 10], "larger": [5, 6, 7, 8, 15], "anticip": 5, "previous": [5, 6, 7, 9], "carrier": 5, "attempt": [5, 7, 8], "millikan": 5, "1911": [5, 6], "visual": [5, 9], "uncharg": 5, "oil": 5, "drop": [5, 6, 8], "scheme": [5, 9, 12], "downward": [5, 6], "air": [5, 6, 7, 8, 10], "_j": 5, "drag": 5, "oppos": 5, "henc": [5, 9, 15], "via": [5, 6, 10], "stoke": 5, "diamet": [5, 6, 7], "sphere": [5, 6], "buoyanc": 5, "balanc": 5, "_e": [5, 6], "flat": 5, "mgd": 5, "termin": [5, 12, 15], "rho": [5, 6, 7], "six": [5, 10], "modern": [5, 7, 10, 14, 16], "quot": [5, 15], "plastic": 5, "sprai": 5, "solut": [5, 6, 7, 8, 10, 13], "evapor": 5, "occasion": [5, 6], "dropdown": [5, 16], "menu": [5, 16], "histogram": 5, "bin": 5, "multipl": [5, 6, 7, 8, 9, 15], "fit": [5, 7, 8, 12], "77": [5, 7, 15], "percentag": [5, 6], "click": [5, 7], "43": [5, 6, 15], "126": 5, "74": [5, 15], "83": [5, 15], "66": [5, 15], "22": [5, 6, 7, 15], "34": [5, 7, 8, 15], "85": [5, 7, 15], "44": [5, 8, 15], "00": 5, "136": [5, 7], "64": [5, 9, 15], "60": [5, 15], "03": [5, 6], "134": 5, "143": 5, "55": [5, 7, 9, 15], "82": [5, 7, 15], "71": [5, 15], "89": [5, 9, 15], "39": [5, 15], "32": [5, 6, 7, 8, 9, 15], "54": [5, 7, 10, 15], "140": 5, "58": [5, 7, 15], "col": [5, 7, 8, 9], "218": [5, 7, 8, 9], "256": [5, 7, 8, 9], "50": [5, 7, 8, 9, 10, 15], "genfromtxt": [5, 15], "raw": 5, "githubusercont": 5, "com": [5, 15], "saturnaxi": [5, 14, 16], "modernphys": [5, 16], "chapter_3": 5, "oil_drop": 5, "csv": 5, "delimit": 5, "hist": 5, "color": [5, 6, 7, 8, 9], "set_xtick": [5, 7, 8], "set_ytick": [5, 7, 8, 9], "optim": [5, 8], "curve_fit": 5, "q0": 5, "popt": 5, "pcov": 5, "pct_error": 5, "transax": 5, "smooth": [5, 7], "vs": [5, 15], "burn": 5, "flame": 5, "prism": 5, "constitu": [5, 6], "rowland": 5, "qualiti": 5, "grate": [5, 6, 7], "spectroscopi": [5, 6], "professor": 5, "chosen": [5, 10, 12], "hopkin": 5, "foremost": 5, "american": 5, "presid": 5, "societi": [5, 12], "1899": 5, "vice": 5, "neither": 5, "nor": [5, 12], "earn": 5, "ph": [5, 6, 7], "schemat": [5, 6, 7, 9], "spectromet": [5, 7], "centimet": 5, "maxima": [5, 7], "5000": [5, 6], "promin": 5, "mm": [5, 6], "bunsen": 5, "gustav": [5, 6], "kirchhoff": 5, "fingerprint": 5, "identif": [5, 12], "composit": [5, 6], "flourish": 5, "finer": [5, 9], "evenli": [5, 10], "attent": 5, "paid": 5, "hope": 5, "sunlight": 5, "helium": [5, 6, 9], "1800": 5, "underli": [5, 6, 7, 8], "chemist": [5, 6], "build": [5, 6, 7], "johann": 5, "balmer": [5, 6], "1885": 5, "empir": [5, 6, 9], "formula": [5, 6], "uv": [5, 8], "white": [5, 6, 7, 14], "paramet": [5, 6, 8, 10, 15], "coeffici": [5, 8], "perhap": [5, 9], "confus": [5, 10, 15], "analyt": 5, "sole": [5, 9], "364": 5, "match": [5, 13], "formerli": 5, "angstrom": 5, "\u00e5": 5, "ander": 5, "\u00e5ngstrom": 5, "unicod": [5, 6], "x212b": [5, 6], "reciproc": [5, 7], "r_": [5, 6, 9], "rydberg": [5, 6], "0972": 5, "096776": [5, 6], "walther": [5, 9], "ritz": [5, 6], "1925": [5, 7, 8, 9], "uncov": 5, "mysteri": [5, 6], "discover": [5, 12], "lyman": [5, 6], "1916": 5, "paschen": [5, 6], "infrar": [5, 6], "ir": 5, "brackett": 5, "1922": [5, 9], "pfund": 5, "1924": [5, 7], "700": 5, "91": [5, 15], "174": 5, "parenthes": [5, 8, 9, 14, 15], "permiss": [5, 12, 16], "121": [5, 7, 8], "102": [5, 7, 8], "ey": [5, 7], "656": [5, 6], "47": [5, 6, 15], "red": [5, 7, 8], "486": 5, "blue": [5, 7, 8], "green": 5, "434": 5, "violet": [5, 8], "410": [5, 6], "397": 5, "difficult": [5, 7, 8], "63": [5, 15], "1282": 5, "infti": [5, 6, 7, 8, 9, 10], "820": [5, 6], "geq": [5, 6, 7, 8], "rydberg_wavelength": 5, "kth": 5, "isfinit": 5, "096776e7": 5, "series_nam": 5, "k_val": 5, "inf": [5, 6], "k_v": 5, "h_lambda": 5, "think": [5, 9, 10, 15], "energi": [5, 6, 8, 10], "smaller": [5, 6, 7, 8, 9], "impli": [5, 6, 7, 8, 10, 12], "quark": 5, "oxygen": 5, "pipe": [5, 7], "music": [5, 12], "overton": [5, 7], "maximum": [5, 6, 7, 9, 15], "open": [5, 7, 14, 15, 16], "none": [5, 15], "ve": 5, "campfir": 5, "forg": 5, "stove": 5, "550": 5, "orang": [5, 6], "emitt": [5, 8], "ideal": [5, 7, 10], "onto": [5, 6, 7, 9], "drill": 5, "hole": 5, "hollow": 5, "black": [5, 6, 7], "insul": [5, 6], "enclosur": [5, 7], "distribut": [5, 6, 7, 8, 12], "absorpt": [5, 6, 9], "mathcal": [5, 7], "wien": [5, 7], "lambda_": [5, 6, 7], "898": 5, "vari": [5, 6, 7, 8], "prescrib": 5, "quantifi": [5, 6, 7], "int_0": [5, 8, 9, 10], "josef": 5, "stefan": 5, "1879": 5, "boltzmann": [5, 10], "epsilon": 5, "sigma": [5, 6, 7], "6705": 5, "furnac": 5, "1600": 5, "door": 5, "1873": 5, "1547": 5, "zero_celsiu": 5, "t_wall": 5, "oc": 5, "t_k": 5, "lambda_max": [5, 6], "500": [5, 7, 8], "surf": 5, "5800": 5, "p_": [5, 6, 7], "082": 5, "radi": 5, "flux": [5, 7], "au": [5, 6, 10], "495": 5, "1380": 5, "slightli": [5, 8, 9], "throughout": [5, 6, 8, 15], "1360": 5, "littl": [5, 6, 9, 15], "odot": 5, "5777": 5, "astronomical_unit": 5, "t_surf": 5, "l_max": 5, "1e9": 5, "stef_boltz": 5, "surf_area": 5, "rad": [5, 6], "lmax_sun": 5, "t_sun": 5, "rad_sun": 5, "r_sun": 5, "95700e8": 5, "iau": 5, "en": 5, "wiki": [5, 12], "solar_radiu": 5, "3781e6": 5, "earth_radiu": 5, "flux_au": 5, "40e": 5, "unsuccess": [5, 6], "electromagnet": [5, 6, 7, 8, 9], "equipart": 5, "thermodynam": [5, 10], "assign": [5, 7, 9, 14, 15], "rayleigh": 5, "sir": 5, "proportion": 5, "ckt": 5, "formul": [5, 7, 8], "muster": 5, "nonzero": [5, 7, 8], "deviat": [5, 6, 7, 8], "badli": 5, "paul": [5, 7, 9], "ehrenfest": [5, 9], "dub": 5, "expert": 5, "reject": [5, 6, 7], "statist": [5, 7, 9], "version": [5, 7, 13, 15, 16], "doubt": [5, 12], "1889": 5, "irrevers": 5, "tri": [5, 6, 9], "wasn": 5, "awar": [5, 6], "plank": 5, "sort": [5, 15], "hf": [5, 6, 7, 8, 10], "tot": [5, 8], "ak": 5, "hc": [5, 6, 7, 9], "e_n": [5, 6, 7, 8], "nhf": [5, 7], "6261": [5, 7], "spent": 5, "plan": 5, "fail": [5, 12, 15], "cornerston": 5, "quotient": 5, "trivial": [5, 8, 9, 10], "bracket": [5, 14, 15], "xe": 5, "transcendent": [5, 8], "bisect": [5, 6], "965": 5, "965k": 5, "x_tran": 5, "lam": [5, 9], "wien_const": 5, "func": [5, 15], "6000": 5, "x_max": 5, "wien_disp": 5, "3e": [5, 6, 7], "898e": 5, "39e": 5, "09": [5, 7], "fell": 5, "electrod": 5, "electroscop": 5, "valenc": [5, 6], "escap": [5, 8, 15], "thermion": [5, 6], "secondari": 5, "transfer": [5, 6, 9, 10], "shine": [5, 7], "weakli": 5, "extra": [5, 8, 15], "eject": 5, "photoelectron": 5, "phi": [5, 6, 7, 8], "makeup": [5, 6], "pd": 5, "93": [5, 15], "pt": 5, "na": [5, 9], "nd": 5, "zn": 5, "cu": [5, 10], "ni": 5, "zr": 5, "fe": [5, 8], "pb": 5, "photocathod": 5, "collector": [5, 6], "retard": 5, "impos": [5, 12], "suppli": [5, 6, 12], "ammet": [5, 6], "photocurr": 5, "photoelecton": 5, "filter": 5, "monochromat": [5, 7], "bias": 5, "v_c": 5, "suffici": 5, "satur": 5, "energet": [5, 6], "threshold": 5, "instantli": 5, "leq": [5, 7, 8, 9], "illumin": 5, "zinc": 5, "289": 5, "except": [5, 8, 12], "rudimentari": 5, "1902": 5, "primarili": [5, 7], "philipp": 5, "lenard": 5, "extens": [5, 8], "inexplic": 5, "elaps": 5, "immedi": [5, 8, 14, 15], "97": [5, 15], "cubic": [5, 6, 7, 8], "attain": [5, 9], "hr": 5, "156": 5, "i_src": 5, "instens": 5, "phi_na": 5, "ke_p": 5, "tot_": 5, "na_dens": 5, "968": 5, "na_molar_mass": 5, "990": 5, "na_atoms_vol": 5, "1e6": 5, "d_na": 5, "na_atom_area": 5, "energy_r": 5, "t_req": 5, "54e": 5, "63e": 5, "16e": [5, 8], "intrigu": 5, "english": 5, "spread": [5, 6, 7], "local": [5, 7, 8, 15, 16], "aspect": [5, 7], "deliv": 5, "struck": [5, 6, 7], "overcom": 5, "whatev": 5, "safe": 5, "degrad": 5, "2_": 5, "ev_o": 5, "1st": 5, "2nd": [5, 10, 15], "collect": [5, 6, 8, 12, 15], "hf_o": 5, "intercept": 5, "disprov": 5, "skeptic": [5, 7], "iii": [5, 7, 8, 12], "928": 5, "typo": 5, "na_lam": 5, "arrai": [5, 7, 15], "4339": 5, "4047": 5, "3650": [5, 10], "3126": 5, "2535": 5, "na_volt": 5, "103": 5, "058": 5, "x_coord": 5, "y_coord": 5, "1e14": 5, "polyfit": 5, "poly1d": 5, "65e": [5, 7], "lithium": 5, "626": [5, 8], "phi_li": 5, "e_400": 5, "400e": 5, "97e": 5, "mv_": [5, 9], "209": 5, "portion": [5, 8, 12, 15], "ke_e": [5, 7], "e_phot": 5, "f_phot": 5, "l_phot": 5, "50e": 5, "43e": 5, "09e": [5, 7], "ye": [5, 15], "maintain": 5, "pictur": [5, 6, 9, 15], "bremsstrahlung": 5, "brake": 5, "e_1": [5, 6, 7, 8], "e_f": 5, "e_i": 5, "sketch": 5, "tungsten": 5, "filament": [5, 6], "focus": [5, 10], "gtrsim": 5, "content": [5, 12, 15, 16], "radiolog": 5, "diagnos": 5, "flaw": [5, 6], "weld": 5, "cast": [5, 15], "crystal": [5, 7], "strongli": [5, 7, 9], "molybdenum": 5, "chromium": 5, "min": [5, 6, 7, 8], "hf_": 5, "duan": 5, "hunt": 5, "kv": 5, "kev": [5, 7], "ulrei": 5, "1918": 5, "curv": [5, 7, 8, 9], "lam_min": 5, "035": 5, "wake": 5, "boat": 5, "reradi": 5, "arthur": [5, 15], "1923": 5, "grai": [5, 8], "phil": 5, "mag": 5, "611": 5, "1913": [5, 6], "unmodifi": 5, "backward": [5, 6], "review": 5, "treat": [5, 6, 7, 15], "relativist": [5, 7], "p_e": [5, 7], "recoil": [5, 6], "m_ec": [5, 7], "hff": 5, "check": [5, 6, 8, 9, 10, 15], "071": 5, "compoton": 5, "lambda_c": 5, "426": [5, 8], "newli": 5, "tightli": [5, 6], "correspondingli": 5, "1927": [5, 7], "050": 5, "gold": [5, 6, 7], "62": [5, 15], "largest": [5, 6, 8], "e_x": 5, "inner": [5, 6], "longest": [5, 6], "2h": 5, "00243": 5, "055": 5, "phot_": 5, "l_x": [5, 9], "l_prime": 5, "e_xp": 5, "48e": 5, "485e": 5, "62e": 5, "26e": 5, "51e": [5, 6], "19e": 5, "forbidden": [5, 8, 9], "versa": 5, "violat": [5, 8, 9, 12], "511": 5, "lightest": 5, "1932": [5, 6], "carl": 5, "anderson": 5, "positron": 5, "dirac": [5, 7, 9], "miss": [5, 6, 15], "massiv": [5, 6, 7], "022": 5, "domin": [5, 8], "theta_": [5, 6], "2m_ec": 5, "qquad": [5, 6, 8, 9], "fo": [5, 6], "doom": 5, "proxim": 5, "drawn": 5, "atomlik": 5, "positronium": 5, "binari": 5, "2m_e": [5, 6, 7, 8], "hf_1": 5, "hf_2": 5, "f_1": 5, "f_2": 5, "2hf": 5, "draw": [5, 7, 15], "buoyant": 5, "droplet": [5, 6], "freeli": 5, "smallest": [5, 6, 7, 8, 15], "293": [5, 10], "2500": 5, "9000": 5, "basketbal": 5, "human": [5, 15], "halv": 5, "270": 5, "dental": 5, "machin": [5, 15], "oper": [5, 8], "theori": [6, 7, 8, 9, 12], "dat": 6, "featureless": 6, "har": 6, "address": 6, "search": [6, 15], "piec": 6, "belong": 6, "ancient": 6, "fire": 6, "70": [6, 15], "electrolysi": 6, "conductor": [6, 8], "hint": [6, 15], "indirect": [6, 12], "unravel": 6, "central": [6, 7, 9, 10], "question": [6, 7, 10], "arrang": [6, 7, 12], "wherein": 6, "uniformli": 6, "embed": 6, "background": [6, 16], "liken": 6, "raisin": 6, "plum": 6, "pud": 6, "radiat": [6, 7, 9], "correl": 6, "imposs": [6, 7, 9], "ernest": 6, "project": [6, 7], "thin": 6, "assist": [6, 7], "geiger": 6, "conceiv": 6, "marsden": 6, "surprisingli": 6, "leaf": 6, "greatli": 6, "latest": 6, "calib": 6, "rifl": 6, "bullet": [6, 14], "box": [6, 8], "homogen": 6, "ricochet": 6, "foil": 6, "v_e": 6, "targ": 6, "2m_": 6, "7000": 6, "hardli": 6, "2v_": 6, "2m_ev_": 6, "016": 6, "rangle_": 6, "ia": [6, 9], "gieger": 6, "197": 6, "occupi": [6, 9], "lattic": [6, 7, 8], "2300": 6, "79": [6, 15], "empti": [6, 9, 15], "core": [6, 9], "z_1e": 6, "z_2e": 6, "impact": 6, "closest": 6, "projectil": 6, "hyperbol": [6, 8], "besid": 6, "undeflect": [6, 9], "equiv": [6, 8, 10, 15], "mv_ob": 6, "instantan": [6, 7, 10], "impuls": 6, "appreci": 6, "_f": 6, "_i": [6, 9], "p_f": 6, "p_i": 6, "isoscel": 6, "2mv_o": [6, 8], "z_1": 6, "z_2": 6, "_r": 6, "mr": 6, "mv_o": 6, "v_ob": 6, "int_": [6, 7, 8, 9, 10], "phi_i": 6, "phi_f": 6, "cot": 6, "select": 6, "b_o": 6, "theta_o": 6, "circl": [6, 9], "nt": 6, "nta": 6, "n_m": 6, "m_g": 6, "n_": [6, 10], "ta": 6, "z_1z_2": 6, "epsilon_0": 6, "n_au": 6, "9e28": 6, "t_au": 6, "k_alpha": 6, "7e6": 6, "z_au": 6, "z_he": 6, "theta_alpha": 6, "f_au": 6, "db": [6, 9], "df": [6, 8], "eq": [6, 9, 10], "csc": 6, "n_i": [6, 8], "ring": [6, 7], "width": [6, 7, 8, 9, 15], "da": [6, 10], "4th": 6, "basi": [6, 10, 12], "r_alpha": 6, "01": [6, 7, 8, 9, 15], "ntheta_ni": 6, "ntheta_ni_mm2": 6, "15e": [6, 8], "verif": [6, 8], "planetari": [6, 9], "resembl": 6, "circular": [6, 7, 9], "centripet": 6, "a_r": 6, "tangenti": 6, "m_ev": 6, "justifi": [6, 7], "treatment": [6, 7], "whether": [6, 7, 8, 9, 12, 15], "r_hyd": 6, "25e": 6, "1836": 6, "crash": 6, "shortli": [6, 7], "niel": 6, "meet": 6, "ws": 6, "somehow": 6, "acquaint": 6, "govern": [6, 8, 9], "blackbodi": 6, "impress": 6, "wonder": 6, "laid": 6, "revolv": [6, 9], "fiction": 6, "intuit": 6, "analog": [6, 8, 9, 10], "physic": [6, 8, 15, 16], "1915": [6, 7], "conjunct": [6, 15], "e_2": [6, 7, 8, 9], "dynam": [6, 10], "nhf_": 6, "orb": [6, 9], "equival": [6, 7, 12, 13, 15], "hbar": [6, 7, 8, 9], "pronounc": 6, "bar": [6, 8, 10], "self": [6, 15], "hardest": 6, "critic": 6, "m_evr": 6, "m_er": 6, "r_n": 6, "a_o": [6, 7, 9], "53": [6, 15], "2r_1": 6, "2a_o": [6, 7, 9], "suspect": 6, "shell": [6, 9, 15], "64c": 6, "097373": 6, "absent": 6, "broad": [6, 7, 15], "displai": [6, 7, 8, 9, 12, 13], "v_n": 6, "v_1": [6, 8], "fine": [6, 9, 15], "137": 6, "shortest": 6, "denomin": [6, 8], "0974": 6, "335": 6, "875": 6, "219": 6, "203": 6, "rydberg_eqn_bohr": 6, "r_infti": 6, "wave_num_max": 6, "wave_num_min": 6, "infin": [6, 8], "lambda_min": 6, "334e": 6, "219e": 6, "troubl": 6, "unimport": 6, "nearest": 6, "cascad": 6, "2n": 6, "2e_o": 6, "hn": 6, "r_e": 6, "analysi": [6, 7], "mu_e": 6, "m_em": 6, "999456": 6, "athough": 6, "h_": 6, "deuterium": 6, "tritium": 6, "007276": 6, "013553": 6, "triton": 6, "015500": 6, "0005485799": 6, "r_h": 6, "99946r_": 6, "r_d": 6, "99973r_": 6, "r_t": 6, "99982r_": 6, "2r": [6, 9], "wer": 6, "m_t": 6, "m_nucleu": 6, "l_alpha": 6, "5f": 6, "h_alpha": 6, "99946": 6, "99973": 6, "99982": 6, "ze": 6, "spectrograph": 6, "arnold": 6, "sommerfeld": [6, 7], "adapt": [6, 12, 16], "hypothes": 6, "ot": 6, "split": [6, 8, 9, 15], "stark": [6, 8], "broaden": [6, 9], "successfulli": [6, 8], "denigr": 6, "tha": 6, "stronger": [6, 9], "radii": 6, "roman": 6, "histor": 6, "heavi": 6, "dislodg": 6, "vacanc": 6, "descend": [6, 9], "full": [6, 7, 8, 9, 12, 13], "k_": [6, 7, 8], "lab": 6, "european": [6, 12, 15], "moselei": 6, "engag": 6, "catalogu": 6, "cr": 6, "1914": 6, "discuss": [6, 7], "copenhagen": 6, "mention": 6, "extent": [6, 9, 12], "lambda_k": 6, "reorder": 6, "tabul": 6, "aluminum": [6, 7], "promethium": 6, "1940": 6, "firmer": 6, "foot": 6, "clarifi": 6, "l_": 6, "lambda_l": 6, "z_": 6, "eff": 6, "proce": 6, "crz_": 6, "rewrit": [6, 7, 9, 10], "rz_": 6, "4n": 6, "spectroscop": [6, 9], "franck": 6, "hot": 6, "mesh": 6, "regist": 6, "electromet": 6, "voltmet": 6, "instruct": [6, 10, 15], "assembl": 6, "hg": 6, "vapor": 6, "sudden": 6, "suddenli": 6, "ast": 6, "teh": [6, 9], "onset": 6, "arbitrari": [6, 9], "versu": 6, "graph": [6, 15], "context": [6, 12], "88": [6, 15], "inelast": 6, "promot": [6, 9], "sharpli": 6, "discer": 6, "revolut": [6, 9], "potassium": 6, "exercis": [6, 8, 12, 17, 18], "magnesium": 6, "barkla": 7, "exhibit": [7, 8], "von": 7, "laue": 7, "furthermor": 7, "thew": 7, "apertur": [7, 8], "obstruct": 7, "physicsopenlab": 7, "nacl": 7, "fcc": 7, "walter": 7, "friedrich": 7, "knip": 7, "solid": [7, 8, 10], "bragg": 7, "son": 7, "lawrenc": 7, "exploit": 7, "spot": 7, "dot": [7, 8, 14], "ste": 7, "Is": 7, "asymmetr": 7, "chare": 7, "dipol": [7, 9], "interf": 7, "rock": 7, "simplif": 7, "adjac": 7, "outgo": 7, "2d": [7, 15], "interatom": 7, "terminolog": [7, 9], "dash": [7, 8], "interplanar": 7, "father": 7, "orient": [7, 9], "su": 7, "dna": 7, "powder": 7, "xrd": 7, "crystallographi": 7, "282": 7, "varieti": 7, "noncub": 7, "098": 7, "calibr": 7, "1920": [7, 9], "crystallin": 7, "princ": 7, "debrogli": 7, "vers": 7, "encourag": [7, 12, 13], "prohibit": [7, 8], "doctor": 7, "thesi": 7, "pari": 7, "arous": 7, "wavelik": [7, 8], "virtual": [7, 10], "tenni": 7, "057": 7, "2mk": 7, "2m_ek": 7, "9": [7, 8, 9, 10, 12, 15], "109": [7, 8], "2398": 7, "debroglie_wav": 7, "m_tb": 7, "v_tb": 7, "me_ev": 7, "k_ev": [7, 10], "k_j": [7, 10], "l_tb": 7, "l_e": 7, "73e": 7, "circumfer": 7, "mvr": [7, 9], "rp": 7, "nh": 7, "clinton": 7, "davisson": 7, "lester": 7, "germer": 7, "bottl": [7, 15], "explod": 7, "nickel": 7, "accid": 7, "breakag": 7, "oxid": 7, "repair": 7, "variat": 7, "polycrystallin": 7, "trigonometr": 7, "215": 7, "165": 7, "transmiss": [7, 8], "celluloid": 7, "platinum": 7, "1937": 7, "kinetic_energi": 7, "germeer": 7, "85e": 7, "cold": 7, "2m_n": 7, "3m_nkt": 7, "m_n": 7, "675": 7, "381": 7, "515": 7, "145": 7, "287": 7, "suitabl": [7, 8], "supercold": 7, "extran": 7, "debroglie_wave_ga": 7, "t_room": 7, "l_room": 7, "t_cold": 7, "l_cold": 7, "452e": 7, "867e": 7, "heavili": 7, "sinusoid": [7, 8], "psi": [7, 8, 9, 10], "kx": [7, 8], "usag": 7, "spectroscopist": 7, "const": 7, "rcparam": [7, 8], "updat": [7, 8], "mathtext": [7, 8], "fontset": [7, 8], "sine_wav": 7, "sine": [7, 8, 9], "l_wave": 7, "v_wave": 7, "x_wave": 7, "psi_o": [7, 8], "psi_t": 7, "ncol": [7, 8], "quarter": 7, "button": [7, 16], "harmon": 7, "crest": 7, "satisfi": [7, 8, 9, 12], "beat": 7, "psi_a": [7, 8], "psi_b": [7, 8], "overal": [7, 10], "bottom": [7, 8], "panel": 7, "envelop": 7, "ticker": 7, "maxnloc": 7, "offset": 7, "ax11": [7, 8], "321": 7, "ax12": [7, 8], "322": 7, "ax21": [7, 8], "323": 7, "ax22": [7, 8], "324": 7, "ax31": [7, 8], "325": 7, "ax32": [7, 8], "326": 7, "ax_list": 7, "theta_a": 7, "theta_b": 7, "amp_a": 7, "amp_b": 7, "label_a": 7, "label_b": 7, "ph_off": 7, "psi_ab": 7, "k_diff": 7, "psi_beat": 7, "set_xticklabel": [7, 8], "yaxi": 7, "set_major_loc": 7, "bbox_to_anchor": [7, 8], "frameon": [7, 8], "subplots_adjust": 7, "hspace": 7, "wspace": 7, "omega_1": 7, "omega_2": 7, "psi_1": [7, 8], "psi_2": [7, 8], "k_1x": [7, 8], "k_2x": 7, "omega_1t": 7, "cosin": [7, 8, 9], "2a": [7, 8], "av": [7, 8], "omega_": 7, "u_": 7, "confin": [7, 8, 9], "fourier": [7, 10], "k_ix": 7, "omega_i": [7, 10], "gaussian": [7, 8], "easi": [7, 14, 15], "k_ox": 7, "k_o": 7, "exponenti": [7, 8, 9, 10, 15], "a_k": 7, "delta_k": 7, "i_k": 7, "psi_gauss": 7, "psi_wav": 7, "psi_x": [7, 8], "delta_x": [7, 8], "std": 7, "ax1": [7, 8], "ax2": [7, 8], "122": [7, 8], "axvlin": [7, 8], "linestyl": [7, 8, 9], "x_o": [7, 8], "dk": 7, "dp": 7, "2pc": 7, "kv_": 7, "dw": 7, "dv_": 7, "nondispers": 7, "plai": [7, 10], "deep": [7, 8], "throw": 7, "pond": 7, "compton": 7, "charact": [7, 8, 13, 14, 15], "patter": 7, "minima": 7, "emerg": [7, 8], "contradict": 7, "christma": 7, "lectur": [7, 17, 18], "1961": 7, "clau": 7, "j\u00f6nsson": 7, "electrolyt": 7, "deposit": 7, "polym": 7, "strip": 7, "theta_1": 7, "y_1": 7, "68": [7, 15], "937": 7, "nake": 7, "magnifi": 7, "lens": 7, "d_slit": 7, "n_1": [7, 8], "d_screen": 7, "arcsin": 7, "32e": 7, "36e": 7, "68e": 7, "37e": 7, "destroi": 7, "devis": 7, "big": [7, 15], "complementari": 7, "complementar": 7, "readi": 7, "trade": 7, "dictat": 7, "werner": 7, "heisenberg": [7, 8, 10], "p_z": 7, "consequ": 7, "uncertain": 7, "exact": [7, 8, 15], "fenc": 7, "0546": 7, "96": [7, 12, 15], "004c": 7, "964e": 7, "004": 7, "45e": 7, "logic": [7, 15], "conjug": [7, 8, 9], "intrins": 7, "instrument": 7, "mew": 7, "lifetim": 7, "manag": [7, 15], "irregular": 7, "delta_t": 7, "l_ph": 7, "delta_": 7, "f_ph": 7, "delta_f": 7, "f_ratio": 7, "27e": 7, "29e": [7, 8], "96e": 7, "ce": [7, 8, 10], "file": [7, 13, 15], "propto": [7, 8], "likelihood": 7, "instant": 7, "somewher": [7, 8], "born": 7, "1926": 7, "erwin": 7, "schr\u00f6dinger": 7, "1928": 7, "mainstream": 7, "unveil": 7, "\u00fcber": 7, "den": 7, "anschaulichen": 7, "inhalt": 7, "der": 7, "quantentheoretischen": 7, "kinematik": 7, "mechanik": 7, "denmark": 7, "pertain": 7, "school": 7, "wolfgang": [7, 9], "pauli": [7, 9], "argument": [7, 8, 9, 15], "choos": [7, 8, 9, 12, 15], "collaps": 7, "nondeterminist": 7, "chao": 7, "vagu": 7, "nonprobabilist": 7, "bother": 7, "relianc": 7, "god": [7, 10], "dice": [7, 10], "paradox": 7, "refut": 7, "cat": 7, "1935": 7, "live": [7, 14, 16], "di": 7, "podolski": 7, "rosen": 7, "epr": 7, "bell": 7, "altern": [7, 10], "hugh": 7, "everett": 7, "graduat": 7, "1957": 7, "invok": 7, "favor": [7, 8], "trap": [7, 8], "vanish": 7, "boundari": [7, 8, 9], "reson": [7, 8], "ldot": [7, 8, 9], "lambda_n": 7, "k_n": [7, 8], "8m": 7, "psi_n": [7, 8], "x_rng": [7, 8], "axhlin": [7, 8, 9], "psi_": [7, 8, 9], "horizontalalign": 7, "fontweight": 7, "bold": [7, 13, 14], "p_n": 7, "p_1": 7, "aros": 7, "8m_e": 7, "e_3": [7, 9], "338": 7, "pib_en": 7, "ell_": 7, "02e": 7, "42e": 7, "thrown": 7, "slinki": 7, "0030": 7, "6x": 7, "300t": 7, "7x": 7, "250t": 7, "i_o": [7, 10], "de": [8, 9, 10], "brogli": 8, "peter": 8, "deby": 8, "strictli": 8, "sens": [8, 10, 15], "mita": 8, "2021": 8, "pde": 8, "nabla": [8, 9], "introduct": [8, 9, 17, 18], "restrict": [8, 9, 12], "compris": 8, "ae": [8, 9], "ik": 8, "ka": 8, "negat": 8, "uniti": [8, 9, 10], "myst_nb": [8, 9], "glue": [8, 9], "psi_alpha": 8, "global": [8, 15], "norm_a": 8, "psi_al": 8, "fill_between": 8, "set_yticklabel": [8, 9], "psi_fig": 8, "symmetr": [8, 10], "2x": [8, 13], "biggr": 8, "rvert_0": 8, "p_a": 8, "432": 8, "p_b": 8, "rvert_": 8, "059": 8, "anywher": [8, 12], "everywher": [8, 15], "circumst": 8, "explicitli": 8, "sch\u00f6dinger": 8, "ordinari": [8, 9], "bt": 8, "ibt": 8, "iet": 8, "2me": 8, "ikx": 8, "inher": [8, 10], "epxect": 8, "forth": 8, "x_i": 8, "xp": 8, "procedur": [8, 9], "coffe": 8, "twice": 8, "hard": 8, "explor": 8, "kl": 8, "yield": [8, 9, 10], "wea": 8, "2me_n": 8, "2ml": 8, "psi_0": 8, "bohr": [8, 9, 10], "dv": [8, 13], "2ax": 8, "32l": 8, "sympi": 8, "57l": 8, "diff": 8, "var": 8, "exp_x": 8, "exp_x2": 8, "exp_p": 8, "exp_p2": 8, "arg": 8, "realist": 8, "constraint": [8, 9], "lim_": 8, "psi_i": 8, "v_ox": 8, "kc": 8, "z_o": 8, "fsw": 8, "fsw_prime": 8, "griffith": 8, "z1": 8, "z_guess": 8, "z_root": 8, "append": [8, 15], "fsw_fig": 8, "graphic": 8, "minim": [8, 9], "fsw_wave_func": 8, "calc_k": 8, "calc_alpha": 8, "region_i": 8, "region_ii": 8, "logical_and": 8, "region_iii": 8, "len": [8, 15], "calc_en": 8, "z_n": 8, "calc_coeff": 8, "a_n": 8, "term_1": 8, "term_2": 8, "c_n": 8, "v_pot": 8, "fsw_func_fig": 8, "mark": [8, 12], "remark": 8, "joint": 8, "smoothli": 8, "edg": 8, "depth": 8, "exceedingli": 8, "_x": [8, 10], "_y": [8, 10], "_z": [8, 10], "laplacian": 8, "usual": [8, 9], "shorthand": 8, "notat": [8, 9, 13, 15], "l_1": 8, "l_2": 8, "l_3": 8, "cube": [8, 15], "k_2y": 8, "k_3z": 8, "k_i": 8, "k_3": 8, "k_1l_1": 8, "n_3": 8, "k_1a": 8, "211": [8, 9], "ml": 8, "112": 8, "degener": [8, 9], "degeneraci": [8, 9], "eccentr": [8, 9], "perturb": 8, "therebi": [8, 15], "sho": 8, "kappa": [8, 10], "restor": 8, "hook": 8, "shm": 8, "diatom": [8, 10], "taylor": 8, "v_2": 8, "v_i": 8, "addition": [8, 9, 15], "hermit": 8, "sho_potenti": 8, "sho_wave_func": 8, "sho_fig": 8, "virial": 8, "scope": [8, 12], "polynomi": [8, 9], "h_n": 8, "psi_3": 8, "3x": 8, "elif": [8, 15], "421": 8, "422": 8, "423": 8, "424": 8, "425": 8, "ax41": 8, "427": 8, "ax42": 8, "428": 8, "ax_psi": 8, "ax_prob": 8, "sho_wav": 8, "oscillatori": 8, "damp": 8, "heisenbergi": 8, "e_col": 8, "x_n": 8, "x_p": 8, "sho_energi": 8, "greatest": 8, "contrari": 8, "cdot1": 8, "5pt": 8, "odd": [8, 9, 10], "h_o": 8, "_o": 8, "invert": 8, "vallei": 8, "nasa": 8, "grace": 8, "satellit": 8, "bend": 8, "transmit": 8, "gg": 8, "ik_ix": 8, "ik_": 8, "ge": 8, "ik_il": 8, "k_iae": 8, "k_ibe": 8, "k_ife": 8, "tediou": 8, "odeint": 8, "simpson": 8, "fsolv": 8, "ksqr": 8, "k_squar": 8, "psi_func": 8, "coeff": 8, "k_x": [8, 10], "k_ii": 8, "x_coeff": 8, "psi_coeff": 8, "psi_iia": 8, "psi_iib": 8, "psi_iii": 8, "advance_psi": 8, "xm": 8, "numerov": 8, "k_xm": 8, "k_xp": 8, "psi_xm": 8, "psi_next": 8, "ymax": 8, "1e2": 8, "v_rng": 8, "x_bound": 8, "ones": [8, 9, 15], "rng": 8, "opt": 8, "psi_coeff_left": 8, "full_idx": 8, "barrier_potenti": 8, "lot": [8, 15], "sinh": 8, "substanti": [8, 12], "semiconductor": 8, "tall": 8, "get_kappa": 8, "transmission_coeff": 8, "t_inv": 8, "l_bar": 8, "e_el": 8, "v_bar": 8, "elsewher": 8, "heavier": [8, 9], "wolfram": 8, "2_n": 8, "unnorm": 8, "fg": 9, "rg": 9, "rf": 9, "rfg": 9, "im_": 9, "laguerr": 9, "edmond": 9, "dr": [9, 10], "ra_o": 9, "adrien": 9, "mari": [9, 15], "legendr": 9, "3a_o": 9, "customari": 9, "y_": 9, "mp": 9, "2i": 9, "105": 9, "3i": 9, "chose": 9, "minu": 9, "discard": 9, "24a": 9, "5_o": 9, "24a_o": 9, "semimajor": 9, "disagre": 9, "semiclass": 9, "choic": [9, 14], "harp": 9, "rincip": 9, "iffus": 9, "undament": 9, "alphabet": 9, "2p": 9, "l_z": 9, "arrow_len": 9, "ylabel": 9, "aw": 9, "hw": 9, "hl": 9, "m_idx": 9, "arrow": 9, "head_width": 9, "head_length": 9, "length_includes_head": 9, "lz_fig": 9, "Will": 9, "l_y": 9, "sum_": 9, "summat": 9, "nine": 9, "anomal": 9, "rough": 9, "circul": 9, "loop": [9, 15], "moment": 9, "dq": 9, "erv": 9, "el": 9, "tend": 9, "v_b": 9, "child": 9, "precess": 9, "customarili": 9, "mu_z": 9, "mu_b": 9, "magneton": 9, "otto": 9, "stern": 9, "gerlach": 9, "inhomogen": 9, "south": 9, "pole": 9, "north": 9, "torqur": 9, "f_z": 9, "dv_b": 9, "samuel": 9, "goudsmit": 9, "uhlenbeck": 9, "react": 9, "2s": [9, 15], "_s": 9, "incorpor": 9, "gyromagnet": 9, "g_": 9, "insignific": 9, "adequ": 9, "capit": [9, 15], "jeff": 9, "cronk": 9, "gonzaga": 9, "possess": 9, "nu": 9, "transiton": 9, "chapter": [9, 15, 16, 17, 18], "e_4": 9, "2g": 9, "3p": 9, "flip": 9, "interstellar": 9, "attribut": [12, 16, 17, 18], "creativ": [12, 16, 17, 18], "corpor": 12, "firm": [10, 12], "legal": 12, "servic": 12, "advic": 12, "public": 12, "licens": [12, 16, 17, 18], "lawyer": 12, "client": 12, "warranti": 12, "disclaim": [12, 15], "liabil": 12, "damag": 12, "fullest": 12, "creator": [12, 16], "holder": 12, "authorship": 12, "copyright": 12, "exhaust": 12, "licensor": 12, "intend": 12, "irrevoc": 12, "secur": 12, "reus": 12, "cc": [12, 16], "creativecommon": 12, "considerations_for_licensor": 12, "grant": 12, "request": [12, 15], "more_consider": 12, "considerations_for_license": 12, "benefit": 12, "1": [12, 14, 15], "record": 12, "synch": 12, "broadcast": 12, "sui": 12, "generi": 12, "databas": 12, "categor": [12, 15], "2": [10, 12, 14, 15], "technolog": 12, "circumv": 12, "fulfil": 12, "oblig": 12, "articl": 12, "wipo": 12, "treati": 12, "decemb": 12, "1996": 12, "fair": 12, "artist": 12, "literari": 12, "entiti": 12, "reproduct": 12, "dissemin": 12, "commun": [12, 15], "member": [12, 15], "ec": 12, "parliament": 12, "council": 12, "march": 12, "protect": 12, "amend": 12, "herebi": 12, "worldwid": 12, "royalti": 12, "sublicens": 12, "exclus": [9, 12], "compli": 12, "3": [10, 12, 15, 17, 18], "6": [10, 12, 15], "format": [12, 13, 14, 15, 16], "technic": 12, "hereaft": 12, "waiv": 12, "assert": 12, "forbid": [9, 12], "5": [10, 12, 15], "recipi": 12, "offer": 12, "automat": [12, 15], "endors": 12, "constru": 12, "sponsor": 12, "offici": 12, "statu": 12, "moral": 12, "privaci": 12, "person": [12, 15], "patent": 12, "trademark": 12, "voluntari": 12, "waivabl": 12, "statutori": 12, "compulsori": 12, "expressli": 12, "retain": 12, "pseudonym": 12, "ii": 12, "iv": 12, "uri": 12, "hyperlink": 12, "resourc": 12, "supplement": 12, "undertaken": 12, "BY": [12, 16], "THE": 12, "TO": 12, "AS": 12, "IS": 12, "AND": 12, "NO": [10, 12], "represent": 12, "OR": 12, "OF": 12, "merchant": 12, "FOR": 12, "infring": 12, "latent": 12, "defect": 12, "NOT": 12, "IN": 12, "WILL": 12, "BE": 12, "liabl": 12, "ON": 12, "incident": 12, "consequenti": 12, "punit": 12, "exemplari": 12, "cost": [12, 15], "expens": 12, "IF": 12, "advis": 12, "SUCH": 12, "shall": 12, "waiver": 12, "reinstat": 12, "date": 12, "cure": 12, "seek": 12, "remedi": 12, "herein": 12, "lawfulli": 12, "deem": 12, "unenforc": 12, "reform": 12, "enforc": 12, "consent": 12, "privileg": 12, "immun": 12, "jurisdict": 12, "parti": 12, "notwithstand": 12, "elect": 12, "instanc": [12, 15], "dedic": 12, "domain": 12, "cc0": 12, "polici": 12, "logo": 12, "unauthor": 12, "paragraph": 12, "jupyt": [13, 14, 15, 16], "notebook": [13, 14, 15, 16], "submit": 13, "ipynb": 13, "compil": [13, 14, 15], "pdf": [13, 14], "filenam": 13, "submiss": 13, "phys2700_chpt": 13, "_lastnam": 13, "cell": [13, 14, 15, 16], "markdown": [13, 16], "preambl": [13, 16], "math": [13, 15], "latex": 13, "verbatim": 13, "copi": [13, 15, 16], "recreat": 13, "templat": [13, 15], "slide": 13, "lightweight": 14, "markup": [14, 16], "editor": 14, "fly": [14, 15], "wsiwyg": 14, "implement": [14, 15, 17, 18], "websit": 14, "document": [14, 16], "book": 14, "alongsid": 14, "mathematica": [14, 15], "matlab": 14, "linux": 14, "mac": 14, "harmoni": 14, "mx": 14, "class": [14, 15], "homework": 14, "webpag": 14, "phrase": 14, "sublevel": 14, "render": 14, "blank": [14, 15], "ensur": 14, "compat": 14, "tag": 14, "br": 14, "indent": [14, 15], "tab": [14, 15], "nbsp": 14, "mimic": 14, "trail": [14, 15], "broadest": 14, "emphasi": 14, "pop": 14, "ital": 14, "tripl": 14, "underscor": [14, 15], "emphas": 14, "nest": 14, "blockqout": 14, "subsect": 14, "item": [14, 15], "pick": 14, "enclos": 14, "url": 14, "github": [14, 16], "io": 14, "modernastro": 14, "home": 14, "output": 14, "undergrad": 14, "depart": 14, "saint": 14, "colleg": 14, "quick": 14, "friendli": 15, "readabl": 15, "fortran": 15, "effici": 15, "onc": 15, "luckili": 15, "hardwar": 15, "softwar": 15, "os": 15, "advantag": 15, "tweak": 15, "debug": 15, "store": 15, "memori": 15, "fledg": 15, "arithmet": 15, "task": 15, "4294967296": 15, "decim": 15, "rais": 15, "ambigu": 15, "expon": [10, 15], "programm": 15, "uncommon": 15, "comeback": 15, "month": 15, "unkind": 15, "mayb": 15, "yourself": 15, "hashtag": 15, "impract": [10, 15], "apostroph": 15, "googl": [15, 16], "colab": [15, 16], "king": 15, "britain": 15, "quest": 15, "holi": 15, "grail": 15, "airspe": 15, "laden": 15, "swallow": 15, "african": 15, "str": 15, "prompt": 15, "datatyp": 15, "ndarrai": 15, "probe": 15, "borrow": 15, "syntax": 15, "141592653589793": 15, "referenc": 15, "default": 15, "4f": [10, 15], "1416": 15, "14159265e": 15, "xd": 15, "yf": 15, "pre": 15, "alloc": 15, "xs": 15, "banana": 15, "realpython": 15, "groceri": 15, "bag": 15, "track": 15, "147": 15, "483": 15, "647": 15, "2j": 15, "tupl": 15, "immut": 15, "mutabl": 15, "newlin": 15, "dictionari": 15, "curli": 15, "header": 15, "index": 15, "clees": 15, "palin": 15, "idl": 15, "chapman": 15, "jone": 15, "gilliam": 15, "starti": 15, "slice": 15, "atkinson": 15, "typeerror": 15, "traceback": 15, "recent": 15, "row": 15, "clumsi": 15, "load": 15, "comma": 15, "tradit": 15, "0th": 15, "beforehand": 15, "longlist": 15, "overwrit": 15, "57079633": 15, "newvalu": 15, "handi": 15, "valuedata": 15, "stringdata": 15, "tommi": 15, "dick": 15, "harri": 15, "salli": 15, "nina": 15, "new_valuedata": 15, "mix": 15, "increment": 15, "49": [10, 15], "72": 15, "73": 15, "84": 15, "86": 15, "87": 15, "94": 15, "flexibl": 15, "np_axi": 15, "new_axi": 15, "unexpect": 15, "4000000000000001": 15, "7999999999999998": 15, "concaten": 15, "join": 15, "quirk": 15, "grade": 15, "floor": 15, "modulo": 15, "remaind": 15, "string_a": 15, "jack": 15, "jill": 15, "string_b": 15, "hill": 15, "list_a": 15, "list_b": 15, "shortcut": 15, "counter": 15, "harder": 15, "cautious": 15, "java": 15, "soft": 15, "statement": [15, 16], "hungri": 15, "eat": 15, "boolean": 15, "0l": 15, "aren": 15, "Not": 15, "congruent": 15, "bug": 15, "monti": 15, "impostor": 15, "stdinnotimplementederror": 15, "anaconda3": 15, "lib": 15, "python3": 15, "packag": [15, 16], "ipykernel": 15, "kernelbas": 15, "py": 15, "1201": 15, "kernel": 15, "raw_input": 15, "1199": 15, "_allow_stdin": 15, "1200": 15, "msg": 15, "frontend": 15, "1202": 15, "_input_request": 15, "1203": 15, "1204": 15, "_parent_id": 15, "1205": 15, "get_par": 15, "1206": 15, "password": 15, "1207": 15, "droid": 15, "colon": 15, "signifi": 15, "grab": 15, "superior": 15, "jedi": 15, "mind": 15, "execut": [15, 16], "trait": 15, "met": 15, "shampoo": 15, "hair": 15, "lather": 15, "rins": 15, "profit": 15, "manufactur": 15, "clean": 15, "keyword": 15, "exclud": 15, "delin": 15, "divisor": 15, "save": 15, "inherit": 15, "factori": 15, "anytim": 15, "7s": 15, "7d": 15, "120": 15, "720": 15, "5040": 15, "40320": 15, "362880": 15, "boss": 15, "deleg": 15, "morn": 15, "getup": 15, "getdress": 15, "eatbreakfast": 15, "spam": 15, "egg": 15, "bacon": 15, "baked_bean": 15, "continuesleep": 15, "entail": 15, "buri": 15, "modular": 15, "funciton": [10, 15], "sq": 15, "puttin": 15, "gthe": 15, "answer2everyth": 15, "road": 15, "whenev": 15, "older": 15, "stai": [9, 15], "occas": 15, "fn": 15, "nameerror": 15, "pass_trig": 15, "abil": 15, "plot_trig": 15, "xstep": 15, "xval": 15, "trig_func": 15, "trig": 15, "49999999999999994": 15, "8660254037844387": 15, "5773502691896257": 15, "emploi": 15, "drive": 15, "silli": 15, "brit": 15, "magic": 15, "pool": 15, "anyon": 16, "snippet": 16, "familiar": 16, "meant": 16, "runtim": 16, "panda": 16, "curios": 16, "publicli": 16, "repositori": 16, "evolv": 16, "collabor": 16, "welcom": 16, "billi": 16, "quarl": 16, "valdosta": [17, 18], "summari": [17, 18], "textbook": [17, 18], "accompani": 9, "accumul": 9, "subshel": 9, "eclus": 9, "aka": 9, "fermion": 9, "elecron": 9, "mainli": 9, "1s": 9, "doublet": 9, "j_z": 9, "s_z": 9, "m_j": 9, "momenta": 9, "nl_j": 9, "uppercas": [9, 10], "sl": 9, "2p_": 9, "j_x": 9, "j_y": 9, "b_": 9, "ext": 9, "002": 9, "589": 9, "plug": 9, "1240": 9, "experment": 9, "dlam": 9, "inert": 9, "ruls": 9, "hund": 9, "additon": 9, "momemnta": 9, "_1": 9, "_2": 9, "russel": 9, "saunder": 9, "replust": 9, "nuclu": 9, "antiparallel": 9, "fewer": 9, "l_j": 9, "singlet": 9, "triplet": 9, "predomin": 9, "ell_1": 9, "ell_2": 9, "12p": 9, "3s_1": 9, "1s_0": 9, "3p_0": 9, "3p_1": 9, "3p_2": 9, "1p_1": 9, "mechanist": 10, "wholli": 10, "determinist": 10, "lagrang": 10, "1790": 10, "hamilton": 10, "1840": 10, "enabl": 10, "pierr": 10, "simon": 10, "laplac": 10, "problem": 10, "belief": 10, "inspir": 10, "tandem": 10, "calori": 10, "1798": 10, "mere": 10, "substanc": 10, "ahead": 10, "1822": 10, "truli": 10, "prescott": 10, "equivlal": 10, "1843": 10, "paddl": 10, "wheel": 10, "relev": 10, "baptist": 10, "soon": 10, "probablist": 10, "perceiv": 10, "lack": 10, "worri": 10, "regardless": 10, "coint": 10, "toss": 10, "restitut": 10, "formid": 10, "pariticl": 10, "desir": 10, "v_z": 10, "componenet": 10, "thee": 10, "2mv": 10, "crucial": 10, "dv_x": 10, "dv_y": 10, "dv_z": 10, "aproportion": 10, "mv_x": 10, "mv_y": 10, "mv_z": 10, "wihtin": 10, "integrand": 10, "i_n": 10, "2i_n": 10, "dummi": 10, "tranform": 10, "rdr": 10, "4a": 10, "2i_o": 10, "woul": 10, "gaussian_int": [], "di_o": 10, "i_2": 10, "my": [], "sidebar": [], "temp_room": 10, "kmean": 10, "0379": 10, "monatom": 10, "o_2": 10, "rod": 10, "addtion": 10, "quadrat": 10, "propot": 10, "i_x": 10, "omega_x": 10, "k_y": 10, "i_i": 10, "straigthforward": 10, "617333262": 10, "380649": 10, "r_o": 10, "equlitbrium": 10, "nkt": 10, "c_": 10, "nk": 10, "lowercas": 10, "atm": [], "auto": [], "baz": [], "bim": [], "molar_heat_cap": [], "hcl": 10, "cl_2": 10, "co_2": 10, "cs_2": 10, "n_2o": 10, "so_2": 10, "polyatom": 10, "tranlat": 10, "harmoic": 10, "thre": 10, "3r": 10, "ne": 10, "rt": 10}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"birth": 0, "modern": [0, 4, 17, 18], "physic": [0, 2, 3, 4, 5, 7, 9, 10, 17, 18], "classic": [0, 5, 6, 8, 10], "1890": 0, "mechan": [0, 7, 8], "electromagnet": [0, 4], "thermodynam": 0, "kinet": 0, "theori": [0, 4, 5, 10], "gase": [0, 10], "ideal": 0, "ga": 0, "law": 0, "statist": [0, 10], "maxwel": [0, 10], "boltzmann": 0, "distribut": [0, 10], "wave": [0, 7, 8, 9, 10], "particl": [0, 3, 4, 7, 8], "energi": [0, 4, 7, 9], "transport": 0, "conserv": 0, "fundament": 0, "forc": 0, "unif": 0, "atom": [0, 4, 6, 9], "matter": 0, "develop": 0, "chemist": 0, "opposit": 0, "evid": 0, "unresolv": 0, "question": 0, "medium": 0, "electrodynam": 0, "blackbodi": [0, 5, 10], "radiat": [0, 5, 10], "earli": 0, "discoveri": [0, 5], "1900": 0, "homework": [0, 4, 5, 6, 7, 8, 9, 13], "problem": [0, 4, 5, 6, 7, 8, 9, 13], "1": [0, 4, 5, 6, 7, 8, 9, 10, 13], "2": [0, 4, 5, 6, 7, 8, 9, 13], "3": [0, 4, 5, 6, 7, 8, 9], "5": [0, 4, 5, 6, 7, 8, 9], "6": [0, 4, 5, 6, 7, 8, 9], "semiconductor": 1, "nuclear": 2, "special": 4, "rel": 4, "need": 4, "ether": 4, "michelson": 4, "morlei": 4, "experi": [4, 7], "s": [4, 5, 7], "interferomet": 4, "collabor": 4, "einstein": [4, 5, 10], "postul": 4, "lorentz": 4, "transform": 4, "time": [4, 7, 8], "dilat": 4, "length": 4, "contract": 4, "addit": 4, "veloc": [4, 10], "experiment": [4, 5], "verif": 4, "muon": 4, "decai": [4, 8], "clock": 4, "measur": 4, "actual": 4, "relativist": 4, "predict": 4, "observ": [4, 7], "differ": 4, "hefel": 4, "keat": 4, "1972a": 4, "1972b": 4, "twin": 4, "paradox": 4, "spacetim": 4, "doppler": 4, "effect": [4, 5, 9], "momentum": [4, 9], "total": [4, 9], "rest": 4, "equival": 4, "mass": [4, 6], "relationship": 4, "massless": 4, "comput": 4, "bind": 4, "4": [4, 5, 6, 7, 8, 9], "7": [4, 5, 6, 7, 8], "8": [4, 5, 6, 7], "9": [4, 5, 6], "10": [4, 5], "11": [4, 5], "quantum": [5, 7, 8, 9, 10], "x": [5, 6, 7], "rai": [5, 6, 7], "electron": [5, 6, 7, 9], "determin": 5, "charg": 5, "line": [5, 14, 15], "spectra": [5, 6, 9], "quantiz": [5, 7], "photoelectr": 5, "work": 5, "function": [5, 7, 8, 9, 10, 15], "from": 5, "handbook": 5, "chemistri": 5, "result": 5, "interpret": [5, 7], "product": 5, "compton": 5, "scatter": [5, 6, 7], "pair": 5, "annihil": 5, "structur": [6, 9, 15], "The": [6, 7, 8, 9], "model": 6, "thomson": 6, "rutherford": 6, "bohr": [6, 7], "hydrogen": [6, 9], "correspond": 6, "principl": [6, 7], "success": 6, "failur": 6, "reduc": 6, "correct": 6, "other": 6, "limit": 6, "characterist": 6, "number": [6, 9], "excit": 6, "part": [7, 8], "i": 7, "de": 7, "brogli": 7, "condit": 7, "motion": 7, "doubl": 7, "slit": 7, "light": 7, "anoth": 7, "gedanken": 7, "thought": 7, "uncertainti": 7, "probabl": [7, 8, 9, 10], "copenhagen": 7, "box": 7, "ii": 8, "schr\u00f6dinger": [8, 9], "equat": [8, 9], "normal": [8, 9], "properti": 8, "valid": 8, "independ": 8, "comparison": 8, "expect": [8, 13], "valu": 8, "infinit": 8, "squar": 8, "well": 8, "potenti": 8, "us": [8, 14], "integr": [8, 10], "finit": 8, "three": 8, "dimension": 8, "simpl": [8, 15], "harmon": [8, 9], "oscil": 8, "barrier": 8, "tunnel": 8, "e": 8, "v_o": 8, "alpha": 8, "applic": 9, "solut": 9, "separ": 9, "variabl": [9, 15], "radial": 9, "angular": 9, "azimuth": 9, "spheric": 9, "y": 9, "theta": 9, "phi": 9, "n": 9, "princip": 9, "orbit": 9, "ell": 9, "magnet": 9, "m_": 9, "zeeman": 9, "state": 9, "due": 9, "field": 9, "vec": 9, "b": 9, "intrins": 9, "spin": 9, "level": 9, "select": [9, 10], "rule": 9, "histor": 10, "overview": 10, "equipartit": 10, "theorem": 10, "speed": 10, "fermi": 10, "dirac": 10, "introduct": [10, 14, 15], "electr": 10, "conduct": 10, "bose": 10, "liquid": 10, "helium": 10, "symmetri": 10, "boson": 10, "condens": 10, "molecul": 11, "laser": 11, "assign": 13, "style": 13, "chapter": 13, "markdown": 14, "what": [14, 15], "why": 14, "basic": 14, "syntax": 14, "section": 14, "head": 14, "best": 14, "practic": 14, "paragraph": 14, "break": 14, "font": 14, "typeset": 14, "blockquot": 14, "list": 14, "link": 14, "math": 14, "environ": 14, "latex": 14, "python": 15, "comment": 15, "input": 15, "output": 15, "type": 15, "sequenc": 15, "trick": 15, "iter": 15, "mathemat": 15, "oper": 15, "control": 15, "defin": 15, "pass": 15, "program": 15, "who": 16, "ar": 16, "note": 16, "interact": 16, "book": 16, "clone": 16, "how": 16, "cite": 16, "reus": 16, "thi": 16, "materi": 16, "phys2700": [17, 18], "singl": 9, "mani": 9, "ls": 9, "coupl": 9, "jj": 9, "molar": 10, "heat": 10, "capac": 10, "15": 10, "circ": 10, "c": 10, "rm": 10, "atm": 10}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["Chapter_1/birth-of-modern-physics", "Chapter_10/semiconductors", "Chapter_11/nuclear-physics", "Chapter_12/particle-physics", "Chapter_2/special-theory-of-relativity", "Chapter_3/experimental-quantum-physics", "Chapter_4/structure-of-the-atom", "Chapter_5/quantum-mechanics-part1", "Chapter_6/quantum-mechanics-part2", "Chapter_7/hydrogen-atom", "Chapter_8/statistical-physics", "Chapter_9/molecules-and-lasers", "LICENSE", "Preamble/HW_template", "Preamble/Markdown-basics", "Preamble/Python-basics", "Preamble/who-for", "README", "home"], "filenames": ["Chapter_1/birth-of-modern-physics.ipynb", "Chapter_10/semiconductors.ipynb", "Chapter_11/nuclear-physics.ipynb", "Chapter_12/particle-physics.ipynb", "Chapter_2/special-theory-of-relativity.ipynb", "Chapter_3/experimental-quantum-physics.ipynb", "Chapter_4/structure-of-the-atom.ipynb", "Chapter_5/quantum-mechanics-part1.ipynb", "Chapter_6/quantum-mechanics-part2.ipynb", "Chapter_7/hydrogen-atom.ipynb", "Chapter_8/statistical-physics.ipynb", "Chapter_9/molecules-and-lasers.ipynb", "LICENSE.md", "Preamble/HW_template.ipynb", "Preamble/Markdown-basics.ipynb", "Preamble/Python-basics.ipynb", "Preamble/who-for.ipynb", "README.md", "home.md"], "titles": ["1. Birth of Modern Physics", "10. Semiconductors", "11. Nuclear Physics", "12. Particle Physics", "2. Special Theory of Relativity", "3. Experimental Quantum Physics", "4. Structure of the Atom", "5. Quantum Mechanics: Part I", "6. Quantum Mechanics: Part II", "7. The Hydrogen Atom and Atomic Physics", "8. Statistical Physics", "9. Molecules and Lasers", "<no title>", "Homework Assignments", "Introduction to Markdown", "Introduction to Python", "Who are these notes for?", "PHYS2700: Modern Physics", "PHYS2700: Modern Physics"], "terms": {"The": [0, 4, 5, 10, 12, 13, 14, 15, 16, 17, 18], "renaiss": 0, "brought": [0, 10], "greek": [0, 5, 6], "scholar": 0, "e": [0, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16], "g": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "aristotl": 0, "eratosthen": 0, "pythagora": 0, "etc": [0, 8, 14, 15, 16], "back": [0, 4, 5, 6, 8, 15], "forefront": 0, "knowledg": [0, 7, 8, 9, 10], "scientif": [0, 5, 13, 15, 16], "progress": [0, 5, 6, 7], "dure": [0, 4, 5, 9, 15], "ag": [0, 4, 5], "enlighten": 0, "idea": [0, 4, 5, 6, 7, 8, 10], "from": [0, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18], "antiqu": 0, "further": [0, 5, 6, 9], "result": [0, 4, 6, 7, 8, 9, 10, 12, 13, 15], "print": [0, 4, 5, 6, 7, 8, 9, 10, 15], "competit": 0, "investig": [0, 5, 6, 7], "natur": [0, 4, 5, 6, 7, 8, 9, 10, 15, 16], "world": [0, 4, 7, 12], "within": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "mathemat": [0, 4, 5, 7, 8, 9, 10, 13, 14], "framework": [0, 7], "characterist": [0, 4, 5, 7, 8, 9], "we": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "would": [0, 4, 5, 6, 7, 8, 9, 10, 15], "call": [0, 4, 5, 6, 7, 8, 9, 10, 15], "todai": [0, 5, 7], "practic": [0, 4, 5, 6, 10, 12, 15], "wa": [0, 4, 5, 6, 7, 8, 9, 10, 15], "us": [0, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 17, 18], "euclidean": [0, 4], "geometri": [0, 4], "calculu": [0, 4, 5, 8], "newton": [0, 4, 5, 6, 7, 8, 10, 13], "leibniz": 0, "For": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "physicist": [0, 4, 5, 6, 7, 9, 10], "refin": 0, "subject": [0, 4, 6, 9, 10, 12], "appear": [0, 4, 5, 6, 7, 8, 9], "reliabl": 0, "despit": [0, 6, 10], "consider": [0, 4, 5, 6, 7, 10, 12], "chang": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "occur": [0, 4, 5, 6, 7, 8, 9, 15], "social": 0, "polit": 0, "intellectu": 0, "realm": [0, 7], "western": 0, "europ": [0, 4], "There": [0, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16], "noth": [0, 4, 5, 9, 10, 12, 15], "new": [0, 4, 5, 6, 7, 10, 15], "discov": [0, 4, 5, 6, 7], "now": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "all": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "remain": [0, 4, 5, 6, 7, 10, 12], "more": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "precis": [0, 4, 5, 6, 7, 8, 9, 10, 15], "measur": [0, 5, 6, 7, 8, 9, 10, 12], "william": [0, 7], "thomson": [0, 5, 7], "lord": [0, 5], "kelvin": [0, 5, 7], "scientist": [0, 4, 5, 6, 8, 10, 16, 17, 18], "engin": [0, 5, 16, 17, 18], "late": [0, 4, 6], "19th": [0, 4, 5, 6, 8, 10], "centuri": [0, 4, 5, 6, 8, 10], "believ": [0, 4, 5, 6, 10], "thei": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "had": [0, 4, 5, 6, 7, 9, 10], "everyth": [0, 5, 7, 10, 14, 15], "under": [0, 4, 5, 8, 9, 12, 13, 15, 16, 17, 18], "control": 0, "where": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18], "best": [0, 4, 5, 6, 7, 8, 9, 10, 15], "dai": [0, 4, 5, 12], "were": [0, 4, 5, 6, 7, 8, 9, 10, 15], "highli": [0, 4, 10], "recogn": [0, 5], "reward": 0, "basic": [0, 4, 5, 6, 7, 10, 15], "research": [0, 4, 5, 6], "import": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "becaus": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "commerci": [0, 4], "militari": 0, "applic": [0, 4, 5, 6, 7, 8, 12, 14, 17, 18], "those": [0, 4, 5, 6, 7, 8, 9, 12, 15], "visionari": 0, "nikola": 0, "tesla": [0, 5], "caus": [0, 5, 7, 9, 15], "mani": [0, 4, 5, 6, 7, 8, 10, 15, 16], "take": [0, 4, 5, 6, 7, 8, 9, 15], "note": [0, 4, 5, 7, 8, 9, 14, 15, 17, 18], "busi": [0, 15], "opportun": 0, "peopl": [0, 5, 10, 15], "began": [0, 5, 6], "travel": [0, 4, 5, 6, 7, 8], "quickli": [0, 4, 5, 8, 15], "one": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "countri": 0, "anoth": [0, 4, 5, 6, 8, 9, 10, 14, 15], "journal": 0, "becom": [0, 4, 5, 6, 7, 8, 9, 10, 15], "access": [0, 12], "some": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16], "most": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "principl": [0, 4, 5, 8, 9, 10], "still": [0, 4, 5, 6, 7, 8, 9, 10, 12], "form": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "describ": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "properti": [0, 4, 5, 6, 7, 9, 10], "initi": [0, 4, 5, 6, 7, 15], "final": [0, 4, 5, 6, 7, 9, 10, 13, 14, 15], "quantiti": [0, 4, 5, 7, 8, 9], "must": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "equal": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "total": [0, 5, 6, 7, 8, 10, 15], "volum": [0, 5, 6, 7, 9, 10], "water": [0, 5, 6, 7, 10], "gallon": 0, "independ": [0, 4, 5, 6, 7, 9, 10, 12, 14], "how": [0, 4, 5, 6, 7, 8, 10, 12, 14, 15], "contain": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "fill": [0, 6, 9, 15], "x": [0, 4, 8, 9, 10, 13, 14, 15], "held": [0, 4, 10, 12], "j": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "sum_j": 0, "x_": [0, 8], "i": [0, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15], "f_": [0, 5, 6], "superscript": [0, 4], "f": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "repres": [0, 4, 5, 6, 7, 8, 9, 13], "state": [0, 6, 7, 8, 10, 12, 17, 18], "respect": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14], "four": [0, 4, 5, 6, 8, 9, 14, 15], "main": [0, 5, 6, 15], "ar": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "sum": [0, 4, 5, 7, 8, 9, 10], "its": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16], "interact": [0, 4, 5, 6, 7, 9], "linear": [0, 4, 5, 6, 8, 9], "momentum": [0, 5, 6, 7, 8], "In": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "absenc": [0, 9, 12], "extern": [0, 4, 5, 6, 8, 9], "angular": [0, 4, 5, 6, 7, 8, 10], "torqu": [0, 9], "charg": [0, 4, 6, 9], "electr": [0, 4, 5, 6, 7, 8], "A": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "might": [0, 4, 5, 6, 7, 8, 9, 14, 15], "have": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "ad": [0, 4, 5, 6, 7, 10, 15], "mass": [0, 5, 7, 8, 9, 10, 13], "list": [0, 5, 9, 10, 15], "einstein": [0, 6, 7], "s": [0, 6, 8, 9, 10, 12, 13, 14, 15], "special": [0, 5, 6, 7, 8, 9, 10, 12, 15], "rel": [0, 5, 6, 7, 9, 10, 15], "show": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "intim": [0, 6], "connect": [0, 4, 6, 10, 12], "few": [0, 5, 6, 7, 8, 9, 15], "dualiti": [0, 7], "codifi": 0, "famous": 0, "isaac": 0, "postul": [0, 8], "associ": [0, 4, 5, 6, 7, 8, 9, 10], "deriv": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "other": [0, 4, 5, 7, 8, 9, 10, 12, 14, 15], "over": [0, 4, 5, 6, 7, 8, 10, 14, 15], "galileo": 0, "great": [0, 5, 6], "experiment": [0, 6, 7, 9, 10], "he": [0, 4, 5, 6, 7, 8, 9, 10], "concept": [0, 4, 5, 6, 7, 10], "inertia": [0, 10], "galilean": [0, 4, 13], "built": [0, 4, 15], "first": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "telescop": [0, 4], "base": [0, 4, 5, 6, 7, 8, 9, 12], "onli": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16], "see": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16], "design": [0, 4, 7, 9, 12, 15, 17, 18], "spyglass": 0, "han": [0, 6], "lipperhei": 0, "also": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "pendulum": [0, 8], "least": [0, 4, 5, 6, 9, 10, 15], "small": [0, 4, 5, 6, 7, 8, 9, 10], "amplitud": [0, 7], "relationship": [0, 6, 7, 9, 12, 15], "fall": [0, 5, 6, 7, 10, 15], "object": [0, 4, 5, 7, 8, 9, 13, 15], "hammer": 0, "feather": 0, "though": [0, 5, 6, 7, 8], "experi": [0, 5, 6, 8, 9, 10, 15], "expand": [0, 4, 10, 15], "our": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "present": [0, 4, 5, 7, 8, 10], "understand": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "astronomi": [0, 9, 16], "field": [0, 4, 5, 6, 7, 8], "motion": [0, 4, 5, 6, 8, 9, 10], "gravit": [0, 4, 5, 6, 9], "optic": [0, 4, 5, 6, 7, 8, 9], "understood": [0, 4, 5, 8], "between": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "posit": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "displac": [0, 5, 7, 9], "veloc": [0, 5, 6, 7, 8, 9, 13], "rate": [0, 5, 8], "time": [0, 5, 6, 9, 10, 12, 13, 14, 15], "which": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "could": [0, 4, 5, 6, 7, 8, 10, 12, 15], "appli": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "determin": [0, 4, 6, 7, 8, 9, 10, 15], "bodi": [0, 4, 5, 6, 9, 10], "acceler": [0, 4, 5, 6, 8, 13], "simpli": [0, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15], "being": [0, 6, 7, 8, 9, 15], "rest": [0, 5, 6, 7, 8, 9, 15], "case": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "move": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "constant": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "univers": [0, 4, 5, 6, 7, 9, 10, 17, 18], "huge": 0, "hi": [0, 4, 5, 6, 7, 9, 10], "heaven": 0, "obei": [0, 4, 9], "same": [0, 4, 5, 6, 7, 8, 9, 10, 15], "rule": [0, 4, 5, 6, 7, 8, 10], "mortal": 0, "appl": 0, "earth": [0, 4, 5, 6, 8, 9], "net": [0, 4, 7, 8, 9, 10], "three": [0, 4, 5, 6, 7, 9, 10, 15, 17, 18], "bear": [0, 6, 10], "name": [0, 5, 6, 9, 15], "an": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "continu": [0, 5, 6, 7, 8, 15, 16], "unless": [0, 4, 5, 9, 12], "act": [0, 4, 5, 6, 7, 9, 15], "upon": [0, 4, 5, 6, 7, 12, 15], "thi": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18], "restat": 0, "inclin": 0, "plane": [0, 5, 6, 7, 9], "inerti": [0, 4], "refer": [0, 4, 6, 9, 12, 13, 14, 15], "frame": [0, 4, 5, 6, 9, 13], "second": [0, 4, 5, 6, 7, 8, 9, 13, 14, 15], "vec": [0, 4, 5, 6, 7, 8, 10, 13], "proport": [0, 5, 6, 7, 9, 10], "invers": [0, 4, 5, 6, 9], "m": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14], "begin": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "align": [0, 4, 5, 6, 7, 8, 9, 10, 14], "frac": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14], "d": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "p": [0, 4, 5, 6, 7, 8, 9, 10, 14], "dt": [0, 4, 6, 8, 9, 10, 13, 14], "end": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "third": [0, 7, 14, 15], "exert": 0, "magnitud": [0, 4, 5, 6, 7, 9], "direct": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "let": [0, 4, 5, 6, 7, 8, 9, 10, 15], "defin": [0, 4, 5, 6, 7, 8, 9, 10, 12], "_": [0, 6, 8, 9, 10], "21": [0, 4, 5, 6, 7, 9, 10, 15], "written": [0, 4, 5, 7, 8, 9, 10, 12, 13, 16], "12": [0, 4, 5, 6, 7, 8, 9, 10, 15], "often": [0, 4, 7, 8, 9, 10, 15], "action": [0, 15], "reaction": [0, 4, 5], "requir": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "alter": [0, 12], "v": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "can": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "rotat": [0, 4, 7, 9, 10], "get": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "omega": [0, 6, 7, 8], "alpha": [0, 4, 6, 7, 9, 15], "l": [0, 4, 5, 6, 7, 8, 9, 15], "magnet": [0, 4, 5, 6, 7, 8], "long": [0, 4, 5, 6, 7, 8, 9, 15], "period": [0, 4, 5, 6, 7, 9, 14], "contribut": [0, 10, 12], "charl": [0, 7], "coulomb": [0, 4, 6, 8, 9], "christian": 0, "\u00f8erst": 0, "thoma": [0, 4], "young": [0, 4, 6, 7], "andr": 0, "amp\u00e9r": 0, "michael": [0, 14], "faradai": 0, "joseph": [0, 4, 10], "henri": [0, 5, 6, 7], "jame": [0, 4, 5, 6, 10], "clerk": [0, 10], "heinrich": 0, "hertz": [0, 5, 6], "each": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18], "separ": [0, 4, 5, 7, 8, 10, 12, 14, 15], "until": [0, 5, 6, 8, 15], "relat": [0, 4, 5, 6, 7, 8, 9, 10, 12], "through": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16], "work": [0, 4, 6, 7, 9, 10, 12, 15, 17, 18], "led": [0, 4, 7, 10], "behavior": [0, 6, 7, 8, 10, 15], "light": [0, 4, 5, 6, 8, 9], "combin": [0, 4, 6, 7, 8, 9, 10], "equat": [0, 4, 5, 6, 7, 10, 13, 14], "text": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16], "gauss": 0, "quad": [0, 4, 5, 7, 8, 9], "oint": 0, "cdot": [0, 4, 5, 6, 7, 8, 9], "q": [0, 4, 5, 8, 9], "epsilon_o": [0, 4, 6, 7, 9], "b": [0, 4, 5, 6, 7, 8, 10, 12, 14, 15], "0": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18], "induct": 0, "phi_b": 0, "gener": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "amper": 0, "mu_o": [0, 4], "phi_e": 0, "1865": 0, "hurai": 0, "2010": 0, "yaghjian": 0, "2019": 0, "treatis": [0, 10], "hendrik": 0, "lorentz": 0, "arriv": [0, 5, 7, 13], "complet": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "1895": [0, 5], "symmetri": [0, 4, 7, 8], "current": [0, 4, 5, 6, 9], "creat": [0, 4, 5, 7, 10, 12, 13, 14, 15], "turn": [0, 4, 5, 7, 10], "deal": [0, 8, 12], "flow": [0, 5, 10, 15], "temperatur": [0, 5, 7, 9, 10], "t": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "heat": [0, 4, 5, 6, 7], "w": [0, 4, 5], "intern": [0, 4, 6, 7, 9, 10, 12, 16, 17, 18], "system": [0, 4, 5, 6, 7, 8, 9, 10], "u": [0, 4, 6, 7, 8, 10], "These": [0, 4, 5, 6, 7, 8, 9, 10, 15], "come": [0, 4, 5, 6, 7, 8, 9, 15], "togeth": [0, 4, 5, 6, 9, 15], "pressur": [0, 5, 10], "entropi": 0, "made": [0, 5, 6, 7, 8, 12], "benjamin": [0, 10], "thompson": [0, 10], "count": [0, 4, 5, 7, 10, 15], "rumford": 0, "sadi": 0, "carnot": 0, "joul": [0, 4, 10], "rudolf": 0, "clausiu": 0, "primari": [0, 5], "two": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "delta": [0, 4, 5, 6, 7, 8, 9, 10], "plu": [0, 9], "done": [0, 4, 7, 10, 15], "includ": [0, 4, 5, 7, 8, 9, 12, 14, 15, 17, 18], "It": [0, 4, 5, 6, 7, 8, 9, 10, 15], "possibl": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "convert": [0, 4, 5, 6, 7, 8, 10, 14, 15], "without": [0, 4, 5, 6, 9, 12, 15], "place": [0, 4, 5, 6, 9, 12, 13, 15], "word": [0, 5, 14, 15], "thing": [0, 4, 9, 15], "free": [0, 4, 5, 6, 8, 10, 12, 16], "lunch": [0, 15], "doe": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "spontan": 0, "colder": 0, "hotter": 0, "addit": [0, 5, 6, 7, 8, 9, 10, 12, 15], "sometim": [0, 4, 5, 7, 8, 10, 14, 15], "express": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13], "zeroth": 0, "If": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "thermal": [0, 5, 7, 10], "equilibrium": [0, 5, 6, 7, 8, 10], "achiev": [0, 5], "absolut": [0, 4, 8, 9, 10, 12], "zero": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "compos": [0, 5, 15], "molecul": [0, 5, 6, 7, 8, 10], "rapid": 0, "bounc": [0, 7], "off": [0, 4, 5, 6, 7], "wall": [0, 5, 7, 8], "just": [0, 4, 5, 6, 7, 8, 9, 13, 14, 15], "gain": [0, 4, 5, 6, 8, 9], "accept": [0, 4, 5, 6, 7, 8, 9, 10, 12], "realiz": [0, 4, 5, 6, 8], "came": [0, 7], "robert": [0, 5], "boyl": 0, "1862": 0, "product": [0, 7, 9, 10, 15], "pv": 0, "later": [0, 4, 5, 6, 10, 15], "jacqu": 0, "found": [0, 4, 5, 6, 7, 8, 9, 10, 13], "ratio": [0, 4, 5, 6, 7, 8, 9, 10], "loui": [0, 7], "gai": 0, "lussac": 0, "produc": [0, 4, 5, 6, 7, 8, 9, 10, 12], "around": [0, 4, 5, 6, 7, 9, 15], "obtain": [0, 4, 5, 6, 7, 8, 9, 10, 15], "nrt": 0, "depend": [0, 4, 5, 6, 7, 8, 9, 10, 15], "number": [0, 4, 5, 7, 8, 10, 13, 14, 15], "mole": [0, 10], "n": [0, 4, 5, 6, 7, 8, 10, 15], "r": [0, 4, 5, 6, 7, 8, 9, 10], "8": [0, 8, 9, 10, 12, 15], "31": [0, 4, 5, 6, 7, 8, 10, 15], "rm": [0, 4, 5, 6, 7, 8, 9], "mol": [0, 4, 5, 6, 7], "k": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "amedeo": 0, "avogadro": [0, 4, 5, 6, 7, 10], "propos": [0, 4, 5, 6, 7, 9], "daniel": 0, "bernoulli": 0, "origin": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16], "1738": 0, "ignor": [0, 4, 5, 8, 15], "howev": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "wide": [0, 7, 8], "interpret": [0, 4, 6, 9, 12, 15], "maxel": 0, "ludwig": 0, "josiah": 0, "willard": 0, "gibb": 0, "simpl": [0, 4, 5, 6, 9, 14], "averag": [0, 5, 6, 7, 8, 9, 10], "collis": [0, 4, 5, 6, 7, 9], "reveal": [0, 5, 16], "langl": [0, 6, 7, 8, 9], "rangl": [0, 6, 7, 8, 9], "linearli": [0, 5], "nn_a": 0, "avagadro": 0, "n_a": [0, 5, 6, 7], "02214076": [0, 10], "10": [0, 6, 7, 8, 9, 10, 15], "23": [0, 4, 5, 6, 7, 9, 10, 15], "vibrat": [0, 4, 6, 8, 10], "molecular": [0, 5, 6, 10], "translat": [0, 4, 5, 10, 12, 13], "becam": [0, 4, 7], "clear": [0, 4, 5, 6, 7, 9, 15], "degre": [0, 5, 10], "freedom": [0, 10, 15], "capabl": [0, 7], "carri": [0, 4, 5, 7, 9, 15], "equipartit": 0, "theorem": [0, 4, 5, 7, 8], "ha": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16], "kt": [0, 5, 7, 10], "3d": [0, 4, 9], "space": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "introduc": [0, 5, 6, 7, 8, 9, 10, 15], "mode": [0, 4, 5, 10, 13], "higher": [0, 4, 5, 6, 8, 9, 10, 15], "therefor": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "eqn": [0, 4, 5, 6, 7, 8], "7": [0, 9, 10, 12, 15], "molar": [0, 4, 5, 6, 7], "capac": 0, "c_v": 0, "du": [0, 8, 10], "specif": [0, 6, 10, 15], "function": [0, 4, 6], "hydrogen": [0, 4, 5, 7, 10], "h_2": [0, 10], "shown": [0, 4, 5, 7, 8, 9, 16], "below": [0, 4, 5, 6, 7, 12, 16], "lowest": [0, 5, 6, 7, 8, 9], "level": [0, 4, 6, 7, 8, 13, 14, 15], "correspond": [0, 4, 5, 7, 8, 9, 10, 12, 14], "At": [0, 4, 5, 7, 10, 15], "200": 0, "rise": [0, 5, 8, 9], "Near": 0, "3200": 0, "bring": 0, "befor": [0, 4, 5, 6, 7, 8, 9, 12, 14, 15], "dissoci": [0, 6], "imag": [0, 4, 5, 6, 7, 8, 9, 12], "credit": [0, 4, 5, 6, 7, 8, 9, 13, 16], "hyperphys": [0, 5, 6, 7, 8], "section": [0, 4, 6, 7, 8, 9, 10, 12, 13, 17, 18], "1850": 0, "speed": [0, 4, 5, 6, 7, 8, 9, 15], "given": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "4": [0, 10, 12, 14, 15, 16, 17, 18], "pi": [0, 4, 5, 6, 7, 8, 9, 10, 15], "left": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "right": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15], "mv": [0, 4, 5, 7, 10], "2kt": [0, 10], "python": [0, 4, 5, 7, 8, 10, 13, 14, 16], "code": [0, 4, 5, 7, 9, 10, 13, 14, 15, 16, 17, 18], "comput": [0, 6, 8, 9, 10, 15], "n_2": [0, 8, 10], "300": [0, 5, 7, 8, 10], "1000": [0, 4, 5], "4000": 0, "peak": [0, 5, 7], "probabl": [0, 5, 6], "confirm": [0, 4, 5, 6, 10], "1921": 0, "nitrogen": [0, 7], "numpi": [0, 4, 5, 6, 7, 8, 9, 10, 15, 16], "np": [0, 4, 5, 6, 7, 8, 9, 10, 15], "http": [0, 5, 14], "org": [0, 5, 12], "doc": 0, "stabl": [0, 6, 7], "user": [0, 14, 15], "whatisnumpi": 0, "html": [0, 14], "scipi": [0, 4, 5, 6, 7, 8, 9, 10, 15, 16], "physical_const": [0, 4, 6, 7, 9, 10], "matplotlib": [0, 4, 5, 7, 8, 9, 10, 15], "pyplot": [0, 4, 5, 7, 8, 9, 10, 15], "plt": [0, 4, 5, 7, 8, 9, 10, 15], "def": [0, 4, 5, 6, 7, 8, 10, 15], "f_v": 0, "kg": [0, 4, 5, 6, 7, 8, 10], "return": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "exp": [0, 4, 5, 7, 8, 10], "amu": [0, 4], "m_n2": 0, "28": [0, 4, 5, 6, 7, 9, 10, 15], "t_low": 0, "t_mid": 0, "t_hi": 0, "v_n2": 0, "arang": [0, 4, 5, 7, 8, 9, 10, 15], "rang": [0, 5, 6, 7, 8, 9, 10, 15], "fs": [0, 4, 5, 7, 8, 9], "larg": [0, 4, 5, 6, 7, 8, 9, 10, 15], "fig": [0, 4, 5, 6, 7, 8, 9, 10, 15], "figur": [0, 4, 5, 6, 7, 8, 9, 10, 15], "figsiz": [0, 4, 5, 7, 8, 9, 10], "dpi": [0, 4, 5, 7, 8, 9, 10], "150": [0, 4, 5, 7, 8, 9, 10], "ax": [0, 4, 5, 7, 8, 9, 10, 15], "add_subplot": [0, 4, 5, 7, 8, 9, 10, 15], "111": [0, 4, 5, 7, 8, 9, 15], "plot": [0, 4, 5, 7, 8, 10, 15], "lw": [0, 4, 5, 7, 8, 9, 10, 15], "label": [0, 4, 7, 8, 9, 10, 12, 15], "legend": [0, 4, 7, 8, 10], "loc": [0, 4, 7, 8, 10], "fontsiz": [0, 4, 5, 7, 8, 9, 10], "set_xlabel": [0, 4, 5, 7, 8, 10], "set_ylabel": [0, 4, 5, 7, 9, 10], "set_ylim": [0, 4, 7, 8, 9, 10, 15], "set_xlim": [0, 4, 5, 7, 8, 9, 10, 15], "By": [0, 5, 6, 7, 8, 9, 12], "calcul": [0, 4, 5, 6, 7, 8, 9, 10, 15], "rigor": [0, 4], "known": [0, 4, 5, 6, 7, 8, 9, 12], "find": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "root": [0, 5, 8, 10, 15], "mean": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "squar": [0, 4, 5, 6, 7, 9, 10, 15], "v_": [0, 4, 6, 7, 8, 9, 10], "sqrt": [0, 4, 5, 6, 7, 8, 9, 10, 15], "3kt": [0, 7, 10], "point": [0, 4, 5, 6, 7, 8, 9, 10, 15], "good": [0, 5, 7, 8, 9, 10, 14, 15], "model": [0, 5, 7, 9, 10], "when": [0, 4, 5, 6, 7, 8, 9, 10, 15], "learn": [0, 6, 9], "isn": [0, 7, 15], "alwai": [0, 4, 5, 7, 8, 9, 12, 15], "dimension": [0, 7, 15], "necessari": [0, 4, 6, 7, 8, 9, 10, 12, 14], "phenomena": [0, 5, 6, 7, 8, 10], "explain": [0, 5, 6, 7, 8, 9], "disturb": [0, 5], "stand": [0, 4, 5, 7, 8, 14], "superposit": [0, 5, 7, 8], "sound": [0, 4, 5, 7, 12], "need": [0, 5, 6, 7, 8, 9, 10, 12, 14, 15], "elast": [0, 4, 5, 6], "doesn": [0, 5, 6, 9, 15], "actual": [0, 5, 6, 7, 8, 15], "propag": [0, 4, 7], "along": [0, 4, 6, 7, 8, 9, 10, 13, 15], "respons": [0, 7, 8, 15], "pass": [0, 4, 5, 6, 7, 8, 9], "consid": [0, 4, 5, 6, 7, 8, 9, 10, 12], "follow": [0, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15], "exampl": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "buoi": [0, 5], "As": [0, 4, 5, 6, 7, 8, 9, 10, 15], "potenti": [0, 4, 5, 6, 7, 9, 10], "up": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "releas": [0, 4], "graviti": [0, 8, 9], "pull": [0, 4, 5, 8], "down": [0, 4, 5, 7, 9, 15], "help": [0, 4, 5, 6, 8, 9, 10, 13, 15], "nearbi": [0, 5], "cycl": [0, 7, 8], "fan": 0, "basebal": 0, "game": 0, "stadium": 0, "column": [0, 9, 15], "sit": 0, "singl": [0, 4, 5, 6, 7, 8, 10, 13, 14, 15], "run": [0, 4, 7, 9, 15], "whole": [0, 5, 6, 7, 10, 12], "17th": 0, "disagr": 0, "especi": [0, 5, 9, 15], "talk": 0, "about": [0, 4, 5, 6, 7, 8, 9, 10, 15], "support": [0, 4, 7, 10, 15], "corpuscl": 0, "geometr": [0, 8], "straight": [0, 4, 5, 6, 15], "line": [0, 4, 6, 7, 8, 9, 10, 13], "like": [0, 4, 5, 6, 7, 8, 9, 14, 15], "trajectori": [0, 6, 7], "rai": [0, 4, 8, 9], "observ": [0, 5, 6, 8, 9, 10], "reflect": [0, 4, 5, 7, 8], "refract": [0, 7], "sharp": 0, "shadow": 0, "christiaan": 0, "huygen": 0, "phenomenon": [0, 5, 7, 8, 9], "poor": 0, "health": 0, "prevent": [0, 5, 8, 10, 12], "him": [0, 4], "reput": 0, "forward": [0, 4, 5, 6, 15], "perform": [0, 4, 5, 6, 7, 8, 9, 12, 15], "doubl": [0, 13, 14, 15], "slit": 0, "interfer": [0, 4, 7, 8], "indic": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "behav": [0, 4, 5, 7, 8, 9], "illustr": [0, 4, 5, 6, 7, 9, 15], "encount": [0, 6], "diffract": [0, 4, 5, 6, 7, 8], "pattern": [0, 4, 5, 7], "side": [0, 4, 5, 6, 7, 8, 9, 10, 13, 15], "wikipedia": [0, 4, 5, 6, 7], "1860": 0, "em": [0, 5, 6, 7, 9], "consist": [0, 4, 5, 6, 7, 8, 9, 10, 14], "oscil": [0, 5, 7, 9, 10], "visibl": [0, 4, 5, 6, 7], "cover": [0, 4, 6, 7, 17, 18], "narrow": [0, 7], "spectrum": [0, 5, 6], "c": [0, 4, 5, 6, 7, 8, 9, 12, 15], "lambda": [0, 4, 5, 6, 7, 8, 9], "wavelength": [0, 4, 5, 6, 7, 8, 9], "frequenc": [0, 4, 5, 6, 7, 8], "ani": [0, 4, 5, 6, 7, 8, 9, 12, 15], "permeabl": [0, 4], "permitt": [0, 4], "1887": [0, 4], "succeed": [0, 5, 7, 12], "detect": [0, 4, 5, 7, 8, 9], "far": [0, 4, 5, 6, 8, 9, 15], "outsid": [0, 4, 5, 6, 7, 8, 9, 15], "approx": [0, 4, 5, 6, 7, 8, 10], "guid": [0, 5, 7, 13, 14, 16], "deduct": 0, "swath": 0, "what": [0, 4, 5, 6, 7, 8, 9, 10], "last": [0, 4, 8, 15], "100": [0, 4, 5, 7, 8, 10, 15], "year": [0, 4, 5, 6, 7, 15], "prior": [0, 4, 9, 12], "distinctli": 0, "differ": [0, 5, 6, 7, 8, 9, 10, 12, 14, 15], "seem": [0, 4, 6, 7], "them": [0, 4, 5, 6, 7, 9, 12, 14, 15], "studi": [0, 4, 5, 6, 7, 8, 9, 10], "subatom": [0, 10], "even": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "elementari": [0, 5, 6], "baryon": 0, "lepton": 0, "close": [0, 4, 5, 6, 7, 9, 12, 14, 15], "invari": [0, 4, 13], "unchang": [0, 8], "transform": [0, 5, 6, 7, 8, 10, 12, 13], "distanc": [0, 4, 5, 6, 7, 8, 9, 10, 15], "you": [0, 4, 5, 8, 12, 13, 14, 15, 16], "coordin": [0, 4, 8, 9, 10], "descript": [0, 7, 8, 9, 10, 15], "weak": [0, 5, 9], "strong": [0, 4, 5, 8, 9], "your": [0, 12, 13, 14, 15, 16], "introductori": [0, 8, 16], "cours": [0, 10, 15, 17, 18], "veri": [0, 4, 5, 6, 7, 8, 9, 15], "high": [0, 4, 5, 6, 7, 15], "unifi": 0, "electroweak": 0, "strength": [0, 5, 9, 15], "scale": [0, 4, 5, 8], "hold": [0, 4, 6, 15], "nucleu": [0, 4, 5, 6, 7, 8, 9], "mutual": [0, 5, 6, 9], "attract": [0, 5, 6, 8], "m_1": [0, 4], "m_2": [0, 4], "vector": [0, 4, 6, 7, 9, 10], "compon": [0, 4, 5, 6, 7, 9, 10], "cartesian": [0, 4, 9], "radial": [0, 4, 6, 10], "hat": [0, 6, 8], "6743": 0, "11": [0, 6, 7, 8, 9, 12, 15], "si": [0, 4], "unit": [0, 4, 5, 6, 7, 8, 9, 10], "_g": 0, "gm_1m_2": 0, "q_1": 0, "q_2": 0, "similar": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "electrostat": [0, 6, 9], "cross": [0, 5, 6], "chemic": [0, 5, 6], "biolog": [0, 4], "process": [0, 5, 6, 7, 8, 9, 10, 12, 13, 15], "nongravit": 0, "_c": 0, "q_1q_2": 0, "beta": [0, 4, 5, 6, 7, 8, 10], "decai": [0, 6], "nuclei": [0, 4, 6, 8], "among": [0, 4], "sheldon": 0, "glashow": 0, "steven": 0, "weinberg": 0, "abdu": 0, "salam": 0, "wrote": [0, 6, 7], "paper": [0, 4, 5, 6, 7], "1960": 0, "predict": [0, 5, 6, 7, 8, 9, 10], "facet": 0, "share": [0, 4, 7, 12, 16], "nobel": [0, 5, 7], "prize": [0, 5, 7], "1979": 0, "Their": [0, 5, 6, 8], "exist": [0, 4, 5, 6, 7, 8, 9, 10, 15], "z": [0, 4, 5, 6, 7, 8, 9, 10], "boson": 0, "1983": 0, "purpos": [0, 7, 12, 15], "effect": [0, 6, 7, 8, 10, 12], "15": [0, 4, 5, 7, 8, 9, 15], "strongest": 0, "easili": [0, 4, 5, 7, 10, 15], "bind": [0, 5, 6, 9], "proton": [0, 4, 5, 6, 7, 9], "insid": [0, 4, 5, 6, 8, 15], "repuls": [0, 6, 8], "allow": [0, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16], "fusion": 0, "star": [0, 4, 5], "strive": 0, "wai": [0, 4, 5, 7, 8, 9, 10, 12, 15], "seemingli": 0, "dispar": 0, "friction": [0, 5], "contact": [0, 12], "tension": 0, "know": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "part": [0, 4, 5, 6, 10, 12, 15], "ago": 0, "thought": [0, 4, 5, 6], "seri": [0, 4, 5, 6, 7, 8, 9], "grand": 0, "openstax": [0, 4, 5, 6, 7, 16, 17, 18], "vol": [0, 4, 5, 6, 7, 17, 18], "activ": [0, 15], "area": [0, 5, 6, 7, 8, 9], "effort": [0, 7], "underwai": [0, 4], "gut": 0, "fashion": 0, "complex": [0, 5, 7, 8, 9, 10, 14, 15], "string": [0, 7, 8, 15], "sever": [0, 4, 5, 6, 7, 8, 12, 14], "yet": [0, 6, 7], "been": [0, 4, 5, 6, 7, 9, 10, 12, 15], "verifi": [0, 4, 5, 6], "step": [0, 4, 5, 6, 7, 9, 15], "beyond": [0, 7, 8, 10], "toe": 0, "gev": [0, 4], "earlier": [0, 5, 6, 7, 15], "common": [0, 4, 5, 6, 7, 9, 12, 15, 16, 17, 18], "tini": [0, 5], "told": 0, "philosoph": [0, 5, 6], "democritu": 0, "leucippu": 0, "450": 0, "atomo": 0, "indivis": [0, 5, 6], "peel": 0, "layer": [0, 5, 6, 14], "inde": [0, 9, 15], "divis": [0, 5, 15], "sign": [0, 4, 5, 6, 8, 14], "past": [0, 4, 5, 7, 15], "mostli": [0, 6], "dormant": 0, "branch": 0, "scienc": 0, "chemistri": [0, 6, 9], "proust": 0, "definit": [0, 4, 5, 6, 8, 10, 12, 15], "element": [0, 4, 5, 6, 7, 9, 10, 14, 15], "compound": 0, "weight": [0, 5, 6, 10], "john": [0, 5], "dalton": 0, "1803": 0, "kei": [0, 5, 15], "1811": 0, "individu": [0, 4, 6, 7, 8, 9, 10, 12, 15], "dismiss": 0, "rather": [0, 4, 7, 8, 9, 10, 15], "harshli": 0, "who": [0, 4, 5, 6, 7, 9], "imagin": [0, 4, 6, 15], "stanislao": 0, "cannizzaro": 0, "solv": [0, 4, 5, 6, 7, 8, 9, 10], "1858": 0, "gram": [0, 5], "particular": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14], "ma": 0, "while": [0, 4, 5, 6, 7, 8, 9, 15], "carbon": [0, 4, 5], "estim": [0, 4, 5, 6, 7, 8, 10], "brown": 0, "microscop": [0, 5, 7], "pollen": 0, "grain": 0, "suspend": [0, 5], "brownian": [0, 10], "danc": 0, "randomli": [0, 7], "ascrib": 0, "convect": 0, "organ": [0, 5, 9], "eventu": [0, 4, 5, 6, 7, 8], "liquid": [0, 5, 7], "explan": [0, 4, 5, 6, 7, 13], "constantli": 0, "push": 0, "adopt": [0, 6, 12], "ernst": 0, "mach": [0, 4], "princip": [0, 6, 10], "leader": 0, "anti": [0, 9], "movement": [0, 4, 9], "positivist": 0, "reason": [0, 4, 5, 7, 8, 9, 10, 12, 14, 15], "never": [0, 4, 6, 7, 9, 12], "seen": [0, 5, 6, 7, 15], "cannot": [0, 4, 5, 6, 7, 8, 9, 10, 12, 15], "sai": [0, 4, 8, 10], "anyth": [0, 9, 10, 15], "realiti": [0, 7, 10], "wilhelm": [0, 5], "ostwald": 0, "face": [0, 4, 7], "difficulti": [0, 7, 9, 10], "radioact": [0, 4, 5, 6, 8], "discret": [0, 5, 7, 8], "spectral": [0, 5, 6, 9], "contend": 0, "should": [0, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16], "hypothet": 0, "construct": [0, 4, 5, 7, 8, 9, 15], "bookkeep": 0, "max": [0, 5, 6, 7, 9], "planck": [0, 5, 6, 7, 9], "grudgingli": 0, "submicroscop": 0, "quanta": [0, 5, 6], "convinc": [0, 4, 7], "overwhelm": 0, "decad": [0, 4, 7], "20th": [0, 5, 6, 10], "albert": [0, 4, 5], "1905": [0, 4, 5], "provid": [0, 5, 6, 9, 10, 12, 13, 15], "almost": [0, 4, 5, 7, 10, 15], "80": [0, 4, 15], "term": [0, 4, 5, 6, 7, 8, 9, 10, 12], "theoret": [0, 5, 6, 7], "random": [0, 6, 7, 9, 10], "walk": [0, 15], "drunkard": 0, "mai": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "after": [0, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15], "abl": [0, 4, 5, 6, 8], "approxim": [0, 4, 5, 6, 7, 8, 9, 10, 12], "size": [0, 5, 6, 7, 8], "data": [0, 5, 6, 7, 8, 9, 15], "scan": 0, "tunnel": 0, "photo": 0, "76": [0, 5, 10, 15], "iron": [0, 6], "copper": [0, 7, 10], "surfac": [0, 4, 5, 7, 9], "ibm": 0, "try": [0, 4, 5, 7, 8, 9, 15], "modifi": [0, 4, 5, 7, 8, 12, 15, 16], "electron": [0, 4, 8], "densiti": [0, 4, 5, 6, 7, 8, 10], "surround": [0, 5, 6, 7, 15], "quantum": [0, 4, 6, 17, 18], "corral": 0, "crommi": 0, "lutz": 0, "eigler": 0, "almaden": 0, "center": [0, 4, 5, 6, 7, 8, 14], "jean": [0, 5, 10], "perrin": [0, 10], "1908": [0, 4, 5], "agre": [0, 4, 6, 8, 9, 12, 14], "util": 0, "type": [0, 5, 6, 9, 10], "gave": [0, 15], "quantit": [0, 10], "sinc": [0, 4, 5, 6, 7, 8, 9, 13, 15], "nearli": [0, 6, 7], "foundat": 0, "method": [0, 5, 7, 8, 10, 15], "shape": [0, 4, 5, 7, 8], "success": [0, 4, 5, 8, 10], "pervas": 0, "feel": [0, 4, 5, 6, 8, 9], "techniqu": [0, 5, 6, 7], "structur": [0, 5, 7, 10], "unknown": [0, 5, 6, 7], "clearli": [0, 4, 7, 9, 12], "resolv": [0, 6], "cloud": [0, 9], "horizon": 0, "speak": [0, 4, 7], "royal": [0, 7], "institut": [0, 7], "materi": [0, 5, 6, 7, 12, 17, 18], "luminifer": [0, 4], "aether": [0, 4], "ether": 0, "deduc": [0, 4, 5, 7, 9], "fluid": [0, 10], "rigid": [0, 10], "than": [0, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "steel": [0, 5, 6], "massless": [0, 7, 10], "viscos": [0, 5], "otherwis": [0, 4, 8, 9, 12, 15], "affect": [0, 4, 6, 7, 8, 9, 10, 12, 15], "orbit": [0, 4, 5, 6, 7, 8], "planet": [0, 4, 6, 9], "transpar": 0, "non": [0, 5, 7, 8, 9, 10, 12, 13, 14, 15], "dispers": [0, 7], "incompress": 0, "michelson": [0, 5], "unabl": [0, 5, 6], "edward": [0, 4], "morlei": [0, 5], "extrem": [0, 4, 5, 6, 14], "care": [0, 5, 9, 15], "famou": [0, 4, 6, 7, 9], "subsequ": 0, "neg": [0, 4, 5, 6, 7, 8, 9, 15], "concern": [0, 4, 5, 12], "keep": [0, 4, 5, 6, 10, 14], "shift": [0, 4, 5, 7, 10], "contract": [0, 12], "georg": [0, 7, 9], "fitzgerald": [0, 4], "hypothesi": [0, 4, 5, 6, 7, 9], "1892": 0, "interest": [0, 4, 5, 7, 8, 10, 16], "absorb": [0, 4, 5, 6, 9], "entir": [0, 4, 5, 7, 10, 15], "incid": [0, 5, 6, 7, 8], "emit": [0, 4, 5, 6, 7, 9], "emiss": [0, 4, 5, 6, 8, 9], "power": [0, 4, 5, 6, 7, 10, 15], "per": [0, 4, 5, 6, 7, 10], "issu": 0, "itself": [0, 5, 6, 7, 9, 10], "decreas": [0, 5, 6, 8], "intens": [0, 5, 6, 7], "longer": [0, 4, 5, 8], "darth": 0, "kule": 0, "both": [0, 4, 5, 6, 7, 8, 9, 10, 14], "low": [0, 4, 5, 6, 7], "But": [0, 4, 5, 6, 7, 8, 9, 14, 15], "account": [0, 4, 5, 6, 9], "caviti": [0, 5], "infinit": [0, 5, 6, 15], "short": [0, 4, 5, 6, 7, 8, 13, 15], "failur": [0, 12], "ultraviolet": [0, 5], "catastroph": [0, 5], "demonstr": [0, 5, 6, 7, 10, 15], "deeper": 0, "r\u00f6ntgen": [0, 5, 7], "novemb": [0, 8], "becquerel": 0, "accident": 0, "februari": 0, "1896": [0, 9], "uranium": [0, 6], "salt": [0, 7], "next": [0, 4, 7, 9, 13, 15], "carefulli": 0, "wrap": 0, "photograph": [0, 6, 7], "plate": [0, 4, 5, 7], "silhouett": 0, "discharg": [0, 5, 6], "glow": [0, 5, 6], "cathod": [0, 5, 6], "isol": [0, 4, 5], "prove": [0, 5, 6, 7, 8, 10], "pieter": [0, 9], "zeeman": [0, 6, 8], "sampl": 0, "normal": [0, 4, 6, 7, 10, 13, 15], "quantiz": [0, 6, 8, 9], "packet": [0, 5, 6, 7, 8], "photoelectr": [0, 6, 7], "summar": [0, 6, 10], "major": [0, 7, 10], "accomplish": [0, 4, 7, 15], "did": [0, 4, 6, 10], "influenc": [0, 4, 5, 6, 8], "prevail": [0, 4, 6], "sentiment": 0, "character": [0, 6, 8], "compar": [0, 4, 5, 6, 7, 8, 9, 10], "contrast": [0, 8, 9, 15], "either": [0, 4, 5, 6, 7, 8, 9, 10, 14, 15], "regim": 0, "tell": [4, 5, 7, 8], "fast": [4, 7], "enough": [4, 5, 6, 7, 8, 9, 10], "thu": [4, 5, 6, 7, 8, 9, 10, 15], "newtonian": [4, 10], "law": [4, 5, 6, 7, 8, 9, 10, 12, 13], "valid": [4, 5, 6, 10, 15], "forc": [4, 5, 6, 7, 8, 9, 10, 13, 15], "attach": 4, "uniform": [4, 6], "prime": [4, 5, 6, 10, 13, 15], "standard": [4, 5, 7, 10, 12, 14], "configur": [4, 5], "unprim": 4, "axi": [4, 6, 7, 8, 9, 10, 13, 15], "krea": 4, "vt": [4, 7, 13, 14], "y": [4, 5, 7, 8, 10, 14, 15], "algebra": [4, 8, 9], "1802": 4, "augustin": 4, "fresnel": 4, "detail": [4, 5, 6, 7, 8, 13, 14, 15], "polar": [4, 5, 7, 9, 10], "discoveri": [4, 6, 7, 12], "wave": [4, 5, 6], "classic": [4, 7, 9], "knew": [4, 6, 8], "medium": [4, 5, 7, 8, 12], "appar": [4, 5, 8], "Its": [4, 6, 8, 15], "incred": 4, "too": [4, 5, 6, 7, 8, 14, 15], "maxwel": [4, 9], "media": [4, 12], "matter": [4, 5, 6, 7, 10], "vacuum": [4, 5, 6, 7], "sensit": [4, 6], "consensu": 4, "1880": 4, "eleg": [4, 14], "make": [4, 5, 6, 8, 9, 10, 12, 14, 15], "testabl": 4, "suppos": [4, 5, 6, 13, 15], "flash": [4, 7], "pm": [4, 5, 8, 9], "don": [4, 6, 14, 15], "differenti": [4, 8, 9, 10], "unclear": 4, "taken": [4, 6, 15], "prefer": [4, 9, 15], "No": [4, 5, 7, 9, 10, 12, 15], "discern": 4, "due": [4, 5, 6, 7, 8, 10, 15], "sun": [4, 5, 6, 9], "sim": [4, 5, 6, 7, 9, 10], "30": [4, 5, 7, 9, 12, 15], "km": 4, "so": [4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "obviou": 4, "devic": [4, 6, 8], "phase": [4, 7, 8, 9, 10], "setup": [4, 5], "extend": [4, 7], "sourc": [4, 5, 7, 10, 13, 15, 16], "ground": [4, 6, 7, 8, 9], "glass": [4, 5, 6, 7], "diffus": [4, 8], "laser": [4, 7], "planar": 4, "view": [4, 5, 6, 7, 10], "assum": [4, 5, 6, 7, 8, 9, 15], "arm": 4, "d_1": 4, "d_2": 4, "parallel": [4, 7, 8, 9], "leav": [4, 5, 8, 13, 15], "go": [4, 7, 9, 15], "mirror": 4, "partial": [4, 7, 8, 9], "silver": [4, 5, 7, 9], "path": [4, 6, 7, 8], "detector": [4, 6, 7], "compens": 4, "sure": [4, 14, 15], "thick": [4, 5, 6], "anim": 4, "sodium": [4, 5, 9], "bright": [4, 5, 7], "re": [4, 5, 7, 9, 10, 15, 16], "fring": [4, 7], "apparatu": [4, 5, 7], "90": [4, 6, 7, 15], "circ": [4, 5, 6, 7], "perpendicular": [4, 5, 6, 9], "dark": [4, 5, 6, 7], "band": [4, 5, 7], "destruct": [4, 7], "integ": [4, 5, 6, 7, 8, 9, 15], "expect": [4, 5, 6, 9, 10, 12], "accord": [4, 5, 6, 7, 8, 9, 10, 12], "On": [4, 6], "journei": 4, "against": [4, 5], "round": [4, 5, 6, 7, 10], "trip": 4, "t_2": 4, "2cd_2": 4, "2d_2": 4, "across": [4, 5, 6, 8], "upriv": 4, "downstream": [4, 12], "triangl": [4, 6], "diagon": 4, "instead": [4, 6, 7, 8, 9, 10, 14, 15], "t_1": 4, "2d_1": 4, "look": [4, 5, 6, 7, 9, 14, 15], "ll": [4, 5, 7, 8, 9], "binomi": 4, "expans": 4, "involv": [4, 5, 9, 15], "order": [4, 5, 6, 7, 8, 9, 10, 15], "neglig": [4, 5, 7, 8, 12], "To": [4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15], "17": [4, 5, 7, 8, 15], "600": [4, 5, 6], "nm": [4, 5, 6, 7, 8, 9], "amount": [4, 5, 6, 10, 15], "04": [4, 5, 15], "02": [4, 5, 6, 7, 10, 15], "conclud": [4, 5, 6, 7], "stationari": [4, 5, 6, 7, 8], "incorrect": [4, 5], "surpris": [4, 8, 9], "ask": [4, 12, 15], "well": [4, 5, 6, 7, 9, 10, 12, 14, 15], "repeat": [4, 6, 15], "put": [4, 6, 14], "sophist": [4, 6], "adjust": [4, 5], "eight": 4, "mount": [4, 7], "soapston": 4, "float": [4, 15], "mercuri": [4, 6], "elimin": [4, 5, 8], "005": 4, "report": [4, 5, 7, 9, 13], "null": 4, "inabl": [4, 7], "seriou": [4, 5, 9, 10], "blow": 4, "reconcil": [4, 6], "suggest": [4, 5, 6, 7, 8, 9, 10], "factor": [4, 5, 6, 7, 8, 9, 10], "gamma": [4, 5], "situat": [4, 5, 7, 8], "wherea": [4, 5, 6], "proven": 4, "true": [4, 5, 7, 9, 10, 15], "signific": [4, 6, 7, 8, 10], "expos": [4, 5, 6], "fals": [4, 7, 8, 9, 15], "invalid": 4, "mechan": [4, 6, 9, 10, 17, 18], "formal": [4, 5, 8], "manner": [4, 12], "develop": [4, 6, 7, 9, 10, 14, 15], "constanc": 4, "valu": [4, 5, 6, 7, 9, 10, 15], "evalu": [4, 5, 7, 8, 9, 10, 13, 15], "previou": [4, 5, 8, 10, 12, 15], "clearer": [4, 15], "out": [4, 5, 6, 7, 8, 9, 12, 14, 15], "real": [4, 7, 8, 9], "life": 4, "recal": [4, 5, 7, 8, 9, 10, 15], "sect": [4, 7, 8, 9], "event": [4, 7, 12], "synchron": 4, "own": [4, 7, 8, 15], "meterstick": 4, "interv": [4, 7, 8, 10], "lamp": 4, "apart": [4, 5, 9, 14], "puls": [4, 7], "simultan": [4, 5, 7, 8, 9], "reach": [4, 5, 6, 15], "she": 4, "bulb": 4, "conclus": 4, "correct": [4, 5, 8], "seat": 4, "midwai": 4, "rail": 4, "car": 4, "opposit": [4, 5], "equidist": 4, "her": [4, 5], "toward": [4, 5, 8, 15], "rapidli": [4, 8], "platform": [4, 14], "saw": [4, 15], "railcar": 4, "necessarili": [4, 7, 9], "comparison": [4, 5], "send": [4, 5], "signal": 4, "inform": [4, 12], "finit": [4, 5, 6, 9], "awai": [4, 5, 9], "colleagu": 4, "fix": [4, 5, 8, 9, 13], "coincid": 4, "vx": 4, "commonli": [4, 5, 8, 9], "substitut": [4, 5, 6, 7, 8, 9, 10, 13], "write": [4, 7, 8, 9, 10, 14, 15], "compact": [4, 9], "ultim": [4, 10], "want": [4, 6, 7, 9, 14, 15], "goe": [4, 8, 9], "wavefront": 4, "spheric": [4, 7, 10], "inconsist": [4, 5], "break": [4, 5, 15], "map": 4, "uniqu": [4, 5, 7, 8], "simplest": [4, 5, 6, 7, 8, 9, 15], "reduc": [4, 7, 8, 9, 10, 12, 15], "demand": 4, "ct": 4, "un": 4, "abov": [4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "directli": [4, 5, 6, 8, 10, 12, 15], "replac": [4, 6, 7, 8, 9, 10, 12, 13, 15], "exchang": 4, "rightarrow": [4, 5, 6, 7, 8, 9, 10, 13], "notic": [4, 5, 6, 7, 8, 12, 15], "significantli": [4, 6], "001": [4, 6, 7], "grid": [4, 6], "implic": 4, "imaginari": [4, 7, 8], "lit": 4, "read": [4, 12, 15], "extinguish": 4, "t_o": 4, "proper": [4, 12, 15], "x_2": [4, 7, 8], "x_1": [4, 7, 8], "Then": [4, 5, 6, 7, 8, 9, 10, 13, 15], "durat": 4, "slow": [4, 5], "2150": 4, "feder": 4, "perfect": [4, 10], "storag": 4, "antiproton": 4, "fuel": 4, "spaceship": 4, "prepar": 4, "man": [4, 15], "spacecraft": 4, "visit": [4, 14], "proxima": 4, "centauri": 4, "25": [4, 5, 6, 7, 8, 10, 15], "lightyear": 4, "strict": 4, "regul": [4, 10, 12], "16": [4, 5, 6, 7, 8, 9, 15], "provis": [4, 12], "avail": [4, 5, 9, 12, 14, 16], "crew": 4, "neglect": [4, 5], "turnaround": 4, "deceler": [4, 6], "limit": [4, 5, 7, 8, 10, 12, 13, 15, 16], "constrain": [4, 7, 8, 9], "unlik": [4, 5], "buc": 4, "ee": 4, "restock": 4, "2l": [4, 8], "subsum": 4, "alreadi": [4, 6, 8, 9, 14, 16], "4l": 4, "2c": [4, 5, 7, 10], "41": [4, 5, 15], "469c": 4, "realli": [4, 14], "mission": 4, "18": [4, 5, 6, 7, 8, 9, 15], "friend": 4, "light_year": 4, "yr_in_sec": 4, "3600": [4, 5], "24": [4, 5, 6, 7, 8, 10, 15], "365": [4, 5], "sec": 4, "ly": 4, "2e": [4, 5, 6, 7, 8], "librari": 4, "meter": [4, 7], "to_prim": 4, "v_req": 4, "3f": [4, 5, 7], "46e": 4, "41e": [4, 7], "08": [4, 5, 7, 8, 15], "469": 4, "happen": [4, 6, 7, 15], "l_o": 4, "x_r": 4, "x_l": 4, "subscript": [4, 6, 7, 8, 9], "denot": [4, 5, 6, 8, 10], "stick": 4, "t_r": 4, "t_l": 4, "insist": 4, "lesssim": [4, 5, 6], "shrink": 4, "electrodynam": [4, 6, 7], "switch": [4, 15], "shorter": [4, 5, 7, 8], "perspect": 4, "approach": [4, 6, 7, 8, 10, 15], "2l_o": 4, "2t": 4, "give": [4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16], "ident": [4, 5, 7, 8, 10], "2f": [4, 5, 6, 7, 8, 10, 15], "75": [4, 6, 8, 10, 15], "futur": [4, 15], "navig": 4, "outer": [4, 5, 6, 8], "identifi": [4, 6, 7, 9, 10], "hazard": 4, "avoid": [4, 5, 8, 10, 12], "asteroid": 4, "iceberg": 4, "add": [4, 7, 8, 9, 10, 14, 15], "reserv": [4, 12, 15], "letter": [4, 6, 8, 9, 15], "variou": [4, 5, 6, 7, 9, 13], "correctli": [4, 6], "start": [4, 5, 6, 7, 8, 9, 10, 14, 15], "u_x": 4, "dx": [4, 7, 8, 9, 10], "vdt": 4, "dy": [4, 7, 9, 10], "dz": [4, 9, 10], "u_i": 4, "u_z": 4, "divid": [4, 5, 6, 8, 9, 17, 18], "although": [4, 5, 6, 8, 9, 12, 15], "variabl": [4, 7, 8, 13], "command": [4, 13, 14, 15], "target": [4, 5, 6, 7, 9], "junior": 4, "offic": 4, "shoot": 4, "99c": 4, "6c": 4, "36": [4, 5, 6, 7, 15], "0c": 4, "99": [4, 10, 15], "792": 4, "792c": 4, "994c": 4, "cosmic": [4, 5], "enter": [4, 5, 8], "atmospher": [4, 5, 6], "upper": [4, 6, 7, 10], "shower": [4, 15], "meson": 4, "pion": 4, "unstabl": 4, "n_oe": 4, "n_o": 4, "half": [4, 5, 7, 8, 9, 10], "tau_": 4, "ln": [4, 8], "52": [4, 15], "mu": [4, 5, 6, 7, 8, 9], "surviv": [4, 8, 12], "top": [4, 9, 13, 16], "mountain": [4, 8], "sea": 4, "98c": 4, "540": 4, "remov": [4, 8, 9, 12, 15], "81": [4, 9, 15], "45": [4, 6, 7, 8, 10, 15], "obvious": 4, "someth": [4, 5, 7, 15], "wrong": 4, "v_mu": 4, "98": [4, 10, 15], "d_mnt": 4, "2000": 4, "height": [4, 7, 8], "mu_halflif": 4, "52e": 4, "no_mu": 4, "t_half": 4, "lamb": 4, "log": 4, "t_mu": 4, "n_mu": 4, "81e": 4, "06": [4, 6, 7, 10, 15], "dramat": [4, 5, 6, 15], "35": [4, 5, 6, 7, 8, 9, 15], "539": [4, 5], "agreement": [4, 5, 6, 7, 8, 10, 12], "1963": 4, "washington": 4, "hampshir": 4, "frisch": 4, "smith": 4, "gamma_mu": 4, "t_mu_rel": 4, "n_mu_rel": 4, "35e": 4, "examin": [4, 5, 6, 7, 8, 9], "400": [4, 5], "l_mu": 4, "accur": [4, 5, 6, 7, 8], "transit": [4, 6, 9], "133": 4, "cs": [4, 5], "192631770": 4, "hz": [4, 5, 7, 9], "1971": 4, "hafel": 4, "richard": 4, "cesium": 4, "test": [4, 7, 10, 15], "flew": 4, "eastward": 4, "westward": 4, "regularli": 4, "schedul": 4, "airplan": 4, "naval": 4, "observatori": 4, "took": [4, 5], "65": [4, 5, 7, 15], "hour": [4, 5], "flight": 4, "week": [4, 8], "48": [4, 5, 15], "complic": [4, 9], "corioli": 4, "tabl": [4, 5, 6, 8, 9, 10, 15], "ns": 4, "40": [4, 5, 7, 8, 10, 15], "59": [4, 5, 15], "275": 4, "273": [4, 5], "less": [4, 5, 6, 7, 8, 9, 10, 15], "lost": [4, 5, 6], "ran": 4, "slower": [4, 15], "faster": [4, 10], "uncertainti": [4, 6, 8, 9, 10], "1985": 4, "challeng": 4, "shuttl": 4, "330": 4, "295": 4, "29": [4, 5, 6, 7, 15], "ps": 4, "straightforward": [4, 6, 8], "simplifi": [4, 5, 7, 8, 9, 10], "assumpt": [4, 6, 7, 9, 10, 15], "noninerti": 4, "launch": [4, 16], "land": 4, "much": [4, 5, 6, 7, 8, 9, 10, 15], "3092": 4, "92": [4, 10, 15], "fraction": [4, 5, 6, 8, 10], "loss": [4, 12], "27": [4, 5, 6, 7, 9, 10, 15], "lose": [4, 5, 6], "alon": [4, 9], "seven": [4, 10], "048": 4, "t_": [4, 5], "ms": [4, 5, 8, 14], "m_earth": 4, "9722e24": 4, "r_earth": [4, 5], "6371e3": 4, "radiu": [4, 5, 6, 7, 9], "h_shuttl": 4, "330e3": 4, "v_shuttl": 4, "gamma_shuttl": 4, "dt_t": 4, "4e": [4, 5, 8, 10], "dt_t_mea": 4, "9502e": 4, "gr": [4, 7], "dt_t_gr": 4, "5e": [4, 5, 6], "dt_t_meas_nogr": 4, "ab": [4, 5, 8, 9], "pct_err": 4, "percent": [4, 5, 10], "error": [4, 5, 10, 12, 15], "mission_dur": 4, "tlost_miss": 4, "1e": [4, 5, 6, 7, 8, 9], "3092e": 4, "3002e": 4, "0e": [4, 6, 7], "alv\u00e4ger": 4, "et": 4, "al": [4, 5, 6], "1964": 4, "beam": [4, 5, 6, 7, 9], "strike": [4, 5, 7], "neutral": [4, 6], "cern": 4, "nuclear": [4, 6, 8, 9], "facil": 4, "border": 4, "switzerland": 4, "franc": 4, "99975c": 4, "exit": [4, 5, 6], "laboratori": [4, 5, 6], "excel": [4, 5], "again": [4, 6], "evid": [4, 5, 6, 7, 9], "One": [4, 5, 6, 7, 9, 15], "topic": 4, "pair": [4, 8], "set": [4, 5, 6, 7, 8, 9, 10, 12, 14, 15], "37": [4, 5, 7, 15], "ov": 4, "tick": 4, "slowli": 4, "ix": 4, "scenario": [4, 8], "younger": 4, "moreov": 4, "argu": [4, 7, 8], "answer": [4, 10, 13, 15], "option": [4, 15], "8c": 4, "46": [4, 5, 15], "old": 4, "departur": 4, "yr": 4, "fact": [4, 5, 6, 9, 15], "here": [4, 8, 12, 13, 15], "conveni": [4, 9, 14], "diagram": [4, 5, 6, 7, 9], "simplic": [4, 13], "spatial": [4, 7, 8], "horizont": [4, 8], "vertic": [4, 8, 9, 10], "dimens": [4, 7, 8, 9, 13], "yellow": [4, 5], "photon": [4, 5, 6, 7, 9], "locat": [4, 7, 8, 10], "hermann": 4, "minkowski": 4, "specifi": [4, 7, 9, 12, 15], "coordiant": 4, "fourth": [4, 9], "x_a": [4, 8], "ct_a": 4, "x_b": [4, 8], "ct_b": 4, "worldlin": 4, "slope": [4, 5], "do": [4, 5, 6, 7, 8, 9, 12, 15], "cone": 4, "causal": [4, 10], "li": [4, 5, 6, 8, 9, 10], "link": [4, 6, 9], "vertex": 4, "serv": [4, 7], "role": [4, 7, 10], "mathbf": [4, 5, 9, 10, 14], "lightlik": 4, "sepeart": 4, "spacelik": 4, "timelik": 4, "ell": [4, 5, 7], "1d": [4, 15], "suffic": 4, "union": 4, "ict": 4, "ds": 4, "2dt": 4, "appropri": [4, 5, 7, 8, 9, 13, 14, 16], "somewhat": 4, "easier": [4, 5, 15], "penalti": 4, "matrix": [4, 15], "tensor": 4, "spinor": 4, "disadvantag": 4, "author": [4, 12, 16], "regard": [4, 6, 7, 9, 12], "inclus": 4, "pitch": 4, "ambul": 4, "receiv": [4, 5, 6, 7, 12, 13], "astronom": [4, 5], "front": 4, "rear": [4, 5], "train": 4, "exactli": [4, 5, 8, 9, 10, 15], "cn": 4, "f_o": [4, 5], "compactli": 4, "reced": 4, "wth": 4, "distinguish": [4, 5, 15], "convent": [4, 7, 14, 15], "starlight": 4, "redshift": [4, 6], "distant": [4, 6], "galaxi": [4, 6], "farther": 4, "harlow": 4, "edwin": 4, "hubbl": 4, "maxim": [4, 5, 9], "angl": [4, 5, 6, 7, 9], "theta": [4, 5, 6, 7, 8, 10], "co": [4, 5, 6, 7, 8, 9, 10, 15], "sin": [4, 5, 6, 7, 8, 9, 15], "33": [4, 5, 8, 15], "180": [4, 5], "pure": [4, 9, 10], "transvers": 4, "analyz": [4, 6, 15], "sent": 4, "outbound": 4, "annual": 4, "everi": [4, 7, 9, 10, 12, 15], "3f_o": 4, "lead": [4, 6, 7, 8, 9, 10], "That": [4, 10], "conflict": [4, 6], "modif": [4, 5, 12], "ball": [4, 5, 6, 7, 8], "collid": [4, 5, 6], "perfectli": 4, "u_o": [4, 8], "p_y": [4, 5, 7], "ff": [4, 5], "2mu_o": 4, "conserv": [4, 5, 6, 8, 9], "insert": [4, 5, 7, 8, 9], "gather": 4, "p_x": [4, 5, 7], "mf": 4, "neq": [4, 9], "preserv": [4, 15], "multipli": [4, 7, 8, 9, 10, 15], "trial": [4, 5, 8, 9], "rememb": [4, 6, 7, 15], "distinct": [4, 6, 8, 9, 14, 15], "plausibl": [4, 6, 7], "tau": [4, 7, 9], "goo": 4, "accuraci": [4, 12], "14c": 4, "mc": 4, "resist": [4, 8, 10], "42": [4, 5, 10, 15], "kinet": [4, 5, 6, 7, 8, 10], "w_": 4, "int_1": 4, "k_2": [4, 7, 8], "k_1": [4, 7, 8], "int": [4, 6, 8, 9, 15], "integr": [4, 5, 6, 7, 9, 12], "greater": [4, 6, 7, 8, 9, 10, 15], "diverg": [4, 8], "Be": [4, 8], "mistak": 4, "student": [4, 5, 6, 7], "medic": [4, 5], "000": [4, 6], "volt": [4, 5, 6], "metal": [4, 5, 6, 7, 8], "qv": 4, "602": [4, 5, 7, 8], "19": [4, 5, 6, 7, 8, 15], "049": 4, "rearrang": [4, 5, 8, 9], "091": 4, "nonrelativist": [4, 5, 6, 7, 8], "2k": [4, 5, 6, 8, 10], "Such": [4, 5, 7, 9], "equip": [4, 7], "particularli": [4, 7], "m_e": [4, 5, 6, 7, 8], "v_el": 4, "5e4": [4, 5, 7], "k_el": 4, "e_o": [4, 6, 7, 8, 9], "1f": [4, 5, 7, 9, 10], "05e": 4, "07": [4, 5, 6, 7], "38e": [4, 5], "rewritten": [4, 5, 6], "certain": [4, 5, 6, 7, 8, 9, 12], "proof": 4, "establish": [4, 7, 9], "merg": 4, "interchang": 4, "18th": [4, 8], "block": [4, 5, 6, 14, 15], "wood": [4, 6], "spring": [4, 8, 10], "compress": 4, "lock": 4, "thornton": [4, 6, 17, 18], "rex": [4, 6, 17, 18], "2012": [4, 6, 17, 18], "e_": [4, 5, 6, 7, 8], "2mc": [4, 5], "2m": [4, 7, 8, 9], "went": [4, 7, 15], "increas": [4, 5, 6, 7, 8, 10], "head": [4, 6], "f_r": 4, "quit": [4, 5, 9, 15], "typic": [4, 5, 6, 7, 14, 15], "numer": [4, 5, 8, 10, 15], "inappropri": 4, "macroscop": [4, 8, 10], "essenti": [4, 5, 6, 12], "m_wb": 4, "v_wb": 4, "k_wb": 4, "k_wb_rel": 4, "ke": 4, "6e": 4, "7e": 4, "fundament": [4, 5, 6, 7, 8], "inviol": 4, "56": [4, 5, 7, 15], "pc": [4, 7, 14], "muc": 4, "astrophys": [4, 14], "neutron": [4, 6, 7, 9], "th": [4, 7], "ev": [4, 5, 6, 7, 8, 9, 10], "prefix": 4, "mev": [4, 5, 6, 8], "mega": 4, "6726": 4, "26": [4, 5, 6, 7, 8, 9, 15], "67": [4, 5, 15], "38": [4, 5, 7, 15], "938": 4, "five": [4, 5, 9], "font": [4, 7, 8], "convers": [4, 5, 7, 8, 10, 15], "66054": [4, 10], "931": 4, "494": 4, "languag": [4, 14, 15, 16], "modul": [4, 7, 8, 10, 15], "hit": [4, 6, 7, 15], "78": [4, 15], "aris": [4, 5, 6, 7, 9, 12], "51": [4, 10, 15], "13": [4, 5, 6, 8, 9, 15], "948": 4, "95c": 4, "similarli": [4, 6, 8, 9, 10], "tow": [4, 9], "momentarili": 4, "stop": [4, 5, 12, 15], "excit": [4, 5, 7, 8, 9, 10], "outcom": [4, 7, 10], "disappear": [4, 7, 8], "overlin": [4, 10], "symbol": [4, 8, 9, 14, 15], "deuteron": [4, 6, 7], "k_p": 4, "p_p": 4, "gamma_p": 4, "beta_p": 4, "3fc": 4, "948c": 4, "84e": 4, "h": [4, 5, 6, 7, 8, 9, 12], "bound": [4, 5, 6, 8, 9, 12], "e_b": 4, "m_": [4, 6, 10], "sum_i": [4, 7, 8, 9], "m_i": 4, "007275c": 4, "008665c": 4, "939": 4, "57": [4, 5, 7, 10, 15], "01355c": 4, "1875": [4, 5, 6], "61": [4, 6, 15], "minimum": [4, 5, 6, 7, 8, 12], "139": [4, 5], "m_pc": 4, "m_d": [4, 6], "m_p": [4, 6], "69": [4, 15], "m_pi": 4, "57039": 4, "6f": 4, "319578": 4, "me": 4, "convict": 4, "els": [4, 5, 7, 8, 10, 15, 16], "said": [4, 10], "bit": [4, 15], "patchwork": 4, "publish": [4, 6, 10, 12], "titl": [4, 12, 13, 15], "zur": 4, "elektrodynamik": 4, "bewegt": 4, "k\u00f6rper": 4, "german": [4, 5], "fulli": [4, 5, 6, 7, 15], "q_o": [4, 5], "conduct": 4, "wire": [4, 6], "lorenz": 4, "page": [4, 5, 14], "hand": [4, 5, 8, 9, 13, 15], "repel": [4, 5, 6], "upward": [4, 5], "ion": [4, 6], "closer": [4, 5], "presenc": [4, 5, 9, 12], "themselv": [4, 9, 15], "95": [4, 5, 15], "jet": 4, "airlin": 4, "240": 4, "superson": 4, "station": 4, "cm": [4, 5, 6, 7, 8, 9], "14": [4, 5, 7, 8, 15], "20": [4, 5, 6, 7, 8, 10, 12, 15], "rocket": [4, 16], "ship": 4, "astronaut": 4, "aboard": 4, "middl": [4, 7, 8], "60c": 4, "someon": 4, "group": [4, 6, 7, 9], "decid": [4, 6, 8], "mauna": 4, "kea": 4, "site": [4, 15], "hawaii": 4, "4205": 4, "why": [4, 5, 6, 9, 15], "solar": [4, 5, 6], "1400": 4, "khz": 4, "92c": 4, "5c": 4, "hadron": 4, "tev": 4, "kaon": 4, "498": 4, "135": 4, "1900": [5, 6, 7], "1930": 5, "partli": 5, "motiv": 5, "advanc": [5, 8], "1890": 5, "evacu": 5, "tube": [5, 6, 7], "constitut": [5, 12], "atom": [5, 7, 8, 10], "substructur": 5, "penetr": [5, 7, 8], "phosphoresc": 5, "screen": [5, 7, 16], "vividli": 5, "darken": 5, "room": [5, 7, 10], "kind": [5, 6, 12], "unaffect": 5, "better": [5, 7, 9, 10], "bombard": [5, 6, 7, 9], "bone": 5, "1901": 5, "youtub": [5, 6, 16], "video": [5, 6, 7], "tede": 5, "gase": [5, 6], "particl": [5, 6, 9, 10], "earli": [5, 6, 7, 8, 9, 10], "invent": 5, "1897": 5, "ferdinand": 5, "braun": 5, "anod": [5, 6], "fluoresc": [5, 7], "deflect": [5, 6, 9], "permit": [5, 8, 12], "collim": [5, 7], "voltag": [5, 6], "convincingli": [5, 6], "1906": 5, "poorer": 5, "ioniz": [5, 6], "residu": 5, "ga": [5, 6, 7, 9, 10], "improv": [5, 7, 8, 15], "With": [5, 6, 7, 9, 10], "region": [5, 6, 7, 8], "f_y": 5, "ma_i": 5, "qe": 5, "a_i": [5, 7], "travers": [5, 7], "length": [5, 6, 7, 8, 9, 15], "v_o": [5, 6], "tan": [5, 6, 7, 8, 15], "v_y": [5, 10], "v_x": [5, 7, 10], "condit": [5, 8, 9, 12, 15, 16], "extract": [5, 12, 15], "undergradu": [5, 16], "reproduc": [5, 12], "cancel": [5, 8, 9, 10], "05": [5, 6, 7, 8, 9, 10], "e_mag": 5, "2e4": 5, "b_mag": 5, "8e": [5, 8, 15], "l_plate": 5, "deflect_ang": 5, "radian": [5, 6], "q_m": 5, "lower": [5, 6, 7, 9, 10], "larger": [5, 6, 7, 8, 15], "anticip": 5, "previous": [5, 6, 7, 9], "carrier": 5, "attempt": [5, 7, 8], "millikan": 5, "1911": [5, 6], "visual": [5, 9], "uncharg": 5, "oil": 5, "drop": [5, 6, 8], "scheme": [5, 9, 12], "downward": [5, 6], "air": [5, 6, 7, 8, 10], "_j": 5, "drag": 5, "oppos": 5, "henc": [5, 9, 15], "via": [5, 6, 10], "stoke": 5, "diamet": [5, 6, 7], "sphere": [5, 6], "buoyanc": 5, "balanc": 5, "_e": [5, 6], "flat": 5, "mgd": 5, "termin": [5, 12, 15], "rho": [5, 6, 7], "six": [5, 10], "modern": [5, 7, 10, 14, 16], "quot": [5, 15], "plastic": 5, "sprai": 5, "solut": [5, 6, 7, 8, 10, 13], "evapor": 5, "occasion": [5, 6], "dropdown": [5, 16], "menu": [5, 16], "histogram": 5, "bin": 5, "multipl": [5, 6, 7, 8, 9, 15], "fit": [5, 7, 8, 12], "77": [5, 7, 15], "percentag": [5, 6], "click": [5, 7], "43": [5, 6, 15], "126": 5, "74": [5, 15], "83": [5, 15], "66": [5, 15], "22": [5, 6, 7, 15], "34": [5, 7, 8, 15], "85": [5, 7, 15], "44": [5, 8, 15], "00": 5, "136": [5, 7], "64": [5, 9, 15], "60": [5, 15], "03": [5, 6], "134": 5, "143": 5, "55": [5, 7, 9, 15], "82": [5, 7, 15], "71": [5, 15], "89": [5, 9, 15], "39": [5, 15], "32": [5, 6, 7, 8, 9, 15], "54": [5, 7, 10, 15], "140": 5, "58": [5, 7, 15], "col": [5, 7, 8, 9], "218": [5, 7, 8, 9], "256": [5, 7, 8, 9], "50": [5, 7, 8, 9, 10, 15], "genfromtxt": [5, 15], "raw": 5, "githubusercont": 5, "com": [5, 15], "saturnaxi": [5, 14, 16], "modernphys": [5, 16], "chapter_3": 5, "oil_drop": 5, "csv": 5, "delimit": 5, "hist": 5, "color": [5, 6, 7, 8, 9, 10], "set_xtick": [5, 7, 8], "set_ytick": [5, 7, 8, 9], "optim": [5, 8], "curve_fit": 5, "q0": 5, "popt": 5, "pcov": 5, "pct_error": 5, "transax": 5, "smooth": [5, 7], "vs": [5, 15], "burn": 5, "flame": 5, "prism": 5, "constitu": [5, 6], "rowland": 5, "qualiti": 5, "grate": [5, 6, 7], "spectroscopi": [5, 6], "professor": 5, "chosen": [5, 10, 12], "hopkin": 5, "foremost": 5, "american": 5, "presid": 5, "societi": [5, 12], "1899": 5, "vice": 5, "neither": 5, "nor": [5, 12], "earn": 5, "ph": [5, 6, 7], "schemat": [5, 6, 7, 9], "spectromet": [5, 7], "centimet": 5, "maxima": [5, 7], "5000": [5, 6], "promin": 5, "mm": [5, 6], "bunsen": 5, "gustav": [5, 6], "kirchhoff": 5, "fingerprint": 5, "identif": [5, 12], "composit": [5, 6], "flourish": 5, "finer": [5, 9], "evenli": [5, 10], "attent": 5, "paid": 5, "hope": 5, "sunlight": 5, "helium": [5, 6, 9], "1800": 5, "underli": [5, 6, 7, 8], "chemist": [5, 6], "build": [5, 6, 7], "johann": 5, "balmer": [5, 6], "1885": 5, "empir": [5, 6, 9], "formula": [5, 6], "uv": [5, 8], "white": [5, 6, 7, 14], "paramet": [5, 6, 8, 10, 15], "coeffici": [5, 8], "perhap": [5, 9], "confus": [5, 10, 15], "analyt": 5, "sole": [5, 9], "364": 5, "match": [5, 13], "formerli": 5, "angstrom": 5, "\u00e5": 5, "ander": 5, "\u00e5ngstrom": 5, "unicod": [5, 6], "x212b": [5, 6], "reciproc": [5, 7], "r_": [5, 6, 9], "rydberg": [5, 6], "0972": 5, "096776": [5, 6], "walther": [5, 9], "ritz": [5, 6], "1925": [5, 7, 8, 9], "uncov": 5, "mysteri": [5, 6], "discover": [5, 12], "lyman": [5, 6], "1916": 5, "paschen": [5, 6], "infrar": [5, 6], "ir": 5, "brackett": 5, "1922": [5, 9], "pfund": 5, "1924": [5, 7], "700": 5, "91": [5, 15], "174": 5, "parenthes": [5, 8, 9, 14, 15], "permiss": [5, 12, 16], "121": [5, 7, 8, 10], "102": [5, 7, 8], "ey": [5, 7], "656": [5, 6], "47": [5, 6, 15], "red": [5, 7, 8], "486": 5, "blue": [5, 7, 8], "green": 5, "434": 5, "violet": [5, 8], "410": [5, 6], "397": 5, "difficult": [5, 7, 8], "63": [5, 15], "1282": 5, "infti": [5, 6, 7, 8, 9, 10], "820": [5, 6], "geq": [5, 6, 7, 8], "rydberg_wavelength": 5, "kth": 5, "isfinit": 5, "096776e7": 5, "series_nam": 5, "k_val": 5, "inf": [5, 6], "k_v": 5, "h_lambda": 5, "think": [5, 9, 10, 15], "energi": [5, 6, 8, 10], "smaller": [5, 6, 7, 8, 9], "impli": [5, 6, 7, 8, 10, 12], "quark": 5, "oxygen": 5, "pipe": [5, 7], "music": [5, 12], "overton": [5, 7], "maximum": [5, 6, 7, 9, 10, 15], "open": [5, 7, 14, 15, 16], "none": [5, 15], "ve": 5, "campfir": 5, "forg": 5, "stove": 5, "550": 5, "orang": [5, 6, 10], "emitt": [5, 8], "ideal": [5, 7, 10], "onto": [5, 6, 7, 9], "drill": 5, "hole": 5, "hollow": 5, "black": [5, 6, 7], "insul": [5, 6], "enclosur": [5, 7], "distribut": [5, 6, 7, 8, 12], "absorpt": [5, 6, 9], "mathcal": [5, 7], "wien": [5, 7], "lambda_": [5, 6, 7], "898": 5, "vari": [5, 6, 7, 8], "prescrib": 5, "quantifi": [5, 6, 7], "int_0": [5, 8, 9, 10], "josef": 5, "stefan": 5, "1879": 5, "boltzmann": [5, 10], "epsilon": 5, "sigma": [5, 6, 7], "6705": 5, "furnac": 5, "1600": 5, "door": 5, "1873": 5, "1547": 5, "zero_celsiu": 5, "t_wall": 5, "oc": 5, "t_k": 5, "lambda_max": [5, 6], "500": [5, 7, 8], "surf": 5, "5800": 5, "p_": [5, 6, 7], "082": 5, "radi": 5, "flux": [5, 7], "au": [5, 6, 10], "495": 5, "1380": 5, "slightli": [5, 8, 9, 10], "throughout": [5, 6, 8, 15], "1360": 5, "littl": [5, 6, 9, 15], "odot": 5, "5777": 5, "astronomical_unit": 5, "t_surf": 5, "l_max": 5, "1e9": 5, "stef_boltz": 5, "surf_area": 5, "rad": [5, 6], "lmax_sun": 5, "t_sun": 5, "rad_sun": 5, "r_sun": 5, "95700e8": 5, "iau": 5, "en": 5, "wiki": [5, 12], "solar_radiu": 5, "3781e6": 5, "earth_radiu": 5, "flux_au": 5, "40e": 5, "unsuccess": [5, 6], "electromagnet": [5, 6, 7, 8, 9], "equipart": 5, "thermodynam": [5, 10], "assign": [5, 7, 9, 14, 15], "rayleigh": 5, "sir": 5, "proportion": 5, "ckt": 5, "formul": [5, 7, 8], "muster": 5, "nonzero": [5, 7, 8, 10], "deviat": [5, 6, 7, 8, 10], "badli": 5, "paul": [5, 7, 9], "ehrenfest": [5, 9], "dub": 5, "expert": 5, "reject": [5, 6, 7], "statist": [5, 7, 9], "version": [5, 7, 13, 15, 16], "doubt": [5, 12], "1889": 5, "irrevers": 5, "tri": [5, 6, 9], "wasn": 5, "awar": [5, 6], "plank": 5, "sort": [5, 15], "hf": [5, 6, 7, 8, 10], "tot": [5, 8], "ak": 5, "hc": [5, 6, 7, 9], "e_n": [5, 6, 7, 8], "nhf": [5, 7], "6261": [5, 7], "spent": 5, "plan": 5, "fail": [5, 12, 15], "cornerston": 5, "quotient": 5, "trivial": [5, 8, 9, 10], "bracket": [5, 14, 15], "xe": 5, "transcendent": [5, 8], "bisect": [5, 6], "965": 5, "965k": 5, "x_tran": 5, "lam": [5, 9], "wien_const": 5, "func": [5, 15], "6000": 5, "x_max": 5, "wien_disp": 5, "3e": [5, 6, 7, 10], "898e": 5, "39e": 5, "09": [5, 7], "fell": 5, "electrod": 5, "electroscop": 5, "valenc": [5, 6], "escap": [5, 8, 15], "thermion": [5, 6], "secondari": 5, "transfer": [5, 6, 9, 10], "shine": [5, 7], "weakli": 5, "extra": [5, 8, 15], "eject": 5, "photoelectron": 5, "phi": [5, 6, 7, 8], "makeup": [5, 6], "pd": 5, "93": [5, 15], "pt": 5, "na": [5, 9], "nd": 5, "zn": 5, "cu": [5, 10], "ni": 5, "zr": 5, "fe": [5, 8], "pb": 5, "photocathod": 5, "collector": [5, 6], "retard": 5, "impos": [5, 12], "suppli": [5, 6, 12], "ammet": [5, 6], "photocurr": 5, "photoelecton": 5, "filter": 5, "monochromat": [5, 7], "bias": 5, "v_c": 5, "suffici": 5, "satur": 5, "energet": [5, 6], "threshold": 5, "instantli": 5, "leq": [5, 7, 8, 9], "illumin": 5, "zinc": 5, "289": 5, "except": [5, 8, 12], "rudimentari": 5, "1902": 5, "primarili": [5, 7], "philipp": 5, "lenard": 5, "extens": [5, 8], "inexplic": 5, "elaps": 5, "immedi": [5, 8, 14, 15], "97": [5, 15], "cubic": [5, 6, 7, 8], "attain": [5, 9], "hr": 5, "156": 5, "i_src": 5, "instens": 5, "phi_na": 5, "ke_p": 5, "tot_": 5, "na_dens": 5, "968": 5, "na_molar_mass": 5, "990": 5, "na_atoms_vol": 5, "1e6": 5, "d_na": 5, "na_atom_area": 5, "energy_r": 5, "t_req": 5, "54e": 5, "63e": 5, "16e": [5, 8], "intrigu": 5, "english": 5, "spread": [5, 6, 7], "local": [5, 7, 8, 15, 16], "aspect": [5, 7], "deliv": 5, "struck": [5, 6, 7], "overcom": 5, "whatev": 5, "safe": 5, "degrad": 5, "2_": 5, "ev_o": 5, "1st": 5, "2nd": [5, 10, 15], "collect": [5, 6, 8, 12, 15], "hf_o": 5, "intercept": 5, "disprov": 5, "skeptic": [5, 7], "iii": [5, 7, 8, 12], "928": 5, "typo": 5, "na_lam": 5, "arrai": [5, 7, 15], "4339": 5, "4047": 5, "3650": [5, 10], "3126": 5, "2535": 5, "na_volt": 5, "103": 5, "058": 5, "x_coord": 5, "y_coord": 5, "1e14": 5, "polyfit": 5, "poly1d": 5, "65e": [5, 7], "lithium": 5, "626": [5, 8], "phi_li": 5, "e_400": 5, "400e": 5, "97e": 5, "mv_": [5, 9, 10], "209": 5, "portion": [5, 8, 12, 15], "ke_e": [5, 7], "e_phot": 5, "f_phot": 5, "l_phot": 5, "50e": 5, "43e": 5, "09e": [5, 7], "ye": [5, 15], "maintain": 5, "pictur": [5, 6, 9, 15], "bremsstrahlung": 5, "brake": 5, "e_1": [5, 6, 7, 8], "e_f": 5, "e_i": 5, "sketch": 5, "tungsten": 5, "filament": [5, 6], "focus": [5, 10], "gtrsim": 5, "content": [5, 12, 15, 16], "radiolog": 5, "diagnos": 5, "flaw": [5, 6], "weld": 5, "cast": [5, 15], "crystal": [5, 7], "strongli": [5, 7, 9], "molybdenum": 5, "chromium": 5, "min": [5, 6, 7, 8], "hf_": 5, "duan": 5, "hunt": 5, "kv": 5, "kev": [5, 7], "ulrei": 5, "1918": 5, "curv": [5, 7, 8, 9, 10], "lam_min": 5, "035": 5, "wake": 5, "boat": 5, "reradi": 5, "arthur": [5, 15], "1923": 5, "grai": [5, 8, 10], "phil": 5, "mag": 5, "611": 5, "1913": [5, 6], "unmodifi": 5, "backward": [5, 6], "review": 5, "treat": [5, 6, 7, 15], "relativist": [5, 7], "p_e": [5, 7], "recoil": [5, 6], "m_ec": [5, 7], "hff": 5, "check": [5, 6, 8, 9, 10, 15], "071": 5, "compoton": 5, "lambda_c": 5, "426": [5, 8], "newli": 5, "tightli": [5, 6], "correspondingli": 5, "1927": [5, 7], "050": 5, "gold": [5, 6, 7], "62": [5, 15], "largest": [5, 6, 8], "e_x": 5, "inner": [5, 6], "longest": [5, 6, 10], "2h": 5, "00243": 5, "055": 5, "phot_": 5, "l_x": [5, 9], "l_prime": 5, "e_xp": 5, "48e": 5, "485e": 5, "62e": 5, "26e": 5, "51e": [5, 6], "19e": 5, "forbidden": [5, 8, 9], "versa": 5, "violat": [5, 8, 9, 12], "511": 5, "lightest": 5, "1932": [5, 6], "carl": 5, "anderson": 5, "positron": 5, "dirac": [5, 7, 9], "miss": [5, 6, 15], "massiv": [5, 6, 7], "022": 5, "domin": [5, 8], "theta_": [5, 6], "2m_ec": 5, "qquad": [5, 6, 8, 9], "fo": [5, 6], "doom": 5, "proxim": 5, "drawn": 5, "atomlik": 5, "positronium": 5, "binari": 5, "2m_e": [5, 6, 7, 8], "hf_1": 5, "hf_2": 5, "f_1": 5, "f_2": 5, "2hf": 5, "draw": [5, 7, 15], "buoyant": 5, "droplet": [5, 6], "freeli": 5, "smallest": [5, 6, 7, 8, 15], "293": [5, 10], "2500": 5, "9000": 5, "basketbal": 5, "human": [5, 15], "halv": 5, "270": 5, "dental": 5, "machin": [5, 15], "oper": [5, 8], "theori": [6, 7, 8, 9, 12], "dat": 6, "featureless": 6, "har": 6, "address": 6, "search": [6, 15], "piec": 6, "belong": 6, "ancient": 6, "fire": 6, "70": [6, 15], "electrolysi": 6, "conductor": [6, 8], "hint": [6, 15], "indirect": [6, 12], "unravel": 6, "central": [6, 7, 9, 10], "question": [6, 7, 10], "arrang": [6, 7, 12], "wherein": 6, "uniformli": 6, "embed": 6, "background": [6, 16], "liken": 6, "raisin": 6, "plum": 6, "pud": 6, "radiat": [6, 7, 9], "correl": 6, "imposs": [6, 7, 9], "ernest": 6, "project": [6, 7], "thin": 6, "assist": [6, 7], "geiger": 6, "conceiv": 6, "marsden": 6, "surprisingli": 6, "leaf": 6, "greatli": 6, "latest": 6, "calib": 6, "rifl": 6, "bullet": [6, 14], "box": [6, 8], "homogen": 6, "ricochet": 6, "foil": 6, "v_e": 6, "targ": 6, "2m_": 6, "7000": 6, "hardli": 6, "2v_": [6, 10], "2m_ev_": 6, "016": 6, "rangle_": 6, "ia": [6, 9], "gieger": 6, "197": 6, "occupi": [6, 9], "lattic": [6, 7, 8], "2300": 6, "79": [6, 15], "empti": [6, 9, 15], "core": [6, 9], "z_1e": 6, "z_2e": 6, "impact": 6, "closest": 6, "projectil": 6, "hyperbol": [6, 8], "besid": 6, "undeflect": [6, 9], "equiv": [6, 8, 10, 15], "mv_ob": 6, "instantan": [6, 7, 10], "impuls": 6, "appreci": 6, "_f": 6, "_i": [6, 9], "p_f": 6, "p_i": 6, "isoscel": 6, "2mv_o": [6, 8], "z_1": 6, "z_2": 6, "_r": 6, "mr": 6, "mv_o": 6, "v_ob": 6, "int_": [6, 7, 8, 9, 10], "phi_i": 6, "phi_f": 6, "cot": 6, "select": 6, "b_o": 6, "theta_o": 6, "circl": [6, 9], "nt": 6, "nta": 6, "n_m": 6, "m_g": 6, "n_": [6, 10], "ta": 6, "z_1z_2": 6, "epsilon_0": 6, "n_au": 6, "9e28": 6, "t_au": 6, "k_alpha": 6, "7e6": 6, "z_au": 6, "z_he": 6, "theta_alpha": 6, "f_au": 6, "db": [6, 9], "df": [6, 8, 10], "eq": [6, 9, 10], "csc": 6, "n_i": [6, 8], "ring": [6, 7], "width": [6, 7, 8, 9, 15], "da": [6, 10], "4th": 6, "basi": [6, 10, 12], "r_alpha": 6, "01": [6, 7, 8, 9, 10, 15], "ntheta_ni": 6, "ntheta_ni_mm2": 6, "15e": [6, 8], "verif": [6, 8], "planetari": [6, 9], "resembl": 6, "circular": [6, 7, 9], "centripet": 6, "a_r": 6, "tangenti": 6, "m_ev": 6, "justifi": [6, 7], "treatment": [6, 7], "whether": [6, 7, 8, 9, 12, 15], "r_hyd": 6, "25e": 6, "1836": 6, "crash": 6, "shortli": [6, 7], "niel": 6, "meet": 6, "ws": 6, "somehow": 6, "acquaint": 6, "govern": [6, 8, 9], "blackbodi": 6, "impress": 6, "wonder": 6, "laid": 6, "revolv": [6, 9], "fiction": 6, "intuit": 6, "analog": [6, 8, 9, 10], "physic": [6, 8, 15, 16], "1915": [6, 7], "conjunct": [6, 15], "e_2": [6, 7, 8, 9], "dynam": [6, 10], "nhf_": 6, "orb": [6, 9], "equival": [6, 7, 12, 13, 15], "hbar": [6, 7, 8, 9], "pronounc": 6, "bar": [6, 8, 10], "self": [6, 15], "hardest": 6, "critic": 6, "m_evr": 6, "m_er": 6, "r_n": 6, "a_o": [6, 7, 9], "53": [6, 15], "2r_1": 6, "2a_o": [6, 7, 9], "suspect": 6, "shell": [6, 9, 10, 15], "64c": 6, "097373": 6, "absent": 6, "broad": [6, 7, 15], "displai": [6, 7, 8, 9, 12, 13], "v_n": 6, "v_1": [6, 8], "fine": [6, 9, 15], "137": 6, "shortest": 6, "denomin": [6, 8], "0974": 6, "335": 6, "875": 6, "219": 6, "203": 6, "rydberg_eqn_bohr": 6, "r_infti": 6, "wave_num_max": 6, "wave_num_min": 6, "infin": [6, 8], "lambda_min": 6, "334e": 6, "219e": 6, "troubl": 6, "unimport": 6, "nearest": 6, "cascad": 6, "2n": 6, "2e_o": 6, "hn": 6, "r_e": 6, "analysi": [6, 7], "mu_e": 6, "m_em": 6, "999456": 6, "athough": 6, "h_": 6, "deuterium": 6, "tritium": 6, "007276": 6, "013553": 6, "triton": 6, "015500": 6, "0005485799": 6, "r_h": 6, "99946r_": 6, "r_d": 6, "99973r_": 6, "r_t": 6, "99982r_": 6, "2r": [6, 9], "wer": 6, "m_t": 6, "m_nucleu": 6, "l_alpha": 6, "5f": 6, "h_alpha": 6, "99946": 6, "99973": 6, "99982": 6, "ze": 6, "spectrograph": 6, "arnold": 6, "sommerfeld": [6, 7], "adapt": [6, 12, 16], "hypothes": 6, "ot": 6, "split": [6, 8, 9, 15], "stark": [6, 8], "broaden": [6, 9], "successfulli": [6, 8], "denigr": 6, "tha": 6, "stronger": [6, 9], "radii": 6, "roman": 6, "histor": 6, "heavi": 6, "dislodg": 6, "vacanc": 6, "descend": [6, 9], "full": [6, 7, 8, 9, 12, 13], "k_": [6, 7, 8, 10], "lab": 6, "european": [6, 12, 15], "moselei": 6, "engag": 6, "catalogu": 6, "cr": 6, "1914": 6, "discuss": [6, 7], "copenhagen": 6, "mention": 6, "extent": [6, 9, 12], "lambda_k": 6, "reorder": 6, "tabul": 6, "aluminum": [6, 7], "promethium": 6, "1940": 6, "firmer": 6, "foot": 6, "clarifi": 6, "l_": 6, "lambda_l": 6, "z_": 6, "eff": 6, "proce": 6, "crz_": 6, "rewrit": [6, 7, 9, 10], "rz_": 6, "4n": 6, "spectroscop": [6, 9], "franck": 6, "hot": 6, "mesh": 6, "regist": 6, "electromet": 6, "voltmet": 6, "instruct": [6, 10, 15], "assembl": 6, "hg": 6, "vapor": 6, "sudden": 6, "suddenli": 6, "ast": 6, "teh": [6, 9], "onset": 6, "arbitrari": [6, 9], "versu": 6, "graph": [6, 15], "context": [6, 12], "88": [6, 15], "inelast": 6, "promot": [6, 9], "sharpli": 6, "discer": 6, "revolut": [6, 9], "potassium": 6, "exercis": [6, 8, 12, 17, 18], "magnesium": 6, "barkla": 7, "exhibit": [7, 8], "von": 7, "laue": 7, "furthermor": 7, "thew": 7, "apertur": [7, 8], "obstruct": 7, "physicsopenlab": 7, "nacl": 7, "fcc": 7, "walter": 7, "friedrich": 7, "knip": 7, "solid": [7, 8, 10], "bragg": 7, "son": 7, "lawrenc": 7, "exploit": 7, "spot": 7, "dot": [7, 8, 14], "ste": 7, "Is": 7, "asymmetr": 7, "chare": 7, "dipol": [7, 9], "interf": 7, "rock": 7, "simplif": 7, "adjac": 7, "outgo": 7, "2d": [7, 15], "interatom": 7, "terminolog": [7, 9], "dash": [7, 8], "interplanar": 7, "father": 7, "orient": [7, 9], "su": 7, "dna": 7, "powder": 7, "xrd": 7, "crystallographi": 7, "282": 7, "varieti": 7, "noncub": 7, "098": 7, "calibr": 7, "1920": [7, 9], "crystallin": 7, "princ": 7, "debrogli": 7, "vers": 7, "encourag": [7, 12, 13], "prohibit": [7, 8], "doctor": 7, "thesi": 7, "pari": 7, "arous": 7, "wavelik": [7, 8], "virtual": [7, 10], "tenni": 7, "057": 7, "2mk": 7, "2m_ek": 7, "9": [7, 8, 9, 10, 12, 15], "109": [7, 8], "2398": 7, "debroglie_wav": 7, "m_tb": 7, "v_tb": 7, "me_ev": 7, "k_ev": [7, 10], "k_j": [7, 10], "l_tb": 7, "l_e": 7, "73e": 7, "circumfer": 7, "mvr": [7, 9], "rp": 7, "nh": 7, "clinton": 7, "davisson": 7, "lester": 7, "germer": 7, "bottl": [7, 15], "explod": 7, "nickel": 7, "accid": 7, "breakag": 7, "oxid": 7, "repair": 7, "variat": 7, "polycrystallin": 7, "trigonometr": 7, "215": 7, "165": 7, "transmiss": [7, 8], "celluloid": 7, "platinum": 7, "1937": 7, "kinetic_energi": 7, "germeer": 7, "85e": 7, "cold": 7, "2m_n": 7, "3m_nkt": 7, "m_n": 7, "675": 7, "381": 7, "515": 7, "145": [7, 10], "287": 7, "suitabl": [7, 8], "supercold": 7, "extran": 7, "debroglie_wave_ga": 7, "t_room": 7, "l_room": 7, "t_cold": 7, "l_cold": 7, "452e": 7, "867e": 7, "heavili": 7, "sinusoid": [7, 8], "psi": [7, 8, 9, 10], "kx": [7, 8], "usag": 7, "spectroscopist": 7, "const": 7, "rcparam": [7, 8], "updat": [7, 8], "mathtext": [7, 8], "fontset": [7, 8], "sine_wav": 7, "sine": [7, 8, 9], "l_wave": 7, "v_wave": 7, "x_wave": 7, "psi_o": [7, 8], "psi_t": 7, "ncol": [7, 8, 10], "quarter": 7, "button": [7, 16], "harmon": 7, "crest": 7, "satisfi": [7, 8, 9, 12], "beat": 7, "psi_a": [7, 8], "psi_b": [7, 8], "overal": [7, 10], "bottom": [7, 8], "panel": 7, "envelop": 7, "ticker": 7, "maxnloc": 7, "offset": 7, "ax11": [7, 8], "321": 7, "ax12": [7, 8], "322": 7, "ax21": [7, 8], "323": 7, "ax22": [7, 8], "324": 7, "ax31": [7, 8], "325": 7, "ax32": [7, 8], "326": 7, "ax_list": [7, 10], "theta_a": 7, "theta_b": 7, "amp_a": 7, "amp_b": 7, "label_a": 7, "label_b": 7, "ph_off": 7, "psi_ab": 7, "k_diff": 7, "psi_beat": 7, "set_xticklabel": [7, 8], "yaxi": 7, "set_major_loc": 7, "bbox_to_anchor": [7, 8], "frameon": [7, 8], "subplots_adjust": [7, 10], "hspace": 7, "wspace": [7, 10], "omega_1": 7, "omega_2": 7, "psi_1": [7, 8], "psi_2": [7, 8], "k_1x": [7, 8], "k_2x": 7, "omega_1t": 7, "cosin": [7, 8, 9], "2a": [7, 8], "av": [7, 8], "omega_": 7, "u_": 7, "confin": [7, 8, 9], "fourier": [7, 10], "k_ix": 7, "omega_i": [7, 10], "gaussian": [7, 8], "easi": [7, 14, 15], "k_ox": 7, "k_o": 7, "exponenti": [7, 8, 9, 10, 15], "a_k": 7, "delta_k": 7, "i_k": 7, "psi_gauss": 7, "psi_wav": 7, "psi_x": [7, 8], "delta_x": [7, 8], "std": 7, "ax1": [7, 8, 10], "ax2": [7, 8, 10], "122": [7, 8, 10], "axvlin": [7, 8, 10], "linestyl": [7, 8, 9, 10], "x_o": [7, 8], "dk": 7, "dp": 7, "2pc": 7, "kv_": 7, "dw": 7, "dv_": 7, "nondispers": 7, "plai": [7, 10], "deep": [7, 8], "throw": 7, "pond": 7, "compton": 7, "charact": [7, 8, 13, 14, 15], "patter": 7, "minima": 7, "emerg": [7, 8], "contradict": 7, "christma": 7, "lectur": [7, 17, 18], "1961": 7, "clau": 7, "j\u00f6nsson": 7, "electrolyt": 7, "deposit": 7, "polym": 7, "strip": 7, "theta_1": 7, "y_1": 7, "68": [7, 15], "937": 7, "nake": 7, "magnifi": 7, "lens": 7, "d_slit": 7, "n_1": [7, 8], "d_screen": 7, "arcsin": 7, "32e": 7, "36e": 7, "68e": 7, "37e": 7, "destroi": 7, "devis": 7, "big": [7, 15], "complementari": 7, "complementar": 7, "readi": 7, "trade": 7, "dictat": 7, "werner": 7, "heisenberg": [7, 8, 10], "p_z": 7, "consequ": 7, "uncertain": 7, "exact": [7, 8, 15], "fenc": 7, "0546": 7, "96": [7, 12, 15], "004c": 7, "964e": 7, "004": 7, "45e": 7, "logic": [7, 15], "conjug": [7, 8, 9], "intrins": 7, "instrument": 7, "mew": 7, "lifetim": 7, "manag": [7, 15], "irregular": 7, "delta_t": 7, "l_ph": 7, "delta_": 7, "f_ph": 7, "delta_f": 7, "f_ratio": 7, "27e": 7, "29e": [7, 8], "96e": 7, "ce": [7, 8, 10], "file": [7, 13, 15], "propto": [7, 8], "likelihood": 7, "instant": 7, "somewher": [7, 8], "born": 7, "1926": 7, "erwin": 7, "schr\u00f6dinger": 7, "1928": 7, "mainstream": 7, "unveil": 7, "\u00fcber": 7, "den": 7, "anschaulichen": 7, "inhalt": 7, "der": 7, "quantentheoretischen": 7, "kinematik": 7, "mechanik": 7, "denmark": 7, "pertain": 7, "school": 7, "wolfgang": [7, 9], "pauli": [7, 9], "argument": [7, 8, 9, 15], "choos": [7, 8, 9, 12, 15], "collaps": 7, "nondeterminist": 7, "chao": 7, "vagu": 7, "nonprobabilist": 7, "bother": 7, "relianc": 7, "god": [7, 10], "dice": [7, 10], "paradox": 7, "refut": 7, "cat": 7, "1935": 7, "live": [7, 10, 14, 16], "di": 7, "podolski": 7, "rosen": 7, "epr": 7, "bell": 7, "altern": [7, 10], "hugh": 7, "everett": 7, "graduat": 7, "1957": 7, "invok": 7, "favor": [7, 8], "trap": [7, 8], "vanish": 7, "boundari": [7, 8, 9], "reson": [7, 8], "ldot": [7, 8, 9], "lambda_n": 7, "k_n": [7, 8], "8m": 7, "psi_n": [7, 8], "x_rng": [7, 8], "axhlin": [7, 8, 9], "psi_": [7, 8, 9], "horizontalalign": 7, "fontweight": 7, "bold": [7, 13, 14], "p_n": 7, "p_1": 7, "aros": 7, "8m_e": 7, "e_3": [7, 9], "338": 7, "pib_en": 7, "ell_": 7, "02e": 7, "42e": 7, "thrown": 7, "slinki": 7, "0030": 7, "6x": 7, "300t": 7, "7x": 7, "250t": 7, "i_o": [7, 10], "de": [8, 9, 10], "brogli": 8, "peter": 8, "deby": 8, "strictli": 8, "sens": [8, 10, 15], "mita": 8, "2021": 8, "pde": 8, "nabla": [8, 9], "introduct": [8, 9, 17, 18], "restrict": [8, 9, 12], "compris": 8, "ae": [8, 9], "ik": 8, "ka": 8, "negat": 8, "uniti": [8, 9, 10], "myst_nb": [8, 9], "glue": [8, 9], "psi_alpha": 8, "global": [8, 15], "norm_a": 8, "psi_al": 8, "fill_between": [8, 10], "set_yticklabel": [8, 9, 10], "psi_fig": 8, "symmetr": [8, 10], "2x": [8, 13], "biggr": 8, "rvert_0": 8, "p_a": 8, "432": 8, "p_b": 8, "rvert_": 8, "059": 8, "anywher": [8, 12], "everywher": [8, 15], "circumst": 8, "explicitli": 8, "sch\u00f6dinger": 8, "ordinari": [8, 9], "bt": 8, "ibt": 8, "iet": 8, "2me": 8, "ikx": 8, "inher": [8, 10], "epxect": 8, "forth": 8, "x_i": 8, "xp": 8, "procedur": [8, 9], "coffe": 8, "twice": 8, "hard": 8, "explor": 8, "kl": 8, "yield": [8, 9, 10], "wea": 8, "2me_n": 8, "2ml": 8, "psi_0": 8, "bohr": [8, 9, 10], "dv": [8, 10, 13], "2ax": 8, "32l": 8, "sympi": 8, "57l": 8, "diff": 8, "var": 8, "exp_x": 8, "exp_x2": 8, "exp_p": 8, "exp_p2": 8, "arg": 8, "realist": 8, "constraint": [8, 9], "lim_": 8, "psi_i": 8, "v_ox": 8, "kc": 8, "z_o": 8, "fsw": 8, "fsw_prime": 8, "griffith": 8, "z1": 8, "z_guess": 8, "z_root": 8, "append": [8, 15], "fsw_fig": 8, "graphic": 8, "minim": [8, 9], "fsw_wave_func": 8, "calc_k": 8, "calc_alpha": 8, "region_i": 8, "region_ii": 8, "logical_and": 8, "region_iii": 8, "len": [8, 15], "calc_en": 8, "z_n": 8, "calc_coeff": 8, "a_n": 8, "term_1": 8, "term_2": 8, "c_n": 8, "v_pot": 8, "fsw_func_fig": 8, "mark": [8, 12], "remark": 8, "joint": 8, "smoothli": 8, "edg": 8, "depth": 8, "exceedingli": 8, "_x": [8, 10], "_y": [8, 10], "_z": [8, 10], "laplacian": 8, "usual": [8, 9], "shorthand": 8, "notat": [8, 9, 13, 15], "l_1": 8, "l_2": 8, "l_3": 8, "cube": [8, 15], "k_2y": 8, "k_3z": 8, "k_i": 8, "k_3": 8, "k_1l_1": 8, "n_3": 8, "k_1a": 8, "211": [8, 9], "ml": 8, "112": 8, "degener": [8, 9], "degeneraci": [8, 9], "eccentr": [8, 9], "perturb": 8, "therebi": [8, 15], "sho": 8, "kappa": [8, 10], "restor": 8, "hook": 8, "shm": 8, "diatom": [8, 10], "taylor": 8, "v_2": 8, "v_i": 8, "addition": [8, 9, 15], "hermit": 8, "sho_potenti": 8, "sho_wave_func": 8, "sho_fig": 8, "virial": 8, "scope": [8, 10, 12], "polynomi": [8, 9], "h_n": 8, "psi_3": 8, "3x": 8, "elif": [8, 15], "421": 8, "422": 8, "423": 8, "424": 8, "425": 8, "ax41": 8, "427": 8, "ax42": 8, "428": 8, "ax_psi": 8, "ax_prob": 8, "sho_wav": 8, "oscillatori": 8, "damp": 8, "heisenbergi": 8, "e_col": 8, "x_n": 8, "x_p": 8, "sho_energi": 8, "greatest": 8, "contrari": 8, "cdot1": 8, "5pt": 8, "odd": [8, 9, 10], "h_o": 8, "_o": 8, "invert": 8, "vallei": 8, "nasa": 8, "grace": 8, "satellit": 8, "bend": 8, "transmit": 8, "gg": 8, "ik_ix": 8, "ik_": 8, "ge": 8, "ik_il": 8, "k_iae": 8, "k_ibe": 8, "k_ife": 8, "tediou": 8, "odeint": 8, "simpson": [8, 10], "fsolv": 8, "ksqr": 8, "k_squar": 8, "psi_func": 8, "coeff": 8, "k_x": [8, 10], "k_ii": 8, "x_coeff": 8, "psi_coeff": 8, "psi_iia": 8, "psi_iib": 8, "psi_iii": 8, "advance_psi": 8, "xm": 8, "numerov": 8, "k_xm": 8, "k_xp": 8, "psi_xm": 8, "psi_next": 8, "ymax": 8, "1e2": 8, "v_rng": [8, 10], "x_bound": 8, "ones": [8, 9, 15], "rng": 8, "opt": 8, "psi_coeff_left": 8, "full_idx": 8, "barrier_potenti": 8, "lot": [8, 15], "sinh": 8, "substanti": [8, 12], "semiconductor": 8, "tall": 8, "get_kappa": 8, "transmission_coeff": 8, "t_inv": 8, "l_bar": 8, "e_el": 8, "v_bar": 8, "elsewher": 8, "heavier": [8, 9], "wolfram": 8, "2_n": 8, "unnorm": 8, "fg": 9, "rg": 9, "rf": 9, "rfg": 9, "im_": 9, "laguerr": 9, "edmond": 9, "dr": [9, 10], "ra_o": 9, "adrien": 9, "mari": [9, 15], "legendr": 9, "3a_o": 9, "customari": 9, "y_": 9, "mp": [9, 10], "2i": 9, "105": 9, "3i": 9, "chose": 9, "minu": 9, "discard": 9, "24a": 9, "5_o": 9, "24a_o": 9, "semimajor": 9, "disagre": 9, "semiclass": 9, "choic": [9, 14], "harp": 9, "rincip": 9, "iffus": 9, "undament": 9, "alphabet": 9, "2p": 9, "l_z": 9, "arrow_len": 9, "ylabel": 9, "aw": 9, "hw": 9, "hl": 9, "m_idx": 9, "arrow": 9, "head_width": 9, "head_length": 9, "length_includes_head": 9, "lz_fig": 9, "Will": 9, "l_y": 9, "sum_": 9, "summat": 9, "nine": 9, "anomal": 9, "rough": 9, "circul": 9, "loop": [9, 15], "moment": 9, "dq": 9, "erv": 9, "el": 9, "tend": 9, "v_b": 9, "child": 9, "precess": 9, "customarili": 9, "mu_z": 9, "mu_b": 9, "magneton": 9, "otto": 9, "stern": 9, "gerlach": 9, "inhomogen": 9, "south": 9, "pole": 9, "north": 9, "torqur": 9, "f_z": 9, "dv_b": 9, "samuel": 9, "goudsmit": 9, "uhlenbeck": 9, "react": 9, "2s": [9, 15], "_s": 9, "incorpor": 9, "gyromagnet": 9, "g_": 9, "insignific": 9, "adequ": 9, "capit": [9, 15], "jeff": 9, "cronk": 9, "gonzaga": 9, "possess": 9, "nu": 9, "transiton": 9, "chapter": [9, 15, 16, 17, 18], "e_4": 9, "2g": 9, "3p": 9, "flip": 9, "interstellar": 9, "attribut": [12, 16, 17, 18], "creativ": [12, 16, 17, 18], "corpor": 12, "firm": [10, 12], "legal": 12, "servic": 12, "advic": 12, "public": 12, "licens": [12, 16, 17, 18], "lawyer": 12, "client": 12, "warranti": 12, "disclaim": [12, 15], "liabil": 12, "damag": 12, "fullest": 12, "creator": [12, 16], "holder": 12, "authorship": 12, "copyright": 12, "exhaust": 12, "licensor": 12, "intend": 12, "irrevoc": 12, "secur": 12, "reus": 12, "cc": [12, 16], "creativecommon": 12, "considerations_for_licensor": 12, "grant": 12, "request": [12, 15], "more_consider": 12, "considerations_for_license": 12, "benefit": 12, "1": [12, 14, 15], "record": 12, "synch": 12, "broadcast": 12, "sui": 12, "generi": 12, "databas": 12, "categor": [12, 15], "2": [10, 12, 14, 15], "technolog": 12, "circumv": 12, "fulfil": 12, "oblig": 12, "articl": 12, "wipo": 12, "treati": 12, "decemb": 12, "1996": 12, "fair": 12, "artist": 12, "literari": 12, "entiti": 12, "reproduct": 12, "dissemin": 12, "commun": [12, 15], "member": [12, 15], "ec": 12, "parliament": 12, "council": 12, "march": 12, "protect": 12, "amend": 12, "herebi": 12, "worldwid": 12, "royalti": 12, "sublicens": 12, "exclus": [9, 12], "compli": 12, "3": [10, 12, 15, 17, 18], "6": [10, 12, 15], "format": [12, 13, 14, 15, 16], "technic": 12, "hereaft": 12, "waiv": 12, "assert": 12, "forbid": [9, 12], "5": [10, 12, 15], "recipi": 12, "offer": 12, "automat": [12, 15], "endors": 12, "constru": 12, "sponsor": 12, "offici": 12, "statu": 12, "moral": 12, "privaci": 12, "person": [12, 15], "patent": 12, "trademark": 12, "voluntari": 12, "waivabl": 12, "statutori": 12, "compulsori": 12, "expressli": 12, "retain": 12, "pseudonym": 12, "ii": 12, "iv": 12, "uri": 12, "hyperlink": 12, "resourc": 12, "supplement": 12, "undertaken": 12, "BY": [12, 16], "THE": 12, "TO": 12, "AS": 12, "IS": 12, "AND": 12, "NO": [10, 12], "represent": 12, "OR": 12, "OF": 12, "merchant": 12, "FOR": 12, "infring": 12, "latent": 12, "defect": 12, "NOT": 12, "IN": 12, "WILL": 12, "BE": 12, "liabl": 12, "ON": 12, "incident": 12, "consequenti": 12, "punit": 12, "exemplari": 12, "cost": [12, 15], "expens": 12, "IF": 12, "advis": 12, "SUCH": 12, "shall": 12, "waiver": 12, "reinstat": 12, "date": 12, "cure": 12, "seek": 12, "remedi": 12, "herein": 12, "lawfulli": 12, "deem": 12, "unenforc": 12, "reform": 12, "enforc": 12, "consent": 12, "privileg": 12, "immun": 12, "jurisdict": 12, "parti": 12, "notwithstand": 12, "elect": 12, "instanc": [12, 15], "dedic": 12, "domain": 12, "cc0": 12, "polici": 12, "logo": 12, "unauthor": 12, "paragraph": 12, "jupyt": [13, 14, 15, 16], "notebook": [13, 14, 15, 16], "submit": 13, "ipynb": 13, "compil": [13, 14, 15], "pdf": [13, 14], "filenam": 13, "submiss": 13, "phys2700_chpt": 13, "_lastnam": 13, "cell": [13, 14, 15, 16], "markdown": [13, 16], "preambl": [13, 16], "math": [13, 15], "latex": 13, "verbatim": 13, "copi": [13, 15, 16], "recreat": 13, "templat": [13, 15], "slide": 13, "lightweight": 14, "markup": [14, 16], "editor": 14, "fly": [14, 15], "wsiwyg": 14, "implement": [14, 15, 17, 18], "websit": 14, "document": [14, 16], "book": 14, "alongsid": 14, "mathematica": [14, 15], "matlab": 14, "linux": 14, "mac": 14, "harmoni": 14, "mx": 14, "class": [14, 15], "homework": 14, "webpag": 14, "phrase": 14, "sublevel": 14, "render": 14, "blank": [14, 15], "ensur": 14, "compat": 14, "tag": 14, "br": 14, "indent": [14, 15], "tab": [14, 15], "nbsp": 14, "mimic": 14, "trail": [14, 15], "broadest": 14, "emphasi": 14, "pop": 14, "ital": 14, "tripl": 14, "underscor": [14, 15], "emphas": 14, "nest": 14, "blockqout": 14, "subsect": 14, "item": [14, 15], "pick": 14, "enclos": 14, "url": 14, "github": [14, 16], "io": 14, "modernastro": 14, "home": 14, "output": 14, "undergrad": 14, "depart": 14, "saint": 14, "colleg": 14, "quick": 14, "friendli": 15, "readabl": 15, "fortran": 15, "effici": 15, "onc": 15, "luckili": 15, "hardwar": 15, "softwar": 15, "os": 15, "advantag": 15, "tweak": 15, "debug": 15, "store": 15, "memori": 15, "fledg": 15, "arithmet": 15, "task": 15, "4294967296": 15, "decim": 15, "rais": 15, "ambigu": 15, "expon": [10, 15], "programm": 15, "uncommon": 15, "comeback": 15, "month": 15, "unkind": 15, "mayb": 15, "yourself": 15, "hashtag": 15, "impract": [10, 15], "apostroph": 15, "googl": [15, 16], "colab": [15, 16], "king": 15, "britain": 15, "quest": 15, "holi": 15, "grail": 15, "airspe": 15, "laden": 15, "swallow": 15, "african": 15, "str": 15, "prompt": 15, "datatyp": 15, "ndarrai": 15, "probe": 15, "borrow": 15, "syntax": 15, "141592653589793": 15, "referenc": 15, "default": 15, "4f": [10, 15], "1416": 15, "14159265e": 15, "xd": 15, "yf": 15, "pre": 15, "alloc": 15, "xs": 15, "banana": 15, "realpython": 15, "groceri": 15, "bag": 15, "track": 15, "147": 15, "483": 15, "647": 15, "2j": 15, "tupl": 15, "immut": 15, "mutabl": 15, "newlin": 15, "dictionari": 15, "curli": 15, "header": 15, "index": 15, "clees": 15, "palin": 15, "idl": 15, "chapman": 15, "jone": 15, "gilliam": 15, "starti": 15, "slice": 15, "atkinson": 15, "typeerror": 15, "traceback": 15, "recent": 15, "row": 15, "clumsi": 15, "load": 15, "comma": 15, "tradit": 15, "0th": 15, "beforehand": 15, "longlist": 15, "overwrit": 15, "57079633": 15, "newvalu": 15, "handi": 15, "valuedata": 15, "stringdata": 15, "tommi": 15, "dick": 15, "harri": 15, "salli": 15, "nina": 15, "new_valuedata": 15, "mix": 15, "increment": 15, "49": [10, 15], "72": 15, "73": 15, "84": 15, "86": 15, "87": 15, "94": 15, "flexibl": 15, "np_axi": 15, "new_axi": 15, "unexpect": 15, "4000000000000001": 15, "7999999999999998": 15, "concaten": 15, "join": 15, "quirk": 15, "grade": 15, "floor": 15, "modulo": 15, "remaind": 15, "string_a": 15, "jack": 15, "jill": 15, "string_b": 15, "hill": 15, "list_a": 15, "list_b": 15, "shortcut": 15, "counter": 15, "harder": 15, "cautious": 15, "java": 15, "soft": 15, "statement": [15, 16], "hungri": 15, "eat": 15, "boolean": 15, "0l": 15, "aren": 15, "Not": 15, "congruent": 15, "bug": 15, "monti": 15, "impostor": 15, "stdinnotimplementederror": 15, "anaconda3": 15, "lib": 15, "python3": 15, "packag": [15, 16], "ipykernel": 15, "kernelbas": 15, "py": 15, "1201": 15, "kernel": 15, "raw_input": 15, "1199": 15, "_allow_stdin": 15, "1200": 15, "msg": 15, "frontend": 15, "1202": 15, "_input_request": 15, "1203": 15, "1204": 15, "_parent_id": 15, "1205": 15, "get_par": 15, "1206": 15, "password": 15, "1207": 15, "droid": 15, "colon": 15, "signifi": 15, "grab": 15, "superior": 15, "jedi": 15, "mind": 15, "execut": [15, 16], "trait": 15, "met": 15, "shampoo": 15, "hair": 15, "lather": 15, "rins": 15, "profit": 15, "manufactur": 15, "clean": 15, "keyword": 15, "exclud": 15, "delin": 15, "divisor": 15, "save": 15, "inherit": 15, "factori": 15, "anytim": 15, "7s": 15, "7d": 15, "120": 15, "720": 15, "5040": 15, "40320": 15, "362880": 15, "boss": 15, "deleg": 15, "morn": 15, "getup": 15, "getdress": 15, "eatbreakfast": 15, "spam": 15, "egg": 15, "bacon": 15, "baked_bean": 15, "continuesleep": 15, "entail": 15, "buri": 15, "modular": 15, "funciton": [10, 15], "sq": 15, "puttin": 15, "gthe": 15, "answer2everyth": 15, "road": 15, "whenev": 15, "older": 15, "stai": [9, 15], "occas": 15, "fn": 15, "nameerror": 15, "pass_trig": 15, "abil": 15, "plot_trig": 15, "xstep": 15, "xval": 15, "trig_func": 15, "trig": 15, "49999999999999994": 15, "8660254037844387": 15, "5773502691896257": 15, "emploi": 15, "drive": 15, "silli": 15, "brit": 15, "magic": 15, "pool": 15, "anyon": 16, "snippet": 16, "familiar": 16, "meant": 16, "runtim": 16, "panda": 16, "curios": 16, "publicli": 16, "repositori": 16, "evolv": 16, "collabor": 16, "welcom": 16, "billi": 16, "quarl": 16, "valdosta": [17, 18], "summari": [17, 18], "textbook": [17, 18], "accompani": 9, "accumul": 9, "subshel": 9, "eclus": 9, "aka": 9, "fermion": 9, "elecron": 9, "mainli": 9, "1s": 9, "doublet": 9, "j_z": 9, "s_z": 9, "m_j": 9, "momenta": 9, "nl_j": 9, "uppercas": [9, 10], "sl": 9, "2p_": 9, "j_x": 9, "j_y": 9, "b_": 9, "ext": 9, "002": 9, "589": 9, "plug": 9, "1240": 9, "experment": 9, "dlam": 9, "inert": 9, "ruls": 9, "hund": 9, "additon": 9, "momemnta": 9, "_1": 9, "_2": 9, "russel": 9, "saunder": 9, "replust": 9, "nuclu": 9, "antiparallel": 9, "fewer": 9, "l_j": 9, "singlet": 9, "triplet": 9, "predomin": 9, "ell_1": 9, "ell_2": 9, "12p": 9, "3s_1": 9, "1s_0": 9, "3p_0": 9, "3p_1": 9, "3p_2": 9, "1p_1": 9, "mechanist": 10, "wholli": 10, "determinist": 10, "lagrang": 10, "1790": 10, "hamilton": 10, "1840": 10, "enabl": 10, "pierr": 10, "simon": 10, "laplac": 10, "problem": 10, "belief": 10, "inspir": 10, "tandem": 10, "calori": 10, "1798": 10, "mere": 10, "substanc": 10, "ahead": 10, "1822": 10, "truli": 10, "prescott": 10, "equivlal": 10, "1843": 10, "paddl": 10, "wheel": 10, "relev": 10, "baptist": 10, "soon": 10, "probablist": 10, "perceiv": 10, "lack": 10, "worri": 10, "regardless": 10, "coint": 10, "toss": 10, "restitut": 10, "formid": 10, "pariticl": 10, "desir": 10, "v_z": 10, "componenet": 10, "thee": 10, "2mv": 10, "crucial": 10, "dv_x": 10, "dv_y": 10, "dv_z": 10, "aproportion": 10, "mv_x": 10, "mv_y": 10, "mv_z": 10, "wihtin": 10, "integrand": 10, "i_n": 10, "2i_n": 10, "dummi": 10, "tranform": 10, "rdr": 10, "4a": 10, "2i_o": 10, "woul": 10, "gaussian_int": [], "di_o": 10, "i_2": 10, "my": [], "sidebar": [], "temp_room": 10, "kmean": 10, "0379": 10, "monatom": 10, "o_2": 10, "rod": 10, "addtion": 10, "quadrat": 10, "propot": 10, "i_x": 10, "omega_x": 10, "k_y": 10, "i_i": 10, "straigthforward": 10, "617333262": 10, "380649": 10, "r_o": 10, "equlitbrium": 10, "nkt": 10, "c_": 10, "nk": 10, "lowercas": 10, "atm": [], "auto": [], "baz": [], "bim": [], "molar_heat_cap": [], "hcl": 10, "cl_2": 10, "co_2": 10, "cs_2": 10, "n_2o": 10, "so_2": 10, "polyatom": 10, "tranlat": 10, "harmoic": 10, "thre": 10, "3r": 10, "ne": 10, "rt": 10, "scalar": 10, "assymetri": 10, "probabilti": 10, "2ve": 10, "vf": 10, "8a": 10, "sigma_v": 10, "8kt": 10, "computr": 10, "radon": 10, "rn": 10, "isotop": 10, "222": 10, "01568": 10, "660539": 10, "5081": 10, "1750": 10, "166": 10, "mean_molecular_spe": 10, "mean_speed_const": 10, "m_h2": 10, "m_rn": 10, "mass_ratio": 10, "v_h2": 10, "v_h2_constant": 10, "v_rn": 10, "110": 10, "pm1": 10, "01v_": 10, "99v_": 10, "indefinit": 10, "02v_": 10, "window": 10, "wider": 10, "017": 10, "maxwell_spe": 10, "v_mp": 10, "0001": 10, "prob": 10, "set_titl": 10, "zoom": 10, "0166": 10, "proabil": 10}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"birth": 0, "modern": [0, 4, 17, 18], "physic": [0, 2, 3, 4, 5, 7, 9, 10, 17, 18], "classic": [0, 5, 6, 8, 10], "1890": 0, "mechan": [0, 7, 8], "electromagnet": [0, 4], "thermodynam": 0, "kinet": 0, "theori": [0, 4, 5, 10], "gase": [0, 10], "ideal": 0, "ga": 0, "law": 0, "statist": [0, 10], "maxwel": [0, 10], "boltzmann": 0, "distribut": [0, 10], "wave": [0, 7, 8, 9, 10], "particl": [0, 3, 4, 7, 8], "energi": [0, 4, 7, 9], "transport": 0, "conserv": 0, "fundament": 0, "forc": 0, "unif": 0, "atom": [0, 4, 6, 9], "matter": 0, "develop": 0, "chemist": 0, "opposit": 0, "evid": 0, "unresolv": 0, "question": 0, "medium": 0, "electrodynam": 0, "blackbodi": [0, 5, 10], "radiat": [0, 5, 10], "earli": 0, "discoveri": [0, 5], "1900": 0, "homework": [0, 4, 5, 6, 7, 8, 9, 13], "problem": [0, 4, 5, 6, 7, 8, 9, 13], "1": [0, 4, 5, 6, 7, 8, 9, 10, 13], "2": [0, 4, 5, 6, 7, 8, 9, 13], "3": [0, 4, 5, 6, 7, 8, 9], "5": [0, 4, 5, 6, 7, 8, 9], "6": [0, 4, 5, 6, 7, 8, 9], "semiconductor": 1, "nuclear": 2, "special": 4, "rel": 4, "need": 4, "ether": 4, "michelson": 4, "morlei": 4, "experi": [4, 7], "s": [4, 5, 7], "interferomet": 4, "collabor": 4, "einstein": [4, 5, 10], "postul": 4, "lorentz": 4, "transform": 4, "time": [4, 7, 8], "dilat": 4, "length": 4, "contract": 4, "addit": 4, "veloc": [4, 10], "experiment": [4, 5], "verif": 4, "muon": 4, "decai": [4, 8], "clock": 4, "measur": 4, "actual": 4, "relativist": 4, "predict": 4, "observ": [4, 7], "differ": 4, "hefel": 4, "keat": 4, "1972a": 4, "1972b": 4, "twin": 4, "paradox": 4, "spacetim": 4, "doppler": 4, "effect": [4, 5, 9], "momentum": [4, 9], "total": [4, 9], "rest": 4, "equival": 4, "mass": [4, 6], "relationship": 4, "massless": 4, "comput": 4, "bind": 4, "4": [4, 5, 6, 7, 8, 9], "7": [4, 5, 6, 7, 8], "8": [4, 5, 6, 7], "9": [4, 5, 6], "10": [4, 5], "11": [4, 5], "quantum": [5, 7, 8, 9, 10], "x": [5, 6, 7], "rai": [5, 6, 7], "electron": [5, 6, 7, 9], "determin": 5, "charg": 5, "line": [5, 14, 15], "spectra": [5, 6, 9], "quantiz": [5, 7], "photoelectr": 5, "work": 5, "function": [5, 7, 8, 9, 10, 15], "from": 5, "handbook": 5, "chemistri": 5, "result": 5, "interpret": [5, 7], "product": 5, "compton": 5, "scatter": [5, 6, 7], "pair": 5, "annihil": 5, "structur": [6, 9, 15], "The": [6, 7, 8, 9], "model": 6, "thomson": 6, "rutherford": 6, "bohr": [6, 7], "hydrogen": [6, 9], "correspond": 6, "principl": [6, 7], "success": 6, "failur": 6, "reduc": 6, "correct": 6, "other": 6, "limit": 6, "characterist": 6, "number": [6, 9], "excit": 6, "part": [7, 8], "i": 7, "de": 7, "brogli": 7, "condit": 7, "motion": 7, "doubl": 7, "slit": 7, "light": 7, "anoth": 7, "gedanken": 7, "thought": 7, "uncertainti": 7, "probabl": [7, 8, 9, 10], "copenhagen": 7, "box": 7, "ii": 8, "schr\u00f6dinger": [8, 9], "equat": [8, 9], "normal": [8, 9], "properti": 8, "valid": 8, "independ": 8, "comparison": 8, "expect": [8, 13], "valu": 8, "infinit": 8, "squar": 8, "well": 8, "potenti": 8, "us": [8, 14], "integr": [8, 10], "finit": 8, "three": 8, "dimension": 8, "simpl": [8, 15], "harmon": [8, 9], "oscil": 8, "barrier": 8, "tunnel": 8, "e": 8, "v_o": 8, "alpha": 8, "applic": 9, "solut": 9, "separ": 9, "variabl": [9, 15], "radial": 9, "angular": 9, "azimuth": 9, "spheric": 9, "y": 9, "theta": 9, "phi": 9, "n": 9, "princip": 9, "orbit": 9, "ell": 9, "magnet": 9, "m_": 9, "zeeman": 9, "state": 9, "due": 9, "field": 9, "vec": 9, "b": 9, "intrins": 9, "spin": 9, "level": 9, "select": [9, 10], "rule": 9, "histor": 10, "overview": 10, "equipartit": 10, "theorem": 10, "speed": 10, "fermi": 10, "dirac": 10, "introduct": [10, 14, 15], "electr": 10, "conduct": 10, "bose": 10, "liquid": 10, "helium": 10, "symmetri": 10, "boson": 10, "condens": 10, "molecul": 11, "laser": 11, "assign": 13, "style": 13, "chapter": 13, "markdown": 14, "what": [14, 15], "why": 14, "basic": 14, "syntax": 14, "section": 14, "head": 14, "best": 14, "practic": 14, "paragraph": 14, "break": 14, "font": 14, "typeset": 14, "blockquot": 14, "list": 14, "link": 14, "math": 14, "environ": 14, "latex": 14, "python": 15, "comment": 15, "input": 15, "output": 15, "type": 15, "sequenc": 15, "trick": 15, "iter": 15, "mathemat": 15, "oper": 15, "control": 15, "defin": 15, "pass": 15, "program": 15, "who": 16, "ar": 16, "note": 16, "interact": 16, "book": 16, "clone": 16, "how": 16, "cite": 16, "reus": 16, "thi": 16, "materi": 16, "phys2700": [17, 18], "singl": 9, "mani": 9, "ls": 9, "coupl": 9, "jj": 9, "molar": 10, "heat": 10, "capac": 10, "15": 10, "circ": 10, "c": 10, "rm": 10, "atm": 10}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file